Cardiac Rehabilitation in the Modern Era: Evidence, Equity, and Evolving Delivery Models Across the Cardiovascular Spectrum
Abstract
1. Introduction
2. Guideline Recommendations and Components of CR
- Acute myocardial infarction within the past 12 months;
- Percutaneous coronary intervention or coronary artery bypass grafting;
- Stable angina pectoris;
- Heart valve repair or replacement;
- Heart transplantation;
- Chronic stable heart failure with reduced ejection fraction (NYHA Class II–III, LVEF ≤ 35%).
- Supervised aerobic and resistance training, ideally guided by cardiopulmonary exercise testing (CPET), which allows for individualized exercise prescription. The FITT-VP principle (Frequency, Intensity, Time, Type, Volume, and Progression) is often used to structure training recommendations [10].
- Cardiovascular risk factor management, including blood pressure, cholesterol (with attention to achieving LDL-C targets), diabetes, and smoking cessation.
- Optimization of medical therapy, including the up-titration of guideline-directed drugs in conditions like heart failure.
- Nutritional counseling and weight management.
- Psychosocial support, including depression screening and stress management.
- Lifestyle counseling to promote physical activity, healthy habits, and medication adherence.
- Assessment for Cardiac Implantable Electronic Devices (CIEDs) in eligible patients or those who may benefit from device therapy.
- Ongoing program evaluation and quality assurance metrics to ensure effectiveness and safety.
3. Mechanism of Benefit
4. Clinical Evidence by Disease Type
4.1. Coronary Artery Disease (CAD)
4.2. Heart Failure with Reduced Ejection Fraction (HFrEF)
4.3. Valvular Heart Disease
4.4. Heart Transplant
5. Emerging Evidence in Expanding Populations
5.1. Heart Failure with Preserved Ejection Fraction (HFpEF)
5.2. Older Adults
5.3. Advanced HF
5.4. Catheter-Based Valve Interventions (Transcatheter Aortic Valve Replacement, Transcatheter Mitral Valve Repair)
5.5. Pulmonary Hypertension (PH)
5.6. Cardio-Oncology and Cancer Survivors
5.7. Arrhythmias and Cardiac Implantable Electronic Devices (CIEDs)
6. Barriers to Access and Utilization
6.1. System-Level and Referral Barriers
6.2. Disparities by Age, Gender, Race/Ethnicity, and Socioeconomic Factors
7. Innovative Delivery Models and Future Directions
7.1. Alternative Delivery Models: Virtual, Home-Based, and Hybrid Programs
7.2. Expanded Eligibility and Reimbursement
7.3. Policy Reform and Quality Improvement Initiatives
8. Conclusions
Funding
Conflicts of Interest
Abbreviations
AACVPR | American Association of Cardiovascular and Pulmonary Rehabilitation |
ACC | American College of Cardiology |
AHA | American Heart Association |
CAD | Coronary Artery Disease |
CMS | Centers for Medicare & Medicaid Services |
CR | Cardiac Rehabilitation |
ESC | European Society of Cardiology |
HFpEF | Heart Failure with Preserved Ejection Fraction |
HFrEF | Heart Failure with Reduced Ejection Fraction |
MI | Myocardial Infarction |
TAVR | Transcatheter Aortic Valve Replacement |
TMVR | Transcatheter Mitral Valve Repair |
VEGF | Vascular Endothelial Growth Factor |
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W. Heart Disease and Stroke Statistics—2021 Update. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016, 2016, CD001800. [Google Scholar] [CrossRef]
- Ritchey, M.D.; Maresh, S.; McNeely, J.; Shaffer, T.; Jackson, S.L.; Keteyian, S.J.; Brawner, C.A.; Whooley, M.A.; Chang, T.; Stolp, H.; et al. Tracking Cardiac Rehabilitation Participation and Completion Among Medicare Beneficiaries to Inform the Efforts of a National Initiative. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e005902. [Google Scholar] [CrossRef]
- Taylor, R.S.; Sagar, V.A.; Davies, E.J.; Briscoe, S.; Coats, A.J.; Dalal, H.; Lough, F.; Rees, K.; Singh, S. Exercise-based rehabilitation for heart failure. Cochrane Database Syst. Rev. 2014, 2014, CD003331. [Google Scholar] [CrossRef]
- Suaya, J.A.; Shepard, D.S.; Normand, S.L.; Ades, P.A.; Prottas, J.; Stason, W.B. Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation 2007, 116, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Beatty, A.L.; Fukuoka, Y.; Whooley, M.A. Using mobile technology for cardiac rehabilitation: A review and framework for development and evaluation. J. Am. Heart Assoc. 2013, 2, e000568. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Beatty, A.L.; Beckie, T.M.; Brewer, L.C.; Brown, T.M.; Forman, D.E.; Franklin, B.A.; Keteyian, S.J.; Kitzman, D.W.; Regensteiner, J.G.; et al. Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. J. Am. Coll. Cardiol. 2019, 74, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESCGuidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.E.; Schmid, J.P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 28, 460–495. [Google Scholar] [CrossRef]
- Brown, T.M.; Pack, Q.R.; Aberegg, E.; Brewer, L.C.; Ford, Y.R.; Forman, D.E.; Gathright, E.C.; Khadanga, S.; Ozemek, C.; Thomas, R.J. Core Components of Cardiac Rehabilitation Programs: 2024 Update: A Scientific Statement From the American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2024, 150, e328–e347. [Google Scholar] [CrossRef]
- Gielen, S.; Mezzani, A.; Hambrecht, R.; Saner, H. Cardiac Rehabilitation. In The ESC Textbook of Cardiovascular Medicine; Camm, A.J., Lüscher, T.F., Serruys, P.W., Eds.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Rauch, B.; Salzwedel, A.; Bjarnason-Wehrens, B.; Albus, C.; Meng, K.; Schmid, J.P.; Benzer, W.; Hackbusch, M.; Jensen, K.; Schwaab, B.; et al. Cardiac Rehabilitation in German Speaking Countries of Europe-Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH-Part 1. J. Clin. Med. 2021, 10, 2192. [Google Scholar] [CrossRef]
- Supervia, M.; Turk-Adawi, K.; Lopez-Jimenez, F.; Pesah, E.; Ding, R.; Britto, R.R.; Bjarnason-Wehrens, B.; Derman, W.; Abreu, A.; Babu, A.S.; et al. Nature of Cardiac Rehabilitation Around the Globe. EClinicalMedicine 2019, 13, 46–56. [Google Scholar] [CrossRef]
- Feiereisen, P.; Delagardelle, C. Retrospective analysis of cardiac events during cardiac rehabilitation at Centre Hospitalier de Luxembourg during 2014 and 2015. Bull. Soc. Sci. Med. Grand. Duche Luxemb. 2016, 2, 13–25. [Google Scholar]
- González-Salvado, V.; Peña-Gil, C.; Lado-Baleato, Ó.; Cadarso-Suárez, C.; Prada-Ramallal, G.; Prescott, E.; Wilhelm, M.; Eser, P.; Iliou, M.-C.; Zeymer, U.; et al. Offering, participation and adherence to cardiac rehabilitation programmes in the elderly: A European comparison based on the EU-CaRE multicentre observational study. Eur. J. Prev. Cardiol. 2021, 28, 558–568. [Google Scholar] [CrossRef]
- European Society of Cardiology—EAPC (n.d.). Overview of Cardiac Rehabilitation—Part 1. Available online: https://www.escardio.org/Sub-specialty-communities/European-Association-of-Preventive-Cardiology-(EAPC)/Advocacy/Prevention-in-your-country/overview-of-cardiac-rehabilitation-part-one (accessed on 21 July 2025).
