Vascular Access for Hemodialysis and Right Ventricular Remodeling: A Prospective Echocardiographic Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Echocardiography Examination and Data Analysis
2.3. Bioimpedance
2.4. Vascular Access Flow Measurements
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Hemodynamic Changes After AVF Placement
3.3. Morphological and Functional Cardiac Changes After AVF Placement
3.4. Parameters Associated with Cardiac Remodeling After AVF Placement
3.5. Reproducibility
4. Discussion
4.1. Hemodynamic Changes After AVF Placement
4.2. Morphological and Functional Cardiac Changes After AVF Placement
4.3. Parameters Associated with Cardiac Remodeling After AVF Placement
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADPKD | Autosomal Dominant Polycystic Kidney Disease |
AFI | Automated Function Imaging |
AVF | Arteriovenous Fistula |
AVG | Arteriovenous Graft |
BCM | Body Composition Monitor |
BIS | Bioimpedance Spectroscopy |
BMI | Body Mass Index |
CAD | Coronary Artery Disease |
CI | Cardiac Index |
CO | Cardiac Output |
CVP | Central Venous Pressure |
E/A | Early to Late Diastolic Transmitral Flow Velocity Ratio |
E/e′ | Ratio of Early Mitral Inflow to Mitral Annular Velocity |
EF | Ejection Fraction |
ESKD | End-Stage Kidney Disease |
FAC | Fractional Area Change |
HF | Heart Failure |
ICC | Intraclass Correlation Coefficient |
IQR | Interquartile Range |
LAVI | Left Atrial Volume Index |
LV | Left Ventricle |
LVEDD | Left Ventricular End-Diastolic Diameter |
LVEDVi | Left Ventricular End-Diastolic Volume Index |
LVEF | Left Ventricular Ejection Fraction |
LVESV | Left Ventricular End-Systolic Volume |
LVGLS | Left Ventricular Global Longitudinal Strain |
LVMI | Left Ventricular Mass Index |
MAP | Mean Arterial Pressure |
OH | Overhydration |
Qacc | Vascular Access Flow |
RAVI | Right Atrial Volume Index |
RV | Right Ventricular End-Diastolic Volume Index |
RVEF | Right Ventricular Ejection Fraction |
RVESV | Right Ventricular End-Systolic Volume |
RVFWLS | Right Ventricular Free Wall Longitudinal Strain |
RVGLS | Right Ventricular Global Longitudinal Strain |
SCD | Sudden Cardiac Death |
SPAP | Systolic Pulmonary Artery Pressure |
SV | Stroke Volume |
SVR | Systemic Vascular Resistance |
TAPSE | Tricuspid Annular Plane Systolic Excursion |
TRV | Tricuspid Regurgitation Velocity |
VIF | Variance Inflation Factor |
VTI | Velocity–Time Integral |
References
- Thurlow, J.S.; Joshi, M.; Yan, G.; Norris, K.C.; Agodoa, L.Y.; Yuan, C.M.; Nee, R. Global Epidemiology of End-Stage Kidney Disease and Disparities in Kidney Replacement Therapy. Am. J. Nephrol. 2021, 52, 98–107. [Google Scholar] [CrossRef]
- Van Walraven, C.; Manuel, D.G.; Knoll, G. Survival Trends in ESRD Patients Compared with the General Population in the United States. Am. J. Kidney Dis. 2014, 63, 491–499. [Google Scholar] [CrossRef]
- Roberts, M.A.; Polkinghorne, K.R.; McDonald, S.P.; Ierino, F.L. Secular Trends in Cardiovascular Mortality Rates of Patients Receiving Dialysis Compared with the General Population. Am. J. Kidney Dis. 2011, 58, 64–72. [Google Scholar] [CrossRef]
- United States Renal Data System. USRDS 2024 Annual Data Report: Epidemiology of Kidney Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2024. Available online: https://usrds-adr.niddk.nih.gov/2024 (accessed on 23 July 2025).
- Truyen, T.T.T.T.; Uy-Evanado, A.; Holmstrom, L.; Reinier, K.; Chugh, H.; Jui, J.; Herzog, C.A.; Chugh, S.S. Sudden Cardiac Arrest Associated with Hemodialysis: A Community-Based Study. Kidney360 2025, 6, 805–813. [Google Scholar] [CrossRef]
- Schmidli, J.; Widmer, M.K.; Basile, C.; De Donato, G.; Gallieni, M.; Gibbons, C.P.; Haage, P.; Hamilton, G.; Hedin, U.; Kamper, L.; et al. Editor’s Choice—Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 757–818. [Google Scholar] [CrossRef]
- Basile, C.; Lomonte, C.; Vernaglione, L.; Casucci, F.; Antonelli, M.; Losurdo, N. The Relationship between the Flow of Arteriovenous Fistula and Cardiac Output in Haemodialysis Patients. Nephrol. Dial. Transplant. 2007, 23, 282–287. [Google Scholar] [CrossRef]
- MacRae, J.M.; Pandeya, S.; Humen, D.P.; Krivitski, N.; Lindsay, R.M. Arteriovenous Fistula-Associated High-Output Cardiac Failure: A Review of Mechanisms. Am. J. Kidney Dis. 2004, 43, e21.1–e21.6. [Google Scholar] [CrossRef]
- Blanchard, V.; Courtellemont, C.; Cariou, E.; Fournier, P.; Lavie-Badie, Y.; Pascal, P.; Galinier, M.; Kamar, N.; Carrié, D.; Lairez, O. Cardiac Impact of Arteriovenous Fistulas: What Tools to Assess? Heart Vessel. 2020, 35, 1583–1593. [Google Scholar] [CrossRef]
- Ori, Y.; Korzets, A.; Katz, M.; Perek, Y.; Zahavi, I.; Gafter, U. Haemodialysis Arteriovenous Access -a Prospective Haemodynamic Evaluation. Nephrol. Dial. Transplant. 1996, 11, 94–97. [Google Scholar] [CrossRef]
- Iwashima, Y.; Horio, T.; Takami, Y.; Inenaga, T.; Nishikimi, T.; Takishita, S.; Kawano, Y. Effects of the Creation of Arteriovenous Fistula for Hemodialysis on Cardiac Function and Natriuretic Peptide Levels in CRF. Am. J. Kidney Dis. 2002, 40, 974–982. [Google Scholar] [CrossRef]
- Korsheed, S.; Eldehni, M.T.; John, S.G.; Fluck, R.J.; McIntyre, C.W. Effects of Arteriovenous Fistula Formation on Arterial Stiffness and Cardiovascular Performance and Function. Nephrol. Dial. Transplant. 2011, 26, 3296–3302. [Google Scholar] [CrossRef]
- Gumus, F.; Saricaoglu, M.C. Assessment of Right Heart Functions in the Patients with Arteriovenous Fistula for Hemodialysis Access: Right Ventricular Free Wall Strain and Tricuspid Regurgitation Jet Velocity as the Predictors of Right Heart Failure. Vascular 2020, 28, 96–103. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Obokata, M.; Dean, P.G.; Melenovsky, V.; Nath, K.A.; Borlaug, B.A. Long-Term Cardiovascular Changes Following Creation of Arteriovenous Fistula in Patients with End Stage Renal Disease. Eur. Heart J. 2017, 38, 1913–1923. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of Left Atrial, Right Ventricular, and Right Atrial Deformation Imaging Using Two-Dimensional Speckle Tracking Echocardiography: A Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a Common Standard for 2D Speckle Tracking Echocardiography: Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef]
- Saleh, M.A.; El Kilany, W.M.; Keddis, V.W.; El Said, T.W. Effect of High Flow Arteriovenous Fistula on Cardiac Function in Hemodialysis Patients. Egypt Heart J. 2018, 70, 337–341. [Google Scholar] [CrossRef]
- Yilmaz, S.; Yetim, M.; Yilmaz, B.; Dogan, T.; Aksoy, E.; Yuksel, N.; Dogan, I. High Hemodialysis Vascular Access Flow and Impaired Right Ventricular Function in Chronic Hemodialysis Patients. Indian J. Nephrol. 2016, 26, 352. [Google Scholar] [CrossRef]
- Voigt, J.-U.; Cvijic, M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc. Imaging 2019, 12, 1849–1863. [Google Scholar] [CrossRef]
- Opie, L.H.; Commerford, P.J.; Gersh, B.J.; Pfeffer, M.A. Controversies in Ventricular Remodelling. Lancet 2006, 367, 356–367. [Google Scholar] [CrossRef]
- Sanz, J.; Sánchez-Quintana, D.; Bossone, E.; Bogaard, H.J.; Naeije, R. Anatomy, Function, and Dysfunction of the Right Ventricle. J. Am. Coll. Cardiol. 2019, 73, 1463–1482. [Google Scholar] [CrossRef]
- McCullough, P.A.; Rios, A.; Smith, B. Dialysis Fistulas and Heart Failure. Eur. Heart J. 2017, 38, 1924–1925. [Google Scholar] [CrossRef]
- Malik, J.; Valerianova, A.; Tuka, V.; Trachta, P.; Bednarova, V.; Hruskova, Z.; Slavikova, M.; Rosner, M.H.; Tesar, V. The Effect of High-flow Arteriovenous Fistulas on Systemic Haemodynamics and Brain Oxygenation. ESC Heart Fail. 2021, 8, 2165–2171. [Google Scholar] [CrossRef]
- Krishnasamy, R.; Isbel, N.M.; Hawley, C.M.; Pascoe, E.M.; Leano, R.; Haluska, B.A.; Stanton, T. The Association between Left Ventricular Global Longitudinal Strain, Renal Impairment and All-Cause Mortality. Nephrol. Dial. Transplant. 2014, 29, 1218–1225. [Google Scholar] [CrossRef]
- Hensen, L.C.R.; Goossens, K.; Delgado, V.; Abou, R.; Rotmans, J.I.; Jukema, J.W.; Bax, J.J. Prevalence of Left Ventricular Systolic Dysfunction in Pre-dialysis and Dialysis Patients with Preserved Left Ventricular Ejection Fraction. Eur. J. Heart Fail. 2018, 20, 560–568. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Su, C.-T.; Sung, J.-M.; Wang, S.P.H.; Su, Y.-R.; Yang, C.-S.; Tsai, L.-M.; Chen, J.-H.; Tsai, W.-C. Association of Left Ventricular Longitudinal Strain with Mortality among Stable Hemodialysis Patients with Preserved Left Ventricular Ejection Fraction. Clin. J. Am. Soc. Nephrol. 2013, 8, 1564–1574. [Google Scholar] [CrossRef]
- Zhao, L.-J.; Huang, S.-M.; Liang, T.; Tang, H. Pulmonary Hypertension and Right Ventricular Dysfunction in Hemodialysis Patients. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3267–3273. [Google Scholar]
- Mahmoud Khaled, M.M. Right Ventricular Dysfunction in Patients with End-Stage Renal Disease on Regular Hemodialysis. Egypt. Soc. Intern. Med. 2013, 25, 127–132. [Google Scholar]
- Paneni, F.; Gregori, M.; Ciavarella, G.M.; Sciarretta, S.; De Biase, L.; Marino, L.; Tocci, G.; Principe, F.; Domenici, A.; Luciani, R.; et al. Right Ventricular Dysfunction in Patients with End-Stage Renal Disease. Am. J. Nephrol. 2010, 32, 432–438. [Google Scholar] [CrossRef]
