Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (750)

Search Parameters:
Keywords = Cannabidiol (CBD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2413 KiB  
Article
The Effect of Cannabidiol in Conjunction with Radiation Therapy on Canine Glioma Cell Line Transplanted in Immunodeficient Mice
by Masayasu Ukai, Jade Kurihara, Markos Antonakakis, Krista Banks, Steve Dow, Daniel L. Gustafson, Mary-Keara Boss, Amber Prebble and Stephanie McGrath
Vet. Sci. 2025, 12(8), 735; https://doi.org/10.3390/vetsci12080735 - 5 Aug 2025
Abstract
Glioma is a type of neoplasia that spontaneously arises from the glial cells of the brain in humans and dogs, and its prognosis is grave. Current treatment options for glioma include surgery, radiation therapy, chemotherapy, or symptomatic treatment. Evidence has shown that cannabidiol [...] Read more.
Glioma is a type of neoplasia that spontaneously arises from the glial cells of the brain in humans and dogs, and its prognosis is grave. Current treatment options for glioma include surgery, radiation therapy, chemotherapy, or symptomatic treatment. Evidence has shown that cannabidiol (CBD) may have anticancer, anti-angiogenic, and anti-inflammatory properties in both in vitro and in vivo studies. In this in vivo murine experiment, the canine glioma cell line J3TBG was injected into the frontoparietal cortex of immunodeficient mice using xenogeneic tissue transplantation. A total of 20 mice were randomly assigned to one of four treatment groups—Control group (C), CBD group (CBD), Radiation Therapy group (RT), and CBD plus Radiation Therapy group (CBD + RT). After transplantation of J3TBG, a single fraction of 5.5 Gy RT was administered to the RT and CBD + RT groups, and CBD was administered daily to the CBD and CBD + RT groups. Necropsies were performed to collect blood and brain tissue. Although there was not a statistically significant difference, the survival time among mice were longer in the CBD + RT group than the RT group. These results indicate that CBD may be used as an adjunctive therapy to enhance RT treatment. Larger cohort studies are required to substantiate the hypothesis. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

22 pages, 1078 KiB  
Review
The Cannabinoid Pharmacology of Bone Healing: Developments in Fusion Medicine
by Gabriel Urreola, Michael Le, Alan Harris, Jose A. Castillo, Augustine M. Saiz, Hania Shahzad, Allan R. Martin, Kee D. Kim, Safdar Khan and Richard Price
Biomedicines 2025, 13(8), 1891; https://doi.org/10.3390/biomedicines13081891 - 3 Aug 2025
Viewed by 330
Abstract
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual [...] Read more.
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual cannabinoids affect fracture repair and spinal arthrodesis. Methods: PubMed, Web of Science and Scopus were searched from inception to 31 May 2025 with the terms “cannabinoid”, “CB1”, “CB2”, “spinal fusion”, “fracture”, “osteoblast” and “osteoclast”. Animal studies, in vitro experiments and clinical reports that reported bone outcomes were eligible. Results: CB2 signaling was uniformly osteogenic. CB2-knockout mice developed high-turnover osteoporosis, whereas CB2 agonists (HU-308, JWH-133, HU-433, JWH-015) restored trabecular volume, enhanced osteoblast activity and strengthened fracture callus. Cannabidiol (CBD), a non-psychoactive phytocannabinoid with CB2 bias, accelerated early posterolateral fusion in rats and reduced the RANKL/OPG ratio without compromising final union. In contrast, sustained or high-dose Δ9-tetrahydrocannabinol (THC) activation of CB1 slowed chondrocyte hypertrophy, decreased mesenchymal-stromal-cell mineralization and correlated clinically with 6–10% lower bone-mineral density and a 1.8–3.6-fold higher pseudarthrosis or revision risk. Short-course or low-dose THC appeared skeletal neutral. Responses varied with sex, age and genetic background; no prospective trials defined safe perioperative dosing thresholds. Conclusions: CB2 activation and CBD consistently favor bone repair, whereas chronic high-THC exposure poses a modifiable risk for nonunion in spine surgery. Prospective, receptor-specific trials stratified by THC/CBD ratio, patient sex and ECS genotype are needed to establish evidence-based cannabinoid use in spinal fusion. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