- Cornelissen, V.A.; Smart, N.A. Exercise training for blood pressure: A systematic review and meta-analysis. J. Am. Heart Assoc. 2013, 2, e004473. [Google Scholar] [CrossRef] [PubMed]
- Fleg, J.L.; Morrell, C.H.; Bos, A.G.; Brant, L.J.; Talbot, L.A.; Wright, J.G.; Lakatta, E.G. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 2005, 112, 674–682. [Google Scholar] [CrossRef]
- Nytrøen, K.; Rustad, L.A.; Aukrust, P.; Ueland, T.; Hallén, J.; Holm, I.; Rolid, K.; Lekva, T.; Fiane, A.E.; Amlie, J.P.; et al. High-intensity interval training improves peak oxygen uptake and muscular exercise capacity in heart transplant recipients. Am. J. Transplant 2012, 12, 3134–3142. [Google Scholar] [CrossRef]
- Hambrecht, R.; Wolf, A.; Gielen, S.; Linke, A.; Hofer, J.; Erbs, S.; Schoene, N.; Schuler, G. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N. Engl. J. Med. 2000, 342, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.A. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl. Physiol. Nutr. Metab. 2009, 34, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.-P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Tryfonos, A.; Tzanis, G.; Pitsolis, T.; Karatzanos, E.; Koutsilieris, M.; Nanas, S.; Philippou, A. Exercise Training Enhances Angiogenesis-Related Gene Responses in Skeletal Muscle of Patients with Chronic Heart Failure. Cells 2021, 10, 1915. [Google Scholar] [CrossRef]
- Green, D.J.; Hopman, M.T.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Karatzanos, E.; Nanas, S.; Karabinis, A.; Dimopoulos, S. Exercise training in heart transplantation. World J. Transplant. 2021, 11, 466–479. [Google Scholar] [CrossRef]
- Haykowsky, M.; Taylor, D.; Kim, D.; Tymchak, W. Exercise training improves aerobic capacity and skeletal muscle function in heart transplant recipients. Am. J. Transplant. 2009, 9, 734–739. [Google Scholar] [CrossRef]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport. Exerc. Med. 2016, 2, e000143. [Google Scholar] [CrossRef]
- Gaalema, D.E.; Cutler, A.Y.; Higgins, S.T.; Ades, P.A. Smoking and cardiac rehabilitation participation: Associations with referral, attendance and adherence. Prev. Med. 2015, 80, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ghashghaei, F.E.; Sadeghi, M.; Marandi, S.M.; Ghashghaei, S.E. Exercise-based cardiac rehabilitation improves hemodynamic responses after coronary artery bypass graft surgery. ARYA Atheroscler. 2012, 7, 151–156. [Google Scholar]
- Elsayegh, A.T.; Karim, K.; Shabana, A. Impact of Cardiac Rehabilitation Programs Post Primary Percutaneous Coronary Intervention on Functional Capacity and Metabolic Profile Through Different Age Groups. High. Blood Press. Cardiovasc. Prev. 2023, 30, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hambrecht, R.; Walther, C.; Möbius-Winkler, S.; Gielen, S.; Linke, A.; Conradi, K.; Erbs, S.; Kluge, R.; Kendziorra, K.; Sabri, O.; et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: A randomized trial. Circulation 2004, 109, 1371–1378. [Google Scholar] [CrossRef]
- Dibben, G.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.D.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2021, 11, CD001800. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Sherwood, A.; Babyak, M.A.; Watkins, L.L.; Smith, P.J.; Hoffman, B.M.; O’Hayer, C.V.; Mabe, S.; Johnson, J.; Doraiswamy, P.M.; et al. Exercise and pharmacological treatment of depressive symptoms in patients with coronary heart disease: Results from the UPBEAT (Understanding the Prognostic Benefits of Exercise and Antidepressant Therapy) study. J. Am. Coll. Cardiol. 2012, 60, 1053–1063. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Kruse, M.; Zwisler, A.D.O.; Helmark, C.; Pedersen, S.S.; Olsen, K.R. Return to work: Does cardiac rehabilitation make a difference? Danish nationwide register-based study. Scand. J. Public. Health 2023, 51, 179–187. [Google Scholar] [CrossRef]
- Anderson, L.; Oldridge, N.; Thompson, D.R.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2016, 67, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rouleau, C.R.; Chirico, D.; Wilton, S.B.; MacDonald, M.K.; Tao, T.; Arena, R.; Campbell, T.; Aggarwal, S. Mortality Benefits of Cardiac Rehabilitation in Coronary Artery Disease Are Mediated by Comprehensive Risk Factor Modification: A Retrospective Cohort Study. J. Am. Heart Assoc. 2024, 13, e033568. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Pack, Q.R.; Thomas, R.J.; Killian, J.M.; Roger, V.L. Participation in cardiac rehabilitation, readmissions, and death after acute myocardial infarction. Am. J. Med. 2014, 127, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Suaya, J.A.; Stason, W.B.; Ades, P.A.; Normand, S.L.; Shepard, D.S. Cardiac rehabilitation and survival in older coronary patients. J. Am. Coll. Cardiol. 2009, 54, 25–33. [Google Scholar] [CrossRef]
- Medina-Inojosa, J.R.; Grace, S.L.; Supervia, M.; Stokin, G.; Bonikowske, A.R.; Thomas, R.; Lopez-Jimenez, F. Dose of Cardiac Rehabilitation to Reduce Mortality and Morbidity: A Population-Based Study. J. Am. Heart Assoc. 2021, 10, e021356. [Google Scholar] [CrossRef] [PubMed]
- Smart, N.; Marwick, T.H. Exercise training for patients with heart failure: A systematic review of factors that improve mortality and morbidity. Am. J. Med. 2004, 116, 693–706. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Whellan, D.J.; Lee, K.L.; Keteyian, S.J.; Cooper, L.S.; Ellis, S.J.; Leifer, E.S.; Kraus, W.E.; Kitzman, D.W.; Blumenthal, J.A.; et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009, 301, 1439–1450. [Google Scholar] [CrossRef]
- Kitzman, D.W.; Whellan, D.J.; Duncan, P.; Pastva, A.M.; Mentz, R.J.; Reeves, G.R.; Nelson, M.B.; Chen, H.; Upadhya, B.; Reed, S.D.; et al. Physical Rehabilitation for Older Patients Hospitalized for Heart Failure. N. Engl. J. Med. 2021, 385, 203–216. [Google Scholar] [CrossRef]
- Mudge, A.M.; Denaro, C.P.; Scott, A.C.; Meyers, D.; Adsett, J.A.; Mullins, R.W.; Suna, J.M.; Atherton, J.J.; Marwick, T.H.; Scuffham, P.; et al. Addition of Supervised Exercise Training to a Post-Hospital Disease Management Program for Patients Recently Hospitalized with Acute Heart Failure: The EJECTION-HF Randomized Phase 4 Trial. JACC Heart Fail. 2018, 6, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Sato, Y.; Takahashi, T.; Tsuchihashi-Makaya, M.; Kotooka, N.; Ikegame, T.; Takura, T.; Yamamoto, T.; Nagayama, M.; Goto, Y.; et al. Multidisciplinary Cardiac Rehabilitation and Long-Term Prognosis in Patients with Heart Failure. Circ. Heart Fail. 2020, 13, e006798. [Google Scholar] [CrossRef] [PubMed]
- Buckley, B.J.R.; Harrison, S.L.; Fazio-Eynullayeva, E.; Underhill, P.; Sankaranarayanan, R.; Wright, D.J.; Thijssen, D.H.J.; Lip, G.Y.H. Cardiac rehabilitation and all-cause mortality in patients with heart failure: A retrospective cohort study. Eur. J. Prev. Cardiol. 2021, 28, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Molloy, C.D.; Long, L.; Mordi, I.R.; Bridges, C.; Sagar, V.A.; Davies, E.J.; Coats, A.J.S.; Dalal, H.; Rees, K.; Singh, S.J.; et al. Exercise-based cardiac rehabilitation for adults with heart failure—2023 Cochrane systematic review and meta-analysis. Eur. J. Heart Fail. 2023, 25, 2263–2273. [Google Scholar] [CrossRef]
- Savage, P.D.; Antkowiak, M.; Ades, P.A. Failure to improve cardiopulmonary fitness in cardiac rehabilitation. J. Cardiopulm. Rehabil. Prev. 2009, 29, 284–291. [Google Scholar] [CrossRef]
- Bakker, E.A.; Snoek, J.A.; Meindersma, E.P.; Hopman, M.T.E.; Bellersen, L.; Verbeek, A.L.M.; Thijssen, D.H.J.; Eijsvogels, T.M.H. Absence of Fitness Improvement Is Associated with Outcomes in Heart Failure Patients. Med. Sci. Sports Exerc. 2018, 50, 196–203. [Google Scholar] [CrossRef]
- Witvrouwen, I.; Pattyn, N.; Gevaert, A.B.; Possemiers, N.; Van Craenenbroeck, A.H.; Cornelissen, V.A.; Beckers, P.J.; Vanhees, L.; Van Craenenbroeck, E.M. Predictors of response to exercise training in patients with coronary artery disease—A subanalysis of the SAINTEX-CAD study. Eur. J. Prev. Cardiol. 2019, 26, 1158–1163. [Google Scholar] [CrossRef]
- Sire, S. Physical training and occupational rehabilitation after aortic valve replacement. Eur. Heart J. 1987, 8, 1215–1220. [Google Scholar] [CrossRef]
- Sibilitz, K.L.; Berg, S.K.; Rasmussen, T.B.; Risom, S.S.; Thygesen, L.C.; Tang, L.; Hansen, T.B.; Johansen, P.P.; Gluud, C.; Lindschou, J.; et al. Cardiac rehabilitation increases physical capacity but not mental health after heart valve surgery: A randomised clinical trial. Heart 2016, 102, 1995–2003. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Y.S.; Ren, Q.; Liang, Y.C.; Zhang, J.; Wang, Y.X.; Wang, C.L.; Hong, T.L.; Wang, S.Y.; Zhang, Y.; et al. Efficacy and Safety of Moderate-Intensity Continuous Training on the Improvement of Cardiopulmonary Function in Patients After Transcatheter Aortic Valve Replacement (ENERGY): A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2023, 24, 1783–1790.e2. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, J.; Chang, J.; Meng, X. Effects of Cardiac Rehabilitation on Patients Undergoing Heart Valve Surgery: A Systematic Review and Meta-Analysis. Heart Surg. Forum 2024, 27, E1228–E1236. [Google Scholar] [CrossRef]
- Patel, D.K.; Duncan, M.S.; Shah, A.S.; Lindman, B.R.; Greevy, R.A., Jr.; Savage, P.D.; Whooley, M.A.; Matheny, M.E.; Freiberg, M.S.; Bachmann, J.M. Association of Cardiac Rehabilitation with Decreased Hospitalization and Mortality Risk After Cardiac Valve Surgery. JAMA Cardiol. 2019, 4, 1250–1259. [Google Scholar] [CrossRef]
- de Vries, H.; Kemps, H.M.; van Engen-Verheul, M.M.; Kraaijenhagen, R.A.; Peek, N. Cardiac rehabilitation and survival in a large representative community cohort of Dutch patients. Eur. Heart J. 2015, 36, 1519–1528. [Google Scholar] [CrossRef]
- Abraham, L.N.; Sibilitz, K.L.; Berg, S.K.; Tang, L.H.; Risom, S.S.; Lindschou, J.; Taylor, R.S.; Borregaard, B.; Zwisler, A.D. Exercise-based cardiac rehabilitation for adults after heart valve surgery. Cochrane Database Syst. Rev. 2021, 5, CD010876. [Google Scholar] [CrossRef]
- Yardley, M.; Gullestad, L.; Bendz, B.; Bjørkelund, E.; Rolid, K.; Arora, S.; Nytrøen, K. Long-term effects of high-intensity interval training in heart transplant recipients: A 5-year follow-up study of a randomized controlled trial. Clin. Transplant. 2017, 31, e12868. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.; Nguyen, T.T.; Dall, C.H.; Burgess, L.; Bridges, C.; Taylor, R.S. Exercise-based cardiac rehabilitation in heart transplant recipients. Cochrane Database Syst. Rev. 2017, 4, CD012264. [Google Scholar] [CrossRef]
- Bachmann, J.M.; Shah, A.S.; Duncan, M.S.; Greevy, R.A., Jr.; Graves, A.J.; Ni, S.; Ooi, H.H.; Wang, T.J.; Thomas, R.J.; Whooley, M.A.; et al. Cardiac rehabilitation and readmissions after heart transplantation. J. Heart Lung Transplant. 2018, 37, 467–476. [Google Scholar] [CrossRef]
- Uithoven, K.E.; Smith, J.R.; Medina-Inojosa, J.R.; Squires, R.W.; Olson, T.P. The Role of Cardiac Rehabilitation in Reducing Major Adverse Cardiac Events in Heart Transplant Patients. J. Card. Fail. 2020, 26, 645–651. [Google Scholar] [CrossRef]
- Kitzman, D.W.; Brubaker, P.; Morgan, T.; Haykowsky, M.; Hundley, G.; Kraus, W.E.; Eggebeen, J.; Nicklas, B.J. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2016, 315, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Winzer, E.B.; Duvinage, A.; Gevaert, A.B.; Edelmann, F.; Haller, B.; Pieske-Kraigher, E.; Beckers, P.; Bobenko, A.; Hommel, J.; et al. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients with Heart Failure with Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2021, 325, 542–551. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Liu, Y.; Xu, Z.; Pan, P.; Zeng, L. Impact of exercise training on exercise tolerance, cardiac function and quality of life in individuals with heart failure and preserved ejection fraction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2025, 25, 217. [Google Scholar] [CrossRef]
- Sachdev, V.; Sharma, K.; Keteyian, S.J.; Alcain, C.F.; Desvigne-Nickens, P.; Fleg, J.L.; Florea, V.G.; Franklin, B.A.; Guglin, M.; Halle, M.; et al. Supervised Exercise Training for Chronic Heart Failure With Preserved Ejection Fraction: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation 2023, 147, e699–e715. [Google Scholar] [CrossRef]
- Forman, D.E.; Racette, S.B.; Toto, P.E.; Peterson, L.R.; Glynn, N.W.; Pruskowski, J.; Byard, T.; Delligatti, A.; Lolley, R.; Mulkareddy, V.; et al. Modified Application of Cardiac Rehabilitation in Older Adults (MACRO) Trial: Protocol changes in a pragmatic multi-site randomized controlled trial in response to the COVID-19 pandemic. Contemp. Clin. Trials 2022, 112, 106633. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V. Effects of cardiac rehabilitation programs on exercise capacity, coronary risk factors, behavioral characteristics, and quality of life in a large elderly cohort. Am. J. Cardiol. 1995, 76, 177–179. [Google Scholar] [CrossRef]
- Kerrigan, D.J.; Williams, C.T.; Ehrman, J.K.; Saval, M.A.; Bronsteen, K.; Schairer, J.R.; Swaffer, M.; Brawner, C.A.; Lanfear, D.E.; Selektor, Y.; et al. Cardiac rehabilitation improves functional capacity and patient-reported health status in patients with continuous-flow left ventricular assist devices: The Rehab-VAD randomized controlled trial. JACC Heart Fail. 2014, 2, 653–659. [Google Scholar] [CrossRef]
- Feuerstein, A.; Schoenrath, F.; Belyavskiy, E.; Knierim, J.; Friede, T.; Placzek, M.; Bach, D.; Pieske-Kraigher, E.; Herrmann-Lingen, C.; Westenfeld, R.; et al. Supervised exercise training in patients with advanced heart failure and left ventricular assist device: A multicentre randomized controlled trial (Ex-VAD trial). Eur. J. Heart Fail. 2023, 25, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, J.M.; Duncan, M.S.; Shah, A.S.; Greevy, R.A., Jr.; Lindenfeld, J.; Keteyian, S.J.; Thomas, R.J.; Whooley, M.A.; Wang, T.J.; Freiberg, M.S. Association of Cardiac Rehabilitation With Decreased Hospitalizations and Mortality After Ventricular Assist Device Implantation. JACC Heart Fail. 2018, 6, 130–139. [Google Scholar] [CrossRef]
- Damluji, A.A.; Bernacki, G.; Afilalo, J.; Lyubarova, R.; Orkaby, A.R.; Kwak, M.J.; Hummel, S.; Kirkpatrick, J.N.; Maurer, M.S.; Wenger, N.; et al. TAVR in Older Adults. JACC Adv. 2024, 3, 100877. [Google Scholar] [CrossRef] [PubMed]
- Varghese, M.; Dahabreh, I.; Song, Y.; Xu, J.; Beatty, A.L.; McConeghy, K.; Yeh, R.W.; Sperling, L.; Fonarow, G.C.; Keteyian, S.J.; et al. Abstract 17900: Target Trial Emulation: Evaluating Cardiac Rehabilitation After TAVR. Circulation 2023, 148 (Suppl. S1), A17900. [Google Scholar] [CrossRef]
- Ribeiro, G.S.; Melo, R.D.; Deresz, L.F.; Dal Lago, P.; Pontes, M.R.; Karsten, M. Cardiac rehabilitation programme after transcatheter aortic valve implantation versus surgical aortic valve replacement: Systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 688–697. [Google Scholar] [CrossRef]
- Tarro Genta, F.; Tidu, M.; Bouslenko, Z.; Bertolin, F.; Salvetti, I.; Comazzi, F.; Giannuzzi, P. Cardiac rehabilitation after transcatheter aortic valve implantation compared to patients after valve replacement. J. Cardiovasc. Med. 2017, 18, 114–120. [Google Scholar] [CrossRef]
- Kleczynski, P.; Trebacz, J.; Stapor, M.; Sobczynski, R.; Konstanty-Kalandyk, J.; Kapelak, B.; Zmudka, K.; Legutko, J. Inpatient Cardiac Rehabilitation after Transcatheter Aortic Valve Replacement Is Associated with Improved Clinical Performance and Quality of Life. J. Clin. Med. 2021, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Kowalski, M.; Bjarnason-Wehrens, B.; Ritter, F.; Mönnig, G.; Reiss, N. Feasibility of inpatient cardiac rehabilitation after percutaneous mitral valve reconstruction using clipping procedures: A retrospective analysis. BMC Sports Sci. Med. Rehabil. 2022, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- Sukul, D.; Albright, J.; Thompson, M.P.; Villablanca, P.; Keteyian, S.J.; Yaser, J.; Berkompas, D.; DeLucia, A.; Patel, H.S.; Chetcuti, S.J.; et al. Predictors and Variation in Cardiac Rehabilitation Participation After Transcatheter Aortic Valve Replacement. JACC Adv. 2023, 2, 100581. [Google Scholar] [CrossRef] [PubMed]
- Bhattal, G.K.; Park, K.E.; Winchester, D.E. Home-Based Cardiac Rehabilitation (HBCR) in Post-TAVR Patients: A Prospective, Single-Center, Cohort, Pilot Study. Cardiol. Ther. 2020, 9, 541–548. [Google Scholar] [CrossRef]
- Mereles, D.; Ehlken, N.; Kreuscher, S.; Ghofrani, S.; Hoeper, M.M.; Halank, M.; Meyer, F.J.; Karger, G.; Buss, J.; Juenger, J.; et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006, 114, 1482–1489. [Google Scholar] [CrossRef]
- Kagioglou, O.; Mouratoglou, S.A.; Giannakoulas, G.; Kapoukranidou, D.; Anifanti, M.; Deligiannis, A.; Skarbaliene, A.; Razbadauskas, A.; Kouidi, E. Long-Term Effect of an Exercise Training Program on Physical Functioning and Quality of Life in Pulmonary Hypertension: A Randomized Controlled Trial. Biomed. Res. Int. 2021, 2021, 8870615. [Google Scholar] [CrossRef]
- Ertan, O.; Aslan, G.K.; Akinci, B.; Bilge, A.K.; Inanc, M.; Okumus, G. Effect of Ground-Based Walk Training in Pulmonary Hypertension. Am. J. Cardiol. 2022, 174, 172–178. [Google Scholar] [CrossRef]
- Martínez-Quintana, E.; Miranda-Calderín, G.; Ugarte-Lopetegui, A.; Rodríguez-González, F. Rehabilitation program in adult congenital heart disease patients with pulmonary hypertension. Congenit. Heart Dis. 2010, 5, 44–50. [Google Scholar] [CrossRef]
- Grünig, E.; MacKenzie, A.; Peacock, A.J.; Eichstaedt, C.A.; Benjamin, N.; Nechwatal, R.; Ulrich, S.; Saxer, S.; Bussotti, M.; Sommaruga, M.; et al. Standardized exercise training is feasible, safe, and effective in pulmonary arterial and chronic thromboembolic pulmonary hypertension: Results from a large European multicentre randomized controlled trial. Eur. Heart J. 2021, 42, 2284–2295. [Google Scholar] [CrossRef]
- Morris, N.R.; Kermeen, F.D.; Jones, A.W.; Lee, J.Y.; Holland, A.E. Exercise-based rehabilitation programmes for pulmonary hypertension. Cochrane Database Syst. Rev. 2023, 3, CD011285. [Google Scholar] [CrossRef]
- Rochester, C.L.; Alison, J.A.; Carlin, B.; Jenkins, A.R.; Cox, N.S.; Bauldoff, G.; Bhatt, S.P.; Bourbeau, J.; Burtin, C.; Camp, P.G.; et al. Pulmonary Rehabilitation for Adults with Chronic Respiratory Disease: An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2023, 208, e7–e26. [Google Scholar] [CrossRef]
- Grünig, E.; Eichstaedt, C.; Barberà, J.A.; Benjamin, N.; Blanco, I.; Bossone, E.; Cittadini, A.; Coghlan, G.; Corris, P.; D’Alto, M.; et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur. Respir. J. 2019, 53, 1800332. [Google Scholar] [CrossRef] [PubMed]
- Klinger, J.R.; Elliott, C.G.; Levine, D.J.; Bossone, E.; Duvall, L.; Fagan, K.; Frantsve-Hawley, J.; Kawut, S.M.; Ryan, J.J.; Rosenzweig, E.B.; et al. Therapy for Pulmonary Arterial Hypertension in Adults: Update of the CHEST Guideline and Expert Panel Report. Chest 2019, 155, 565–586. [Google Scholar] [CrossRef] [PubMed]
- Barret, T.; Degano, B.; Bouvaist, H.; Pison, C.; Noirclerc, M.; Vanzetto, G.; Rocca, C. Routine Rehabilitation as a Treatment Component for Patients With Pulmonary Arterial or Chronic Thromboembolic Pulmonary Hypertensions. J. Cardiopulm. Rehabil. Prev. 2023, 43, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.I.; Wiebe, N.; Cheung, W.Y.; Mackey, J.R.; Pituskin, E.; Reiman, A.; Tonelli, M. Incident Cardiovascular Disease Among Adults With Cancer. JACC CardioOncol. 2022, 4, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Williamson, T.; Moran, C.; Chirico, D.; Arena, R.; Ozemek, C.; Aggarwal, S.; Campbell, T.; Laddu, D. Cancer and cardiovascular disease: The impact of cardiac rehabilitation and cardiorespiratory fitness on survival. Int. J. Cardiol. 2021, 343, 139–145. [Google Scholar] [CrossRef]
- Strongman, H.; Gadd, S.; Matthews, A.; Mansfield, K.E.; Stanway, S.; Lyon, A.R.; Dos-Santos-Silva, I.; Smeeth, L.; Bhaskaran, K. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. Lancet 2019, 394, 1041–1054. [Google Scholar] [CrossRef]
- Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020, 22, 1945–1960. [Google Scholar] [CrossRef]
- Chow, E.J.; Mueller, B.A.; Baker, K.S.; Cushing-Haugen, K.L.; Flowers, M.E.; Martin, P.J.; Friedman, D.L.; Lee, S.J. Cardiovascular hospitalizations and mortality among recipients of hematopoietic stem cell transplantation. Ann. Intern. Med. 2011, 155, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Balboa, E.; González-Salvado, V.; Ribeiro, F. A Call to Action: Implementing Cardio-Oncology Rehabilitation Programs for Comprehensive Patient Care. Physiotherapy 2025, 128, 101788. [Google Scholar] [CrossRef]
- Gilchrist, S.C.; Barac, A.; Ades, P.A.; Alfano, C.M.; Franklin, B.A.; Jones, L.W.; La Gerche, A.; Ligibel, J.A.; Lopez, G.; Madan, K.; et al. Cardio-Oncology Rehabilitation to Manage Cardiovascular Outcomes in Cancer Patients and Survivors: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e997–e1012. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.W.; Habel, L.A.; Weltzien, E.; Castillo, A.; Gupta, D.; Kroenke, C.H.; Kwan, M.L.; Quesenberry, C.P., Jr.; Scott, J.; Sternfeld, B.; et al. Exercise and Risk of Cardiovascular Events in Women With Nonmetastatic Breast Cancer. J. Clin. Oncol. 2016, 34, 2743–2749. [Google Scholar] [CrossRef]
- Irwin, M.L.; Smith, A.W.; McTiernan, A.; Ballard-Barbash, R.; Cronin, K.; Gilliland, F.D.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: The health, eating, activity, and lifestyle study. J. Clin. Oncol. 2008, 26, 3958–3964. [Google Scholar] [CrossRef]
- Kirkham, A.A.; Mackey, J.R.; Thompson, R.B.; Haykowsky, M.J.; Oudit, G.Y.; McNeely, M.; Coulden, R.; Stickland, M.K.; Baracos, V.E.; Dyck, J.R.B.; et al. TITAN Trial. JACC Adv. 2023, 2, 100424. [Google Scholar] [CrossRef]
- Díaz-Balboa, E.; Peña-Gil, C.; Rodríguez-Romero, B.; Cuesta-Vargas, A.I.; Lado-Baleato, O.; Martínez-Monzonís, A.; Pedreira-Pérez, M.; Palacios-Ozores, P.; López-López, R.; González-Juanatey, J.R.; et al. Exercise-based cardio-oncology rehabilitation for cardiotoxicity prevention during breast cancer chemotherapy: The ONCORE randomized controlled trial. Prog. Cardiovasc. Dis. 2024, 85, 74–81. [Google Scholar] [CrossRef]
- Viamonte, S.G.; Joaquim, A.V.; Alves, A.J.; Vilela, E.; Capela, A.; Ferreira, C.; Duarte, B.F.; Rato, N.D.; Teixeira, M.P.; Tavares, A.; et al. Cardio-Oncology Rehabilitation for Cancer Survivors With High Cardiovascular Risk: A Randomized Clinical Trial. JAMA Cardiol. 2023, 8, 1119–1128. [Google Scholar] [CrossRef]
- Kang, D.W.; Field, C.J.; Patel, D.; Fairey, A.S.; Boulé, N.G.; Dieli-Conwright, C.M.; Courneya, K.S. Effects of high-intensity interval training on cardiometabolic biomarkers in patients with prostate cancer undergoing active surveillance: A randomized controlled trial. Prostate Cancer Prostatic Dis. 2025, 28, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Morales-Rodriguez, E.; Pérez-Bilbao, T.; San Juan, A.F.; Calvo, J.L. Effects of Exercise Programs on Physical Factors and Safety in Adult Patients with Cancer and Haematopoietic Stem Cell Transplantation: A Systematic Review. Int. J. Environ. Res. Public. Health 2022, 19, 1288. [Google Scholar] [CrossRef]
- Fakhraei, R.; Peck, B.S.S.; Abdel-Qadir, H.; Thavendiranathan, P.; Sabiston, C.M.; Rivera-Theurel, F.; Oh, P.; Orchanian-Cheff, A.; Lee, L.; Adams, S.C. Research Quality and Impact of Cardiac Rehabilitation in Cancer Survivors: A Systematic Review and Meta-Analysis. JACC CardioOncol 2022, 4, 195–206. [Google Scholar] [CrossRef]
- Lemon, J.; Edelman, S.; Kirkness, A. Avoidance behaviors in patients with implantable cardioverter defibrillators. Heart Lung: J. Cardiopulm. Acute Care 2004, 33, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Lampert, R.; Cannom, D.; Olshansky, B. Safety of sports participation in patients with implantable cardioverter defibrillators: A survey of heart rhythm society members. J. Cardiovasc. Electrophysiol. 2006, 17, 11–15. [Google Scholar] [CrossRef]
- Piccini, J.P.; Hellkamp, A.S.; Whellan, D.J.; Ellis, S.J.; Keteyian, S.J.; Kraus, W.E.; Hernandez, A.F.; Daubert, J.P.; Piña, l.L.; O’Connor, C.M. Exercise training and implantable cardioverter-defibrillator shocks in patients with heart failure: Results from HF-ACTION (Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing). JACC Heart Fail. 2013, 1, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Parashar, A.; Moore, C.; Ngo, C.; Salahuddin, U.; Bhargava, M.; Kumbhani, D.J.; Piccini, J.P.; Fonarow, G.C.; Berry, J.D. Safety and Efficacy of Exercise Training in Patients With an Implantable Cardioverter-Defibrillator: A Meta-Analysis. JACC Clin. Electrophysiol. 2017, 3, 117–126. [Google Scholar] [CrossRef]
- Atwater, B.D.; Li, Z.; Pritchard, J.; Greiner, M.A.; Nabutovsky, Y.; Hammill, B.G. Early Increased Physical Activity, Cardiac Rehabilitation, and Survival After Implantable Cardioverter-Defibrillator Implantation. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e007580. [Google Scholar] [CrossRef]
- Kusumoto, F.M.; Calkins, H.; Boehmer, J.; Buxton, A.E.; Chung, M.K.; Gold, M.R.; Hohnloser, S.H.; Indik, J.; Lee, R.; Mehra, M.R.; et al. HRS/ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation 2014, 130, 94–125. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Patwala, A.Y.; Woods, P.R.; Sharp, L.; Goldspink, D.F.; Tan, L.B.; Wright, D.J. Maximizing patient benefit from cardiac resynchronization therapy with the addition of structured exercise training: A randomized controlled study. J. Am. Coll. Cardiol. 2009, 53, 2332–2339. [Google Scholar] [CrossRef]
- Martens, P.; Jacobs, G.; Dupont, M.; Mullens, W. Effect of multidisciplinary cardiac rehabilitation on the response to cardiac resynchronization therapy. Cardiovasc. Ther. 2018, 36, e12467. [Google Scholar] [CrossRef] [PubMed]
- Misumi, K.; Nakanishi, M.; Miura, H.; Date, A.; Tokeshi, T.; Kumasaka, L.; Arakawa, T.; Nakao, K.; Hasegawa, T.; Fukui, S.; et al. Exercise-Based Cardiac Rehabilitation Improves Exercise Capacity Regardless of the Response to Cardiac Resynchronization Therapy in Patients With Heart Failure and Reduced Ejection Fraction. Circ. J. 2021, 86, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Wen, Y.; Xu, Y.; Jia, R.; Zou, S.; Lu, S.; Liu, G.; Cui, K. The impact of exercise training for chronic heart failure patients with cardiac resynchronization therapy: A systematic review and meta-analysis. Medicine 2021, 100, e25128. [Google Scholar] [CrossRef]
- Writing Committee Members; ACC/AHA Joint Committee Members. 2022 AHA/ACC/HFSAGuideline for the Management of Heart, Failure. J. Card. Fail. 2022, 28, e1–e167. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.L.; Terada, T.; Vidal-Almela, S.; Tulloch, H.E.; Mistura, M.; Birnie, D.H.; Wells, G.A.; Nair, G.M.; Hans, H.; Way, K.L.; et al. Effect of High-Intensity Interval Training in Patients With Atrial Fibrillation: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2239380. [Google Scholar] [CrossRef] [PubMed]
- Malmo, V.; Nes, B.M.; Amundsen, B.H.; Tjonna, A.E.; Stoylen, A.; Rossvoll, O.; Wisloff, U.; Loennechen, J.P. Aerobic Interval Training Reduces the Burden of Atrial Fibrillation in the Short Term: A Randomized Trial. Circulation 2016, 133, 466–473. [Google Scholar] [CrossRef]
- Buckley, B.J.; Long, L.; Risom, S.S.; Lane, D.A.; Berg, S.K.; Gluud, C.; Palm, P.; Sibilitz, K.L.; Svendsen, J.H.; Zwisler, A.D.; et al. Exercise-based cardiac rehabilitation for adults with atrial fibrillation. Cochrane Database Syst. Rev. 2024, 9, CD011197. [Google Scholar] [CrossRef]
- Buckley, B.J.R.; Harrison, S.L.; Fazio-Eynullayeva, E.; Underhill, P.; Lane, D.A.; Thijssen, D.H.J.; Lip, G.Y.H. Exercise-Based Cardiac Rehabilitation and All-Cause Mortality Among Patients With Atrial Fibrillation. J. Am. Heart Assoc. 2021, 10, e020804. [Google Scholar] [CrossRef]
- Garnvik, L.E.; Malmo, V.; Janszky, I.; Ellekjær, H.; Wisløff, U.; Loennechen, J.P.; Nes, B.M. Physical activity, cardiorespiratory fitness, and cardiovascular outcomes in individuals with atrial fibrillation: The HUNT study. Eur. Heart J. 2020, 41, 1467–1475. [Google Scholar] [CrossRef]
- Ahn, H.J.; Lee, S.R.; Choi, E.K.; Han, K.D.; Jung, J.H.; Lim, J.H.; Yun, J.P.; Kwon, S.; Oh, S.; Lip, G.Y.H. Association between exercise habits and stroke, heart failure, and mortality in Korean patients with incident atrial fibrillation: A nationwide population-based cohort study. PLoS Med. 2021, 18, e1003659. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef] [PubMed]
- Grace, S.L.; Kotseva, K.; Whooley, M.A. Cardiac Rehabilitation: Under-Utilized Globally. Curr. Cardiol. Rep. 2021, 23, 118. [Google Scholar] [CrossRef]
- Grace, S.L.; Taylor, R.S.; Gaalema, D.E.; Redfern, J.; Kotseva, K.; Ghisi, G. Cardiac Rehabilitation: A Global Perspective on Where We Have Come and Where We Must Go. JACC Adv. 2023, 2, 100412. [Google Scholar] [CrossRef]
- Turk-Adawi, K.; Supervia, M.; Lopez-Jimenez, F.; Pesah, E.; Ding, R.; Britto, R.R.; Bjarnason-Wehrens, B.; Derman, W.; Abreu, A.; Babu, A.S.; et al. Cardiac Rehabilitation Availability and Density around the Globe. EClinicalMedicine 2019, 13, 31–45. [Google Scholar] [CrossRef]
- Arena, R.; Williams, M.; Forman, D.E.; Cahalin, L.P.; Coke, L.; Myers, J.; Hamm, L.; Kris-Etherton, P.; Humphrey, R.; Bittner, V.; et al. Increasing referral and participation rates to outpatient cardiac rehabilitation: The valuable role of healthcare professionals in the inpatient and home health settings: A science advisory from the American Heart Association. Circulation 2012, 125, 1321–1329. [Google Scholar] [CrossRef]
- Gravely-Witte, S.; Leung, Y.W.; Nariani, R.; Tamim, H.; Oh, P.; Chan, V.M.; Grace, S.L. Effects of cardiac rehabilitation referral strategies on referral and enrollment rates. Nat. Rev. Cardiol. 2010, 7, 87–96. [Google Scholar] [CrossRef]
- Pack, Q.R.; Keys, T.; Priya, A.; Pekow, P.S.; Keteyian, S.J.; Thompson, M.P.; D’Aunno, T.; Lindenauer, P.K.; Lagu, T. Is 70% Achievable? Hospital-Level Variation in Rates of Cardiac Rehabilitation Use Among Medicare Beneficiaries. JACC Adv. 2024, 3, 101275. [Google Scholar] [CrossRef]
- Ades, P.A.; Waldmann, M.L.; McCann, W.J.; Weaver, S.O. Predictors of cardiac rehabilitation participation in older coronary patients. Arch. Intern. Med. 1992, 152, 1033–1035. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J. Cardiac rehabilitation/secondary prevention programs: A raft for the rapids: Why have we missed the boat? Circulation 2007, 116, 1644–1646. [Google Scholar] [CrossRef] [PubMed]
- Grace, S.L.; Grewal, K.; Stewart, D.E. Factors affecting cardiac rehabilitation referral by physician specialty. J. Cardiopulm. Rehabil. Prev. 2008, 28, 248–252. [Google Scholar] [CrossRef]
- Ambalavanan, M.; Meyer, J.D.; Duckett, M.; Ahuja, Z.; Nazir, N.T. A Multidisciplinary Approach To Increasing Cardiac Rehabilitation Referrals. JACC 2022, 79 (Suppl. S9), 1587. [Google Scholar] [CrossRef]
- Whitler, C.; Varkoly, K.S.; Patel, H.; Assaf, A.D.; Hoose, J.; Brannan, G.D.; Miller, R.; Zughaib, M. Improved Cardiac Rehabilitation Referral Rate Utilizing a Multidisciplinary Quality Improvement Team. Cureus 2024, 16, e61157. [Google Scholar] [CrossRef]
- Taylor, R.S.; Fredericks, S.; Jones, I.; Neubeck, L.; Sanders, J.; De Stoutz, N.; Thompson, D.R.; Wadhwa, D.N.; Grace, S.L. Global perspectives on heart disease rehabilitation and secondary prevention: A scientific statement from the Association of Cardiovascular Nursing and Allied Professions, European Association of Preventive Cardiology, and International Council of Cardiovascular Prevention and Rehabilitation. Eur. Heart J. 2023, 44, 2515–2525. [Google Scholar] [CrossRef]