- Dammers, R.; Tordoir, J.H.M.; Kooman, J.P.; Welten, R.J.T.J.; Hameleers, J.M.M.; Kitslaar, P.J.E.H.M.; Hoeks, A.P.G. The Effect of Flow Changes on the Arterial System Proximal to an Arteriovenous Fistula for Hemodialysis. Ultrasound Med. Biol. 2005, 31, 1327–1333. [Google Scholar] [CrossRef]
- Damiano, R.J.; La Follette, P.; Cox, J.L.; Lowe, J.E.; Santamore, W.P. Significant Left Ventricular Contribution to Right Ventricular Systolic Function. Am. J. Physiol. Heart Circ. Physiol. 1991, 261, H1514–H1524. [Google Scholar] [CrossRef]
- FHN Trial Group; Chertow, G.M.; Levin, N.W.; Beck, G.J.; Depner, T.A.; Eggers, P.W.; Gassman, J.J.; Gorodetskaya, I.; Greene, T.; James, S.; et al. In-center hemodialysis six times per week versus three times per week. N. Engl. J. Med. 2010, 363, 2287–2300. [Google Scholar] [CrossRef]
- Chan, C.T.; Greene, T.; Chertow, G.M.; Kliger, A.S.; Stokes, J.B.; Beck, G.J.; Daugirdas, J.T.; Kotanko, P.; Larive, B.; Levin, N.W.; et al. Effects of frequent hemodialysis on ventricular volumes and left ventricular remodeling. Clin. J. Am. Soc. Nephrol. 2013, 8, 2106–2116. [Google Scholar] [CrossRef]
- Drighil, A.; Madias, J.E.; Mathewson, J.W.; Mosalami, H.E.; Badaoui, N.E.; Ramdani, B.; Bennis, A. Haemodialysis: Effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur. J. Echocardiogr. 2008, 9, 530–535. [Google Scholar] [CrossRef]
Demographics | |
Age, years | 73.5 (IQR: 67 to 77) |
Male, n (%) | 18 (90) |
Body mass index | 26.1 ± 3.5 |
Comorbidities | |
Coronary artery disease, n (%) | 4 (20) |
Diabetes mellitus, n (%) | 8 (40) |
Arterial hypertension, n (%) | 19 (95) |
Hyperlipidemia, n (%) | 11 (55) |
Atrial fibrillation, n (%) | 1 (5) |
ESKD etiology | |
Hypertensive, n (%) | 4 (20) |
IgA, n (%) | 4 (20) |
Diabetic, n (%) | 4 (20) |
Uknown, n (%) | 4 (20) |
ANCA vasculitis, n (%) | 2 (10) |
Obstructive nephropathy, n (%) | 2 (10) |
ADPKD, n (%) | 5 (25) |
Chronic hemodialysis | 5 (25) |
Hemodynamic Parameters | Baseline | Follow-Up | p-Value |
---|---|---|---|
Systolic BP, mmHg | 154 ± 23 | 152 ± 22 | 0.780 |
Diastolic BP, mmHg | 85 ± 10 | 79 ± 15 | 0.084 |
Heart rate, bpm | 64 ± 9 | 63 ± 10 | 0.563 |
SV Doppler, mL | 89 ± 12 | 94 ± 12 | 0.004 |
CO, L/min | 5.8 ± 1.0 | 5.9 ± 0.8 | 0.621 |
CI, L/min/m2 | 3.1 ± 0.6 | 3.1 ± 0.5 | 0.519 |
CVP, mmHg | 3 (3 to 8) | 3 (3 to 8) | 0.502 |
SPAP, mmHg | 31 (27 to 42) | 40 (33 to 44) | 0.214 |
SVR, dyn·s·cm−5 | 1451 ± 301 | 1347 ± 147 | 0.185 |
Overhydration (BCM), L | 2.0 ± 2.1 | 1.3 ± 2.1 | 0.231 |
LV Dimension and Geometry | Baseline | Follow-Up | p-Value |
---|---|---|---|
LVEDD, cm | 5.2 ± 0.5 | 5.3 ± 0.6 | 0.117 |
LVMI, g/m2 | 96 (81 to 117) | 109 (77 to 126) | 0.147 |
2D LVEDV, mL | 158 (134 to 168) | 159 (142 to 188) | 0.083 |
2D LVEDVi, mL/m2 | 81 (72 to 89) | 84 (78 to 99) | 0.067 |
2D LVESV, mL | 68 (59 to 78) | 69 (60 to 93) | 0.095 |
3D LVEDV, mL | 165 (148 to 181) | 176 (144 to 206) | 0.039 |
3D LVEDVi, mL/m2 | 89 ± 14 | 97 ± 21 | 0.029 |
3D LVESV, mL | 77 (65 to 84) | 79 (65 to 103) | 0.072 |
LV systolic parameters | |||
2D LVEF, % | 55 (53 to 58) | 55 (51 to 57) | 0.247 |
3D LVEF, % | 54 (53 to 56) | 55 (51 to 56) | 0.602 |
LVGLS, % | −17 ± 2.1 | −16.1 ± 1.6 | 0.132 |
LV s’, cm/s | 7.7 ± 1.4 | 7.5 ± 1.3 | 0.493 |
LV diastolic parameters | |||
E/A | 0.9 (0.7 to 1.2) | 0.8 (0.6 to 1.3) | 0.055 |
E/e′ | 11.5 (9 to 15) | 10.5 (8.3 to 15.5) | 0.407 |
RV dimension | |||
RV basal diameter, cm | 4.6 ± 0.5 | 4.8 ± 0.4 | 0.005 |
RV diastolic area, cm2 | 26.3 ± 3.3 | 27.4 ± 4.5 | 0.188 |
3D RVEDV, mL | 134 (128 to 177) | 167 (141 to 197) | 0.028 |
3D RVEDVi, mL/m2 | 80 ± 15 | 91 ± 18 | 0.014 |
3D RVESV, mL | 61 (53 to 82) | 75 (60 to 97) | 0.028 |
RV systolic parameters | |||
3D RVEF, % | 56 (54 to 61) | 57 (50 to 58) | 0.081 |
RVGLS, % | −21.9 ± 3.2 | −21.5 ± 3.1 | 0.497 |
RVFWLS, % | −26.6 ± 4.2 | −26.1 ± 3.7 | 0.593 |
FAC, % | 47.7 ± 6.4 | 46.4 ± 6.4 | 0.24 |
TAPSE, mm | 27 ± 4 | 26 ± 5 | 0.772 |
RV s’, cm/s | 14.9 ± 2.5 | 14.5 ± 2 | 0.462 |
Regression Variable | Univariate Analysis | ||
---|---|---|---|
β | 95% CI | p-Value | |
Age | 0.201 | −0.007 to 0.015 | 0.425 |
Coronary artery disease | 0.604 | 0.121 to 0.679 | 0.008 |
Diabetes mellitus | 0.315 | −0.102 to 0.442 | 0.203 |
Baseline—OH | −0.459 | −0.121 to 0.001 | 0.055 |
Follow-up—OH | 0.656 | 0.034 to 0.140 | 0.003 |
Qacc | 0.152 | −0.257 to 0.561 | 0.443 |
Baseline RV parameters | |||
3D RVEDVi | −0.569 | −0.018 to −0.002 | 0.014 |
3D RVEF | 0.631 | 0.13 to 0.061 | 0.005 |
RVFWLS | −0.584 | −0.066 to −0.01 | 0.011 |
RVGLS | −0.501 | −0.081 to −0.004 | 0.034 |
FAC | 0.167 | −0.015 to 0.029 | 0.507 |
TAPSE | 0.344 | −0.01 to 0.052 | 0.162 |
SPAP | −0.371 | −0.019 to 0.003 | 0.130 |
Baseline LV parameters | |||
LVMI | 0.083 | −0.004 to 0.006 | 0.744 |
3D LVEDVi | −0.260 | −0.015 to 0.005 | 0.313 |
3D LVEF | 0.202 | −0.018 to 0.040 | 0.437 |
LVGLS | 0.047 | −0.061 to 0.073 | 0.854 |
E/e′ | 0.497 | 0.002 to 0.046 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornazarič, D.; Gubenšek, J.; Antonič, M.; Cvijić, M.; Pajek, J. Vascular Access for Hemodialysis and Right Ventricular Remodeling: A Prospective Echocardiographic Study. J. Clin. Med. 2025, 14, 5565. https://doi.org/10.3390/jcm14155565
Fornazarič D, Gubenšek J, Antonič M, Cvijić M, Pajek J. Vascular Access for Hemodialysis and Right Ventricular Remodeling: A Prospective Echocardiographic Study. Journal of Clinical Medicine. 2025; 14(15):5565. https://doi.org/10.3390/jcm14155565
Chicago/Turabian StyleFornazarič, Denis, Jakob Gubenšek, Manja Antonič, Marta Cvijić, and Jernej Pajek. 2025. "Vascular Access for Hemodialysis and Right Ventricular Remodeling: A Prospective Echocardiographic Study" Journal of Clinical Medicine 14, no. 15: 5565. https://doi.org/10.3390/jcm14155565
APA StyleFornazarič, D., Gubenšek, J., Antonič, M., Cvijić, M., & Pajek, J. (2025). Vascular Access for Hemodialysis and Right Ventricular Remodeling: A Prospective Echocardiographic Study. Journal of Clinical Medicine, 14(15), 5565. https://doi.org/10.3390/jcm14155565