16 pages, 1131 KiB  
Article
Clinical and Cognitive Improvement Following Treatment with a Hemp-Derived, Full-Spectrum, High-Cannabidiol Product in Patients with Anxiety: An Open-Label Pilot Study
by Rosemary T. Smith, Mary Kathryn Dahlgren, Kelly A. Sagar, Deniz Kosereisoglu and Staci A. Gruber
Biomedicines 2025, 13(8), 1874; https://doi.org/10.3390/biomedicines13081874 - 1 Aug 2025
Viewed by 369
Abstract
Background/Objectives: Cannabidiol (CBD) is a non-intoxicating cannabinoid touted for a variety of medical benefits, including alleviation of anxiety. While legalization of hemp-derived products in the United States (containing ≤0.3% delta-9-tetrahydrocannabinol [d9-THC] by weight) has led to a rapid increase in the commercialization [...] Read more.
Background/Objectives: Cannabidiol (CBD) is a non-intoxicating cannabinoid touted for a variety of medical benefits, including alleviation of anxiety. While legalization of hemp-derived products in the United States (containing ≤0.3% delta-9-tetrahydrocannabinol [d9-THC] by weight) has led to a rapid increase in the commercialization of hemp-derived CBD products, most therapeutic claims have not been substantiated using clinical trials. This trial aimed to assess the impact of 6 weeks of treatment with a proprietary hemp-derived, full-spectrum, high-CBD sublingual solution similar to those available in the marketplace in patients with anxiety. Methods: An open-label pilot clinical trial (NCT04286594) was conducted in 12 patients with at least moderate levels of anxiety. Patients self-administered a hemp-derived, high-CBD sublingual solution twice daily during the 6-week trial (target daily dose: 30 mg/day CBD). Clinical change over time relative to baseline was assessed for anxiety, mood, sleep, and quality of life, as well as changes in cognitive performance on measures of executive function and memory. Safety and tolerability of the study product were also evaluated. Results: Patients reported significant reductions in anxiety symptoms over time. Concurrent improvements in mood, sleep, and relevant quality of life domains were also observed, along with stable or improved performance on all neurocognitive measures. Few side effects were reported, and no serious adverse events occurred. Conclusions: These pilot findings provide initial support for the efficacy and tolerability of the hemp-derived, high-CBD product in patients with moderate-to-severe levels of anxiety. Double-blind, placebo-controlled studies are indicated to obtain robust data regarding efficacy and tolerability of these types of products for anxiety. Full article
Show Figures

Figure 1

16 pages, 1747 KiB  
Article
A Novel Glucosamine-Based Cannabidiol Complex Based on Intermolecular Bonding with Improved Water Solubility
by Mitja Križman, Jure Zekič, Primož Šket, Alojz Anžlovar, Barbara Zupančič and Jože Grdadolnik
Molecules 2025, 30(15), 3179; https://doi.org/10.3390/molecules30153179 - 29 Jul 2025
Viewed by 171
Abstract
In this study, a new, patented form of a water-soluble cannabidiol (CBD) complex was synthesised and tested. The formation of the complex is based on the interactions, presumably through hydrogen bonding, between cannabidiol and glucosamine, the latter contributing significantly to the increased hydrophilicity. [...] Read more.
In this study, a new, patented form of a water-soluble cannabidiol (CBD) complex was synthesised and tested. The formation of the complex is based on the interactions, presumably through hydrogen bonding, between cannabidiol and glucosamine, the latter contributing significantly to the increased hydrophilicity. The complex was characterised by chromatography, thermal analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and permeability tests. This complex has a substantially higher water solubility than normal CBD. Permeability tests indicate that it has almost five times lower permeability through lipophilic membranes and less than half the membrane mass retention of conventional CBD. At the same time, its equilibrium concentration is almost four times higher than that of normal CBD. These results suggest that this new form of CBD is a promising candidate for future biological and clinical studies, as it offers improved bioavailability and biodistribution. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

22 pages, 1793 KiB  
Article
Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells
by Francisca J. Medina, Guillermo Velasco, María G. Villamizar-Sarmiento, Cristian G. Torres and Felipe A. Oyarzun-Ampuero
Pharmaceutics 2025, 17(8), 970; https://doi.org/10.3390/pharmaceutics17080970 - 26 Jul 2025
Viewed by 766
Abstract
Background/Objectives: Mammary carcinoma is a common disease in female dogs. Cannabidiol (CBD) can inhibit cell proliferation and induce apoptosis in human cancer cells. However, its low solubility in aqueous media requires solvents such as ethanol or dimethylsulfoxide that limit their dosage. Incorporating [...] Read more.
Background/Objectives: Mammary carcinoma is a common disease in female dogs. Cannabidiol (CBD) can inhibit cell proliferation and induce apoptosis in human cancer cells. However, its low solubility in aqueous media requires solvents such as ethanol or dimethylsulfoxide that limit their dosage. Incorporating CBD into oil-in-water nanoemulsions (Nem) can improve its aqueous dispersibility. This study aimed to develop a CBD-Nem formulation and evaluate its effects on canine mammary cancer cell lines (CF41.Mg and IPC366) and non-cancer cells (MDCK). Methods: CBD-Nem was prepared with Miglyol 812 oil and Epikuron 145 V as the surfactant, and was characterized by analyzing size, morphology, zeta potential, release profile, and uptake/internalization. Moreover, the antitumor effects of CBD-Nem were evaluated in cancer cells through viability, proliferation, cell cycle, and migration–invasion assays. Results: CBD-Nem exhibited a monodisperse nanometric population (~150 nm), spherical shape, and negative zeta potential (~−50 mV). The in vitro release kinetics showed slow and sustained delivery at both pH 5.5 and pH 7.4. Rhodamine-Nem, as a fluorescent model of CBD-Nem, was taken up and homogenously internalized in CF41.Mg cells. CBD-Nem decreased the viability of cancer cells with a maximum effect at 50 µM and showed a lower toxicity in MDCK cells. Long-term efficacy (20 days) was evidenced by CBD-Nem at inhibiting colony formation in cancer cells. Furthermore, CBD-Nem reduced the proportion of cells in the G2-M phase, induced apoptosis, and inhibited the migration and invasion of CF41.Mg cells. Conclusions: CBD-Nem exhibited an in vitro antitumor effect, which supports its study in dogs with mammary carcinoma. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Graphical abstract

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 469
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

33 pages, 1463 KiB  
Review
Molecular Mechanisms of the Endocannabinoid System with a Focus on Reproductive Physiology and the Cannabinoid Impact on Fertility
by Patrycja Kalak, Piotr Kupczyk, Antoni Szumny, Tomasz Gębarowski, Marcin Jasiak, Artur Niedźwiedź, Wojciech Niżański and Michał Dzięcioł
Int. J. Mol. Sci. 2025, 26(15), 7095; https://doi.org/10.3390/ijms26157095 - 23 Jul 2025
Viewed by 350
Abstract
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. [...] Read more.
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. Although cannabinoids like cannabidiol (CBD) have garnered interest for their potential therapeutic effects, evidence regarding their safety, particularly for reproductive health, remains limited. This review summarizes the structure and molecular mechanisms of the ECS, its role in reproductive physiology—including its interactions with the hypothalamic–pituitary–gonadal axis (HPG axis), gametogenesis, implantation, and lactation—and the possible consequences of cannabinoid exposure for fertility. In addition, we focus on the involvement of the ECS and cannabinoids in breast cancer, highlighting emerging evidence on their dual role in tumor progression and therapy. These insights emphasize the need for further research to better define the therapeutic potential and risks associated with cannabinoid use in reproductive health and breast cancer. Full article
Show Figures

Figure 1

19 pages, 3656 KiB  
Article
Large-Scale Profiling of Coding and Long Noncoding Transcriptomes in the Hippocampus of Mice Acutely Exposed to Vaporized CBD or THC
by Mi Ran Choi, Jihun Kim, Chaeeun Park, Seok Hwan Chang, Han-Na Kim, Yeung Bae Jin and Sang-Rae Lee
Int. J. Mol. Sci. 2025, 26(15), 7106; https://doi.org/10.3390/ijms26157106 - 23 Jul 2025
Viewed by 232
Abstract
Cannabis vaping, particularly involving cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), rapidly delivers highly concentrated cannabinoids to the brain, potentially affecting the hippocampus. This study examined differential expression of long noncoding RNAs (lncRNAs) and mRNAs in the hippocampus after acute exposure to vaporized CBD or [...] Read more.
Cannabis vaping, particularly involving cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), rapidly delivers highly concentrated cannabinoids to the brain, potentially affecting the hippocampus. This study examined differential expression of long noncoding RNAs (lncRNAs) and mRNAs in the hippocampus after acute exposure to vaporized CBD or THC. Male ICR mice were exposed to vaporized CBD or THC (50 mg, n = 5/group), and hippocampal tissues were collected at 1, 3, and 14 days post-exposure. Total RNA sequencing was conducted on day 1 samples, and selected transcripts were validated using qRT-PCR across multiple time points. CBD led to significant up- or downregulation of L3mbtl1, Wnt7a, and Camk2b at day 1. However, Wnt7a showed gradual recovery at days 3 and 14. In the THC group, Grin2a, Gria3, and Golga2 were significantly upregulated, while Drd1, Drd2, Gnal, and Adcy5 were significantly downregulated at day 1. Time-course analysis showed that Drd2 expression returned to baseline by day 14, whereas Adcy5 remained persistently downregulated through days 3 and 14. In the CBD group, NONMMUT069014.2 was upregulated, while NONMMUT033147.2 and NONMMUT072606.2 were downregulated at day 1; notably, NONMMUT072606.2 showed a transient increase at day 3 before returning to baseline. In the THC group, NONMMUT085523.1 and NONMMUT123548.1 were upregulated, whereas NONMMUT019734.2, NONMMUT057101.2, and NONMMUT004928.2 were downregulated, with most showing gradual recovery by day 14. Correlation analysis revealed that THC-responsive lncRNAs—including NONMMUT004928.2, NONMMUT057101.2, and NONMMUT019734.2—were strongly associated with downregulated mRNAs such as Drd2 and Adcy5. These findings highlight cannabinoid-specific hippocampal transcriptomic responses and suggest potential regulatory roles for lncRNA–mRNA interactions in cannabinoid-induced neural changes. Full article
Show Figures

Figure 1

21 pages, 810 KiB  
Review
Molecular Crosstalk and Therapeutic Synergy: Tyrosine Kinase Inhibitors and Cannabidiol in Oral Cancer Treatment
by Zainab Saad Ghafil AlRaheem, Thao T. Le, Ali Seyfoddin and Yan Li
Curr. Issues Mol. Biol. 2025, 47(8), 584; https://doi.org/10.3390/cimb47080584 - 23 Jul 2025
Viewed by 304
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, with oral squamous cell carcinoma (OSCC) accounting for a significant portion of cases. Despite advancements in treatment, only modest gains have been made in HNSCC/OSCC control. Epidermal growth factor [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, with oral squamous cell carcinoma (OSCC) accounting for a significant portion of cases. Despite advancements in treatment, only modest gains have been made in HNSCC/OSCC control. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have emerged as targeted therapies for OSCC in clinical trials. However, their clinical efficacy remains a challenge. Cannabidiol (CBD), a non-psychoactive phytochemical from cannabis, has demonstrated anticancer and immunomodulatory properties. CBD induces apoptosis and autophagy and modulates signaling pathways often dysregulated in HNSCC. This review summarizes the molecular mechanisms of EGFR-TKIs and CBD and their clinical insights and further discusses potential implications of combination targeted therapies. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

16 pages, 3373 KiB  
Article
Automated Workflow for High-Throughput LC–MS/MS Therapeutic Monitoring of Cannabidiol and 7-Hydroxy-cannabidiol in Patients with Epilepsy
by Michela Palmisani, Francesca Dattrino, Paola Rota, Federica Tacchella, Guido Fedele, Ludovica Pasca, Carlo Alberto Quaranta, Valentina De Giorgis, Thomas Matulli Cavedagna, Chiara Cancellerini, Anna Butti, Gloria Castellazzi, Emilio Russo, Cristina Tassorelli, Pierluigi Nicotera and Valentina Franco
Int. J. Mol. Sci. 2025, 26(14), 6999; https://doi.org/10.3390/ijms26146999 - 21 Jul 2025
Viewed by 288
Abstract
This study describes the development and validation of a fully automated workflow for serum sample preparation, enabling the quantitative determination of cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD, via liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. Implemented on an automated platform, [...] Read more.
This study describes the development and validation of a fully automated workflow for serum sample preparation, enabling the quantitative determination of cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD, via liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. Implemented on an automated platform, the workflow performs key steps such as solvent dispensing, mixing, centrifugation, filtration, and supernatant transfer, producing 96-well plates ready for analysis. Human serum samples were obtained from patients with epilepsy treated with CBD. All samples were processed using both manual and automated methods to evaluate method agreement. Quantification was performed by LC–MS/MS with CBD-d3 as the internal standard (IS). Method validation was conducted in accordance with European Medicine Agency (EMA) guidelines, confirming that the automated protocol meets the recommended acceptance criteria for both intraday and interday precision and accuracy. Calibration curves demonstrated excellent linearity across the concentration ranges. Comparative analysis using Passing–Bablok regression and Bland–Altman plots demonstrated strong agreement between the methods. These findings support the clinical applicability of the automated method for the therapeutic drug monitoring (TDM) of CBD and 7-hydroxy-CBD, and its robust performance and scalability provide a solid foundation for the development of an expanded analytical panel covering a broader range of antiseizure medications (ASMs), enabling more standardized TDM protocols in clinical practice. Full article
Show Figures

Figure 1

15 pages, 1206 KiB  
Article
Expanding the Therapeutic Profile of Topical Cannabidiol in Temporomandibular Disorders: Effects on Sleep Quality and Migraine Disability in Patients with Bruxism-Associated Muscle Pain
by Karolina Walczyńska-Dragon, Jakub Fiegler-Rudol, Stefan Baron and Aleksandra Nitecka-Buchta
Pharmaceuticals 2025, 18(7), 1064; https://doi.org/10.3390/ph18071064 - 19 Jul 2025
Viewed by 467
Abstract
Background: Cannabidiol (CBD) has demonstrated potential as a therapeutic agent for muscle tension, pain, and sleep bruxism, yet its broader impact on comorbid conditions such as sleep disturbance and migraine disability remains underexplored. This study aimed to assess the effects of topical [...] Read more.
Background: Cannabidiol (CBD) has demonstrated potential as a therapeutic agent for muscle tension, pain, and sleep bruxism, yet its broader impact on comorbid conditions such as sleep disturbance and migraine disability remains underexplored. This study aimed to assess the effects of topical CBD on sleep quality and migraine-related disability in patients with bruxism-associated muscular pain. Methods: In a randomized, double-blind clinical trial, 60 participants with bruxism were allocated equally into three groups: control (placebo gel), 5% CBD gel, and 10% CBD gel. Participants applied the gel intraorally to the masseter muscles nightly for 30 days. Sleep quality and migraine-related disability were assessed using the Pittsburgh Sleep Quality Index (PSQI) and the Migraine Disability Assessment Scale (MIDAS), respectively. Surface electromyography (sEMG) and the Bruxoff® device were used for objective evaluation of muscle tension and bruxism intensity. Results: Both CBD treatment groups demonstrated statistically significant improvements in PSQI and MIDAS scores compared to the control group (p < 0.001). No significant differences were observed between the 5% and 10% CBD groups, suggesting comparable efficacy. The sEMG findings corroborated a reduction in muscle tension. Improvements in sleep and migraine outcomes were positively correlated with reductions in muscle activity and pain. Conclusions: Topical CBD gel significantly improved sleep quality and reduced migraine-related disability in patients with bruxism-associated muscular pain, supporting its role as a multifaceted therapeutic option in the management of TMD and related comorbidities. Further research is needed to confirm long-term benefits and determine optimal dosing strategies. Full article
(This article belongs to the Special Issue The Therapeutic Potential of Cannabidiol)
Show Figures

Figure 1

17 pages, 1599 KiB  
Article
Trends in Antidepressant, Anxiolytic, and Cannabinoid Use Among Italian Elite Athletes (2011–2023): A Longitudinal Anti-Doping Analysis
by Mario Ruggiero, Leopoldo Ferrante, Domenico Tafuri, Rosaria Meccariello and Filomena Mazzeo
Sports 2025, 13(7), 233; https://doi.org/10.3390/sports13070233 - 16 Jul 2025
Viewed by 458
Abstract
Mental health disorders, particularly depression and anxiety, have become increasingly prevalent among elite athletes, exacerbated by factors such as competitive pressure and the Coronavirus Disease 19 (COVID-19) pandemic. This study analyzes trends in the use of antidepressants, anxiolytics, and cannabinoids (delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD)) [...] Read more.
Mental health disorders, particularly depression and anxiety, have become increasingly prevalent among elite athletes, exacerbated by factors such as competitive pressure and the Coronavirus Disease 19 (COVID-19) pandemic. This study analyzes trends in the use of antidepressants, anxiolytics, and cannabinoids (delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD)) among Italian athletes from 2011 to the first half of 2023 (FH2023), referring to anti-doping reports published by the Italian Ministry of Health. Data from 13,079 athletes were examined, with a focus on non-prohibited medications, banned substances, and regulatory impacts, including threshold adjustments for THC since 2013 and the legalization of CBD. The results show fluctuating use of antidepressants/anxiolytics, with peaks in 2021 and the FH2023, coinciding with post-pandemic awareness. Positive THC cases rose following regulatory changes, reflecting socio-cultural trends. Gender disparities emerged, with THC use predominantly among males (e.g., nine males vs. one female in 2013), though female athletes were underrepresented in testing. This study highlights the need for personalized, evidence-based strategies that balance therapeutic efficacy and anti-doping compliance. Clinicians should carefully consider prescribing selective serotonin reuptake inhibitors (SSRIs) and benzodiazepines to address depression and anxiety and should monitor the risks of CBD contamination. Future research should adopt longitudinal, gender-sensitive approaches to refining guidelines and combating stigma in professional sports. Full article
(This article belongs to the Topic Recent Advances in Physical Education and Sports)
Show Figures

Graphical abstract

20 pages, 2175 KiB  
Article
Evaluation of Cannabidiol Oil’s Effects on Sedation, Behavioral Responses to Handling, and Nociceptive Thresholds in Healthy Cats
by Kannika Wanapinit, Sirirat Niyom, Panisara Suriyawongpongsa, Sakunrat Khathatip, Kaittisak Tancharoen, Sittiruk Roytrakul and Sekkarin Ploypetch
Animals 2025, 15(13), 1987; https://doi.org/10.3390/ani15131987 - 6 Jul 2025
Viewed by 564
Abstract
This study explored the effects of cannabidiol (CBD) on clinically relevant parameters, including sedation, compliance, and temperament, as well as mechanical nociceptive thresholds in healthy cats. Nine client-owned cats (3.44 ± 2.35 years, mean ± standard deviation) were assessed prior to (baseline) and [...] Read more.
This study explored the effects of cannabidiol (CBD) on clinically relevant parameters, including sedation, compliance, and temperament, as well as mechanical nociceptive thresholds in healthy cats. Nine client-owned cats (3.44 ± 2.35 years, mean ± standard deviation) were assessed prior to (baseline) and 30 min, 1, 2, 4, 8, 12, and 24 h after oral administration of 8 mg/kg CBD oil via capsule. Sedation scores increased significantly 2, 4, and 8 h post administration compared to baseline (all medians = 1 vs. 0 at baseline; p < 0.001). Compliance and temperament scores were significantly reduced 2 and 4 h post dosing, with median scores decreasing from 1 at baseline to 0 after 2 and 4 h for both parameters (p < 0.001 and p = 0.012, respectively). Mechanical nociceptive thresholds and sensitivity, assessed using an algometer and von Frey filaments, respectively, along with physiological parameters (heart rate, respiratory rate, and body temperature), remained unchanged across timepoints. These results indicate that 8 mg/kg CBD induces mild sedation and reduces handling resistance in healthy cats without affecting nociceptive thresholds or physiological stability. Therefore, CBD may facilitate non-painful procedures requiring animal cooperation; further controlled studies are warranted to confirm these findings. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

35 pages, 1877 KiB  
Review
Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy
by Gloria Montebello and Giuseppe Di Giovanni
Int. J. Mol. Sci. 2025, 26(13), 6234; https://doi.org/10.3390/ijms26136234 - 27 Jun 2025
Viewed by 1937
Abstract
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and [...] Read more.
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities. Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox–Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors. Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development. Full article
Show Figures

Figure 1

21 pages, 1422 KiB  
Review
Cannabidiol (CBD) and Colorectal Tumorigenesis: Potential Dual Modulatory Roles via the Serotonergic Pathway
by Zhenhua Liu
Curr. Oncol. 2025, 32(7), 375; https://doi.org/10.3390/curroncol32070375 - 26 Jun 2025
Viewed by 766
Abstract
The 2018 Farm Bill legalized hemp-derived cannabidiol (CBD) products containing less than 0.3% tetrahydrocannabinol (THC) in the United States. This legislative shift catalyzed both public and scientific interest in CBD’s potential health benefits. However, the rapid expansion of the CBD market has considerably [...] Read more.
The 2018 Farm Bill legalized hemp-derived cannabidiol (CBD) products containing less than 0.3% tetrahydrocannabinol (THC) in the United States. This legislative shift catalyzed both public and scientific interest in CBD’s potential health benefits. However, the rapid expansion of the CBD market has considerably outpaced rigorous scientific research, leaving many health claims largely unsubstantiated. While preclinical studies suggest that CBD may exert antitumorigenic effects in colorectal cancer (CRC) by modulating cell proliferation, apoptosis, and inflammation, clinical evidence supporting these effects remains limited. This review critically examines the current evidence on the role of CBD in colorectal tumorigenesis, with particular attention to its molecular mechanisms and interactions with the serotonergic system—a signaling pathway implicated in the development of CRC and possessing potential dual anti- and pro-tumorigenic properties. By influencing the serotonergic system, CBD may confer both protective and potentially deleterious effects during CRC development. This review underscores the need for further research to elucidate the complex mechanisms of CBD in colorectal tumorigenesis and to evaluate its therapeutic potential in clinical settings. Understanding these interactions could pave the way for novel prevention and treatment strategies, optimizing the anticancer efficacy of CBD while mitigating unintended risks. Full article
Show Figures

Figure 1

Back to TopTop