- Mathews, L.; Brewer, L.C. A Review of Disparities in Cardiac Rehabilitation: Evidence, Drivers, and Solutions. J. Cardiopulm. Rehabil. Prev. 2021, 41, 375–382. [Google Scholar] [CrossRef]
- Winnige, P.; Filakova, K.; Hnatiak, J.; Dosbaba, F.; Bocek, O.; Pepera, G.; Papathanasiou, J.; Batalik, L.; Grace, S.L. Validity and Reliability of the Cardiac Rehabilitation Barriers Scale in the Czech Republic (CRBS-CZE): Determination of Key Barriers in East-Central Europe. Int. J. Environ. Res. Public. Health 2021, 18, 13113. [Google Scholar] [CrossRef]
- Duncan, M.S.; Robbins, N.N.; Wernke, S.A.; Greevy, R.A.; Jackson, S.L.; Beatty, A.L.; Thomas, R.J.; Whooley, M.A.; Freiberg, M.S.; Bachmann, J.M. Geographic Variation in Access to Cardiac Rehabilitation. JACC 2023, 81, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Shepard, D.S. Costs of Cardiac Rehabilitation and Enhanced Lifestyle Modification Programs. J. Cardiopulm. Rehabil. Prev. 2009, 29, 348–357. [Google Scholar] [CrossRef]
- Melbostad, H.S.; Savage, P.D.; Mahoney, K.; Gaalema, D.E.; Ades, P.A.; Shepard, D.S. Financial Analysis of Cardiac Rehabilitation and the Impact of COVID-19. J. Cardiopulm. Rehabil. Prev. 2021, 41, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Ruivo, J.; Moholdt, T.; Abreu, A. Overview of Cardiac Rehabilitation following post-acute myocardial infarction in European Society of Cardiology member countries. Eur. J. Prev. Cardiol. 2023, 30, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Pesah, E.; Turk-Adawi, K.; Supervia, M.; Lopez-Jimenez, F.; Britto, R.; Ding, R.; Babu, A.; Sadeghi, M.; Sarrafzadegan, N.; Cuenza, L.; et al. Cardiac rehabilitation delivery in low/middle-income countries. Heart 2019, 105, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Moghei, M.; Pesah, E.; Turk-Adawi, K.; Supervia, M.; Jimenez, F.L.; Schraa, E.; Grace, S.L. Funding sources and costs to deliver cardiac rehabilitation around the globe: Drivers and barriers. Int. J. Cardiol. 2019, 276, 278–286. [Google Scholar] [CrossRef]
- Babu, A.S.; Lopez-Jimenez, F.; Thomas, R.J.; Isaranuwatchai, W.; Herdy, A.H.; Hoch, J.S.; Grace, S.L. Advocacy for outpatient cardiac rehabilitation globally. BMC Health Serv. Res. 2016, 16, 471. [Google Scholar] [CrossRef]
- Moghei, M.; Turk-Adawi, K.; Isaranuwatchai, W.; Sarrafzadegan, N.; Oh, P.; Chessex, C.; Grace, S.L. Cardiac rehabilitation costs. Int. J. Cardiol. 2017, 244, 322–328. [Google Scholar] [CrossRef]
- Colella, T.J.; Gravely, S.; Marzolini, S.; Grace, S.L.; Francis, J.A.; Oh, P.; Scott, L.B. Sex bias in referral of women to outpatient cardiac rehabilitation? A meta-analysis. Eur. J. Prev. Cardiol. 2015, 22, 423–441. [Google Scholar] [CrossRef]
- Colbert, J.D.; Martin, B.J.; Haykowsky, M.J.; Hauer, T.L.; Austford, L.D.; Arena, R.A.; Knudtson, M.L.; Meldrum, D.A.; Aggarwal, S.G.; Stone, J.A. Cardiac rehabilitation referral, attendance and mortality in women. Eur. J. Prev. Cardiol. 2015, 22, 979–986. [Google Scholar] [CrossRef]
- Khadanga, S.; Gaalema, D.E.; Savage, P.; Ades, P.A. Underutilization of Cardiac Rehabilitation in Women: BARRIERS AND SOLUTIONS. J. Cardiopulm. Rehabil. Prev. 2021, 41, 207–213. [Google Scholar] [CrossRef]
- Ghisi, G.L.M.; Kim, W.S.; Cha, S.; Aljehani, R.; Cruz, M.M.A.; Vanderlei, L.C.M.; Pepera, G.; Liu, X.; Xu, Z.; Maskhulia, L.; et al. Women’s Cardiac Rehabilitation Barriers: Results of the International Council of Cardiovascular Prevention and Rehabilitation’s First Global Assessment. Can. J. Cardiol. 2023, 39, S375–S383. [Google Scholar] [CrossRef] [PubMed]
- Firoozabadi, M.G.; Mirzaei, M.; Grace, S.L.; Vafaeinasab, M.; Dehghani-Tafti, M.; Sadeghi, A.; Asadi, Z.; Basirinezhad, M.H. Sex differences in cardiac rehabilitation barriers among non-enrollees in the context of lower gender equality: A cross-sectional study. BMC Cardiovasc. Disord. 2023, 23, 329. [Google Scholar] [CrossRef]
- Almoghairi, A.M.; O’Brien, J.; Doubrovsky, A.; Duff, J. Knowledge, attitudes, and practices of cardiac rehabilitation and barriers to referral among cardiologists in Saudi Arabia: A cross-sectional survey. PLoS ONE 2025, 20, e0323694. [Google Scholar] [CrossRef] [PubMed]
- Turk-Adawi, K.I.; Terzic, C.; Bjarnason-Wehrens, B.; Grace, S.L. Cardiac rehabilitation in Canada and Arab countries: Comparing availability and program characteristics. BMC Health Serv. Res. 2015, 15, 521. [Google Scholar] [CrossRef]
- Li, S.; Fonarow, G.C.; Mukamal, K.; Xu, H.; Matsouaka, R.A.; Devore, A.D.; Bhatt, D.L. Sex and Racial Disparities in Cardiac Rehabilitation Referral at Hospital Discharge and Gaps in Long-Term Mortality. J. Am. Heart Assoc. 2018, 7, e008088. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.S.; Brown, J.D. Disparities in the Use of Cardiac Rehabilitation after a Myocardial Infarction in the United States. J. Clin. Med. 2019, 8, 1006. [Google Scholar] [CrossRef]
- Keteyian, S.J.; Jackson, S.L.; Chang, A.; Brawner, C.A.; Wall, H.K.; Forman, D.E.; Sukul, D.; Ritchey, M.D.; Sperling, L.S. Tracking Cardiac Rehabilitation Utilization in Medicare Beneficiaries: 2017 UPDATE. J. Cardiopulm. Rehabil. Prev. 2022, 42, 235–245. [Google Scholar] [CrossRef]
- McAllister, J.; Harrison, M.; Lawson, C.A.; Singh, S.J. Identifying barriers and enablers to cardiac rehabilitation participation and completion unique to South Asian individuals: A qualitative systematic review. Eur. J. Cardiovasc. Nurs. 2025, 24, 670–685. [Google Scholar] [CrossRef]
- Khushhal, A.; Alsubaiei, M. Barriers to Establishing Outpatient Cardiac Rehabilitation in the Western Region of Saudi Arabia: A Cross-Sectional Study. J. Multidiscip. Healthc. 2023, 16, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Galdas, P.M.; Ratner, P.A.; Oliffe, J.L. A narrative review of South Asian patients’ experiences of cardiac rehabilitation. J. Clin. Nurs. 2012, 21, 149–159. [Google Scholar] [CrossRef]
- Salim, I.; Al Suwaidi, J.; Ghadban, W.; Alkilani, H.; Salam, A.M. Impact of religious Ramadan fasting on cardiovascular disease: A systematic review of the literature. Curr. Med. Res. Opin. 2013, 29, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.H.; Forman, D.E. Cardiac rehabilitation in older adults: Apropos yet significantly underutilized. Prog. Cardiovasc. Dis. 2022, 70, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Alfaraidhy, M.A.; Regan, C.; Forman, D.E. Cardiac rehabilitation for older adults: Current evidence and future potential. Expert. Rev. Cardiovasc. Ther. 2022, 20, 13–34. [Google Scholar] [CrossRef]
- Brown, T.M.; Hernandez, A.F.; Bittner, V.; Cannon, C.P.; Ellrodt, G.; Liang, L.; Peterson, E.D.; Piña, I.L.; Safford, M.M.; Fonarow, G.C. Predictors of cardiac rehabilitation referral in coronary artery disease patients: Findings from the American Heart Association’s Get With The Guidelines Program. J. Am. Coll. Cardiol. 2009, 54, 515–521. [Google Scholar] [CrossRef]
- Fujiyoshi, K.; Minami, Y.; Yamaoka-Tojo, M.; Kutsuna, T.; Obara, S.; Aoyama, A.; Ako, J. Effect of cardiac rehabilitation on cognitive function in elderly patients with cardiovascular diseases. PLoS ONE 2020, 15, e0233688. [Google Scholar] [CrossRef]
- Karlsson, M.K.; Vonschewelov, T.; Karlsson, C.; Cöster, M.; Rosengen, B.E. Prevention of falls in the elderly: A review. Scand. J. Public. Health 2013, 41, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.H.; Delligatti, A.; Allsup, K.; Afilalo, J.; Forman, D.E. Cardiac Rehabilitation Is Associated With Improved Physical Function in Frail Older Adults With Cardiovascular Disease. J. Cardiopulm. Rehabil. Prev. 2020, 40, 310–318. [Google Scholar] [CrossRef]
- Aragam, K.G.; Dai, D.; Neely, M.L.; Bhatt, D.L.; Roe, M.T.; Rumsfeld, J.S.; Gurm, H.S. Gaps in referral to cardiac rehabilitation of patients undergoing percutaneous coronary intervention in the United States. J. Am. Coll. Cardiol. 2015, 65, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
- Gaalema, D.E.; Higgins, S.T.; Shepard, D.S.; Suaya, J.A.; Savage, P.D.; Ades, P.A. State-by-state variations in cardiac rehabilitation participation are associated with educational attainment, income, and program availability. J. Cardiopulm. Rehabil. Prev. 2014, 34, 248–254. [Google Scholar] [CrossRef]
