Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Drugs
2.2. Formulation of CBD-Nem and Rho-Nem
2.3. Physicochemical Characterization of CBD-Nem and Rho-Nem
2.4. Morphological Characterization of CBD-Nem
2.5. Encapsulation Efficiency in CBD-Nem
2.6. CBD-Release from CBD-Nem
2.7. Cell Culture
2.8. Flow Cytometry (FACS) Assays
2.9. Confocal Fluorescence Microscopy
2.10. Cell Viability Assay
2.11. Clonogenic Assay
2.12. Cell Cycle Assay
2.13. Apoptosis Assay
2.14. Cell Migration and Invasion Assays
2.15. Data Analysis
3. Results
3.1. Physicochemical Characterization of the Formulations
3.2. CBD Encapsulation Efficiency and Drug Release
3.3. Rho-Nem Uptake and Internalization
3.4. Viability Assays in Canine Mammary Carcinoma and Canine Renal Epithelium Cell Lines
3.5. Colony Formation Assay
3.6. Cell Cycle and Apoptosis Assays
3.7. Cell Migration and Invasion Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBD | Cannabidiol |
CBD-Nem | CBD loaded in nanoemulsion |
CBD-E | CBD dissolved in ethanol |
DAPI | 4′,6-diamidino-2-phenylindole |
DMEM | Dulbecco’s modified eagle medium |
DMSO | Dimethylsulfoxide |
DPBS | Dulbecco’s phosphate buffered saline |
EDTA | Ethylenediaminetetraacetic acid |
FACS | Flow cytometry |
FBS | Fetal bovine serum |
IC50 | Concentration that inhibits 50% of the cell population |
MEM | Minimum essential medium |
MFRC | Mean fluorescence intensity relative to controls |
MTS | 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium. |
Nem | Oil-in-water nanoemulsion |
PBS | Phosphate-buffered saