Metabolic Modulators in Cardiovascular Disease Management

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Endocrinology and Clinical Metabolic Research".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 1977

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Pharmacology, Lincoln Memorial University, Debusk College of Osteopathic Medicine, 9737 Cogdill Road, Knoxville, TN 37932, USA
Interests: pharmacology; cardiovascular disease; therapy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cardiovascular disease is the number one cause of death worldwide and we need new therapies that modulate metabolism. This Special Issue is all about the latest research on metabolic modulators in cardiovascular disease, from basic science to clinical applications. We are looking at how metabolic pathways can be targeted to prevent, treat and manage cardiovascular conditions.

The scope includes, but is not limited to, new metabolic drug targets, mitochondrial function modulators, metabolic syndrome interventions and new therapeutic strategies. We are interested in research on the role of metabolic regulators in heart failure, atherosclerosis and cardiometabolic disorders. We also want to see studies on the intersection of metabolism with inflammation, oxidative stress and energy homeostasis in cardiovascular disease.

Submit your latest research on metabolic approaches to cardiovascular disease here. New therapeutic targets, clinical trials of metabolic modulators and new diagnostic approaches are especially welcome. Original research and reviews are both accepted, especially on emerging therapies.

Dr. Syed Siraj A. Quadri
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metabolic modulators
  • cardiovascular therapeutics
  • mitochondrial function
  • cardiometabolic disorders
  • energy metabolism
  • metabolic syndrome
  • therapeutic targets
  • heart failure
  • metabolic pathways

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

36 pages, 1562 KB  
Review
Targeting Metabolic Dysregulation in Obesity and Metabolic Syndrome: The Emerging Role of N-Acetylcysteine
by Dorota Magdalena Radomska-Leśniewska, Justyna Niderla-Bielińska, Marek Kujawa and Ewa Jankowska-Steifer
Metabolites 2025, 15(10), 645; https://doi.org/10.3390/metabo15100645 - 26 Sep 2025
Abstract
Obesity and metabolic syndrome (MetS), growing global health concerns, are closely linked to the development of insulin resistance, type 2 diabetes, steatotic liver disease, and cardiovascular diseases (CVDs). An increase in visceral adipose tissue, the main symptom of MetS, contributes to systemic metabolic [...] Read more.
Obesity and metabolic syndrome (MetS), growing global health concerns, are closely linked to the development of insulin resistance, type 2 diabetes, steatotic liver disease, and cardiovascular diseases (CVDs). An increase in visceral adipose tissue, the main symptom of MetS, contributes to systemic metabolic dysfunction, resulting in disturbances in glucose and lipid metabolism, mitochondrial dysfunction, and redox imbalance, which creates a vicious cycle of inflammation and oxidative stress, accelerating comorbidities. N-acetylcysteine (NAC), a precursor to glutathione, with antioxidant and anti-inflammatory properties, is described as a potent metabolic modulator that restores metabolic homeostasis. NAC’s ability to modulate oxidative stress and inflammation may be particularly valuable in preventing or mitigating cardiovascular complications of MetS. The aim of this narrative review is to summarize current evidence from cellular, animal, and human studies on NAC’s impact on metabolic health. MetS affects nearly one-third of the global population; therefore, there is a pressing need for accessible therapeutic strategies. NAC appears to offer potential benefits as an adjunctive agent for individuals with metabolic disturbances, but further research is needed to confirm its efficacy and establish its role in clinical practice. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

15 pages, 2691 KB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Viewed by 1349
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

Back to TopTop