- Sun, E.Y.; Jadotte, Y.T.; Halperin, W. Disparities in Cardiac Rehabilitation Participation in the United States: A Systematic Review and Meta-Analysis. J. Cardiopulm. Rehabil. Prev. 2017, 37, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Iyngkaran, P.; Appuhamilage, P.Y.; Patabandige, G.; Sarathchandra Peru Kandage, P.S.; Usmani, W.; Hanna, F. Barriers to Cardiac Rehabilitation among Patients Diagnosed with Cardiovascular Diseases-A Scoping Review. Int. J. Environ. Res. Public. Health 2024, 21, 339. [Google Scholar] [CrossRef]
- Rangel-Cubillos, D.M.; Vega-Silva, A.V.; Corzo-Vargas, Y.F.; Molano-Tordecilla, M.C.; Peñuela-Arévalo, Y.P.; Lagos-Peña, K.M.; Jácome-Hortúa, A.M.; Villamizar-Jaimes, C.J.; Grace, S.L.; Dutra de Souza, H.C.; et al. Examining Facilitators and Barriers to Cardiac Rehabilitation Adherence in a Low-Resource Setting in Latin America from Multiple Perspectives. Int. J. Environ. Res. Public. Health 2022, 19, 1911. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, J.M.; Huang, S.; Gupta, D.K.; Lipworth, L.; Mumma, M.T.; Blot, W.J.; Akwo, E.A.; Kripalani, S.; Whooley, M.A.; Wang, T.J.; et al. Association of Neighborhood Socioeconomic Context With Participation in Cardiac Rehabilitation. J. Am. Heart Assoc. 2017, 6, e006260. [Google Scholar] [CrossRef]
- Murphy, C.; Carter, E.; Thomas, L.; Stokes, T.; Thomas, P.; Lichty-Hess, J.A.; Amuta, A.; Zare, H.; Gaskin, D. Increasing Access to Cardiac Rehabilitation Services Among Disadvantaged Populations. J. Public. Health Manag. Pract. 2024, 30, S137–S140. [Google Scholar] [CrossRef]
- Mansour, A.I.; Nuliyalu, U.; Thompson, M.P.; Keteyian, S.; Sukul, D. Out-of-pocket spending for cardiac rehabilitation and adherence among US adults. Am. J. Manag. Care 2024, 30, 651–657. [Google Scholar] [CrossRef]
- Lemstra, M.E.; Alsabbagh, W.; Rajakumar, R.J.; Rogers, M.R.; Blackburn, D. Neighbourhood income and cardiac rehabilitation access as determinants of nonattendance and noncompletion. Can. J. Cardiol. 2013, 29, 1599–1603. [Google Scholar] [CrossRef]
- Eser, P.; Pini, M.; Vetsch, T.; Marcin, T.; Berni, S.; Burri, R.; Casanova, F.; Huber, S.; Gurschler, F.; Boeni, C.; et al. Comparison of patient characteristics and health outcomes between self-selected conventional and digitally enhanced cardiac rehabilitation—A prospective cohort study. Eur. J. Prev. Cardiol. 2025, 32 (Suppl. S1). [Google Scholar] [CrossRef]
- Nkonde-Price, C.; Reynolds, K.; Najem, M.; Yang, S.J.; Batiste, C.; Cotter, T.; Lahti, D.; Gin, N.; Funahashi, T. Comparison of Home-Based vs Center-Based Cardiac Rehabilitation in Hospitalization, Medication Adherence, and Risk Factor Control Among Patients With Cardiovascular Disease. JAMA Netw. Open 2022, 5, e2228720. [Google Scholar] [CrossRef]
- McDonagh, S.T.; Dalal, H.; Moore, S.; Clark, C.E.; Dean, S.G.; Jolly, K.; Cowie, A.; Afzal, J.; Taylor, R.S. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst. Rev. 2023, 10, CD007130. [Google Scholar] [CrossRef]
- Krishnamurthi, N.; Schopfer, D.W.; Shen, H.; Rohrbach, G.; Elnaggar, A.; Whooley, M.A. Association of Home-Based Cardiac Rehabilitation With Lower Mortality in Patients with Cardiovascular Disease: Results from the Veterans Health Administration Healthy Heart Program. J. Am. Heart Assoc. 2023, 12, e025856. [Google Scholar] [CrossRef] [PubMed]
- Imran, H.M.; Baig, M.; Erqou, S.; Taveira, T.H.; Shah, N.R.; Morrison, A.; Choudhary, G.; Wu, W.C. Home-Based Cardiac Rehabilitation Alone and Hybrid with Center-Based Cardiac Rehabilitation in Heart Failure: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2019, 8, e012779. [Google Scholar] [CrossRef] [PubMed]
- Racodon, M.; Vanhove, P.; Fabre, C.; Malanda, F.; Secq, A. Comparison between hybrid cardiac rehabilitation and center-based cardiac rehabilitation: A noninferiority randomized controlled trial. Int. J. Rehabil. Res. 2025, 48, 25–30. [Google Scholar] [CrossRef]
- Bäck, M.; Leosdottir, M.; Ekström, M.; Hambraeus, K.; Ravn-Fischer, A.; Borg, S.; Brosved, M.; Flink, M.; Hedin, K.; Lans, C.; et al. Feasibility, safety and patient perceptions of exercise-based cardiac telerehabilitation in a multicentre real-world setting after myocardial infarction—The remote exercise SWEDEHEART study. Eur. Heart J.-Digit. Health 2025, 6, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Ades, P.A.; Keteyian, S.J.; Wright, J.S.; Hamm, L.F.; Lui, K.; Newlin, K. Increasing Cardiac Rehabilitation Participation From 20% to 70%: A Road Map From the Million Hearts Cardiac Rehabilitation Collaborative. Mayo Clin. Proc. 2017, 92, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Najem, M.; Duggan, M.; Gambatese, R.; Hill, R.; Yang, S.J.; Batiste, C.; Funahashi, T.; Nkonde-Price, C. Technology enabled home-based cardiac rehabilitation among women with cardiovascular disease: A longitudinal cohort study. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 19, 200226. [Google Scholar] [CrossRef]
- Seron, P.; Oliveros, M.J.; Marzuca-Nassr, G.N.; Morales, G.; Román, C.; Muñoz, S.R.; Gálvez, M.; Latin, G.; Marileo, T.; Molina, J.P.; et al. Hybrid Cardiac Rehabilitation Program in a Low-Resource Setting: A Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2350301. [Google Scholar] [CrossRef]
- Marzuca-Nassr, G.N.; Seron, P.; Román, C.; Gálvez, M.; Navarro, R.; Latin, G.; Marileo, T.; Molina, J.P.; Sepúlveda, P.; Oliveros, M.J. A hybrid exercise-based cardiac rehabilitation program is an effective strategy to improve muscle strength and functional exercise capacity in adults and older people with coronary artery disease. Front. Physiol. 2022, 13, 948273. [Google Scholar] [CrossRef]
- Park, Y.S.; Song, I.S.; Jang, S.Y.; Nam, C.M.; Park, E.C. Impact of Cardiac Rehabilitation Health Insurance Coverage on Cardiac Rehabilitation Use in Korea Using an Interrupted Time Series. J. Am. Heart Assoc. 2024, 13, e031395. [Google Scholar] [CrossRef]
- Janssen, A.; Perk, J.; Hoes, A.; Dendale, P. EAPC’s ‘Country of the Month’ prevention web section going global. Eur. J. Prev. Cardiol. 2020, 28, e3–e4. [Google Scholar] [CrossRef]
- Selim, G. Cardiac rehabilitation in Egypt. Lancet Glob. Health 2013, 1, e72. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.; Theruvan, N.; Gad, A.; Shaheen, H.; Mosbah, S. Cardiac Rehabilitation: Future of Heart Health in Saudi Arabia, a Perceptual View. World J. Cardiovasc. Dis. 2020, 10, 666–677. [Google Scholar] [CrossRef]
- Damery, S.; Jones, J.; Harrison, A.; Hinde, S.; Jolly, K. Technology-enabled hybrid cardiac rehabilitation: Qualitative study of healthcare professional and patient perspectives at three cardiac rehabilitation centres in England. PLoS ONE 2025, 20, e0319619. [Google Scholar] [CrossRef] [PubMed]
- Keshvani, N.; Subramanian, V.; Wrobel, C.A.; Solomon, N.; Alhanti, B.; Greene, S.J.; DeVore, A.D.; Yancy, C.W.; Allen, L.A.; Fonarow, G.C.; et al. Patterns of Referral and Postdischarge Utilization of Cardiac Rehabilitation Among Patients Hospitalized With Heart Failure: An Analysis From the GWTG-HF Registry. Circ. Heart Fail. 2023, 16, e010144. [Google Scholar] [CrossRef]
- Fletcher, D.R.; Grunwald, G.K.; Battaglia, C.; Ho, P.M.; Lindrooth, R.C.; Peterson, P.N. Association Between Increased Hospital Reimbursement for Cardiac Rehabilitation and Utilization of Cardiac Rehabilitation by Medicare Beneficiaries: An Interrupted Time Series. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e006572. [Google Scholar] [CrossRef] [PubMed]
- Centers for Medicare & Medicaid Services. Hospital Without Walls: CMS COVID-19 Emergency Waivers (Section 1135). Fed. Regist. 2020, 85, 27560–27566. [Google Scholar]
- Available online: https://www.cms.gov/newsroom/fact-sheets/cy-2025-medicare-hospital-outpatient-prospective-payment-system-and-ambulatory-surgical-center-0 (accessed on 1 June 2025).
- Babu, A.S.; Heald, F.A.; Contractor, A.; Ghisi, G.L.M.; Buckley, J.; Mola, A.; Atrey, A.; Lopez-Jimenez, F.; Grace, S.L. Building Capacity Through ICCPR Cardiovascular Rehabilitation Foundations Certification (CRFC): EVALUATION OF REACH, BARRIERS, AND IMPACT. J. Cardiopulm. Rehabil. Prev. 2022, 42, 178–182. [Google Scholar] [CrossRef]
- Menezes, H.J.; SRB, D.S.; Padmakumar, R.; Babu, A.S.; Rao, R.R.; Kamath, V.G.; Kamath, A.; Grace, S.L. Technology-based Comprehensive Cardiac Rehabilitation Therapy (TaCT) for women with cardiovascular disease in a middle-income setting: A randomized controlled trial protocol. Res. Nurs. Health 2023, 46, 13–25. [Google Scholar] [CrossRef]
- Pakrad, F.; Ahmadi, F.; Grace, S.L.; Oshvandi, K.; Kazemnejad, A. Traditional vs Extended Hybrid Cardiac Rehabilitation Based on the Continuous Care Model for Patients Who Have Undergone Coronary Artery Bypass Surgery in a Middle-Income Country: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 2091–2101.e3. [Google Scholar] [CrossRef]
- Chaves, G.; Ghisi, G.L.M.; Grace, S.L.; Oh, P.; Ribeiro, A.L.; Britto, R.R. Effects of comprehensive cardiac rehabilitation on functional capacity in a middle-income country: A randomised controlled trial. Heart 2019, 105, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Zaletel, J.; Maggini, M. Fostering the Quality of Care for People with Chronic Diseases, from Theory to Practice: The Development of Good Practices in Disease Prevention and Care in JA CHRODIS PLUS Using JA CHRODIS Recommendations and Quality Criteria. Int. J. Environ. Res. Public. Health 2020, 17, 951. [Google Scholar] [CrossRef]
- Sienkiewicz, D.; Maassen, A.; Imaz-Iglesia, I.; Poses-Ferrer, E.; McAvoy, H.; Horgan, R.; Arriaga, M.T.; Barnfield, A. Shaping Policy on Chronic Diseases through National Policy Dialogs in CHRODIS PLUS. Int. J. Environ. Res. Public. Health 2020, 17, 7113. [Google Scholar] [CrossRef]
- Grace, S.L.; Bennett, S.; Ardern, C.I.; Clark, A.M. Cardiac rehabilitation series: Canada. Prog. Cardiovasc. Dis. 2014, 56, 530–535. [Google Scholar] [CrossRef]
- Deighan, C.; Michalova, L.; Pagliari, C.; Elliott, J.; Taylor, L.; Ranaldi, H. The Digital Heart Manual: A pilot study of an innovative cardiac rehabilitation programme developed for and with users. Patient Educ. Couns. 2017, 100, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Watt, A.; Dalal, H.M.; Evans, P.H.; Campbell, J.L.; Read, K.L.; Mourant, A.J.; Wingham, J.; Thompson, D.R.; Pereira Gray, D.J. Home-based cardiac rehabilitation versus hospital-based rehabilitation: A cost effectiveness analysis. Int. J. Cardiol. 2007, 119, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Arthur, H.M.; Smith, K.M.; Kodis, J.; McKelvie, R. A controlled trial of hospital versus home-based exercise in cardiac patients. Med. Sci. Sports Exerc. 2002, 34, 1544–1550. [Google Scholar] [CrossRef]
- Mamataz, T.; Uddin, J.; Ibn Alam, S.; Taylor, R.S.; Pakosh, M.; Grace, S.L. Effects of cardiac rehabilitation in low-and middle-income countries: A systematic review and meta-analysis of randomised controlled trials. Prog. Cardiovasc. Dis. 2022, 70, 119–174. [Google Scholar] [CrossRef] [PubMed]
- U.S. Congress. Sustaining Outpatient Services Act of 2023 HR, 118th Congress. Available online: https://www.congress.gov/bill/118th-congress/house-bill/955 (accessed on 1 June 2025).
- Wall, H.K.; Stolp, H.; Wright, J.S.; Ritchey, M.D.; Thomas, R.J.; Ades, P.A.; Sperling, L.S. The Million Hearts Initiative: Catalyzing Utilization of Cardiac Rehabilitation and Accelerating Implementation of New Care Models. J. Cardiopulm. Rehabil. Prev. 2020, 40, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Live to the Beat Campaign Toolkit: Partners in Progress. In Million Hearts®. Available online: https://millionhearts.hhs.gov/partners-progress/partners/live-beat-campaign-toolkit.html (accessed on 1 June 2025).
- U.S. Congress. Sustainable Cardiopulmonary Rehabilitation Services in the Home Act of 2023 S, 118th Congress. Available online: https://www.congress.gov/bill/118th-congress/senate-bill/3021 (accessed on 1 June 2025).
- Centers for Medicare & Medicaid Services. MM13513: Pulmonary Rehabilitation CR, and Intensive Cardiac Rehabilitation Expansion. 8 February 2024. Available online: https://www.cms.gov/files/document/mm13513-pulmonary-rehabilitation-cardiac-rehabilitation-intensive-cardiac-rehabilitation-expansion.pdf (accessed on 1 June 2025).
- U.S. Congress. Increasing Access to Quality Cardiac Rehabilitation Care Act of 2023 HR, 118th Congress. Available online: https://www.congress.gov/bill/118th-congress/house-bill/2583 (accessed on 1 June 2025).
- Michigan Value Collaborative. Cardiac Rehab—Michigan Value Collaborative. Available online: https://michiganvalue.org/value-based-initiatives/cardiac-rehab/ (accessed on 1 June 2025).
- Blue Cross Blue Shield Cardiovascular Consortium (BMC2). CQI P4P Scorecard Supplemental Document—November 16, 2023. Available online: https://bmc2.org/sites/default/files/2023-11/BMC2_CQI%20P4P%20Scorecard%20SuppDoc_16NOV2023%20%28RF%20Revision%29.pdf (accessed on 1 June 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mueller, A.S.; Kim, S.M. Cardiac Rehabilitation in the Modern Era: Evidence, Equity, and Evolving Delivery Models Across the Cardiovascular Spectrum. J. Clin. Med. 2025, 14, 5573. https://doi.org/10.3390/jcm14155573
Mueller AS, Kim SM. Cardiac Rehabilitation in the Modern Era: Evidence, Equity, and Evolving Delivery Models Across the Cardiovascular Spectrum. Journal of Clinical Medicine. 2025; 14(15):5573. https://doi.org/10.3390/jcm14155573
Chicago/Turabian StyleMueller, Anna S., and Samuel M. Kim. 2025. "Cardiac Rehabilitation in the Modern Era: Evidence, Equity, and Evolving Delivery Models Across the Cardiovascular Spectrum" Journal of Clinical Medicine 14, no. 15: 5573. https://doi.org/10.3390/jcm14155573
APA StyleMueller, A. S., & Kim, S. M. (2025). Cardiac Rehabilitation in the Modern Era: Evidence, Equity, and Evolving Delivery Models Across the Cardiovascular Spectrum. Journal of Clinical Medicine, 14(15), 5573. https://doi.org/10.3390/jcm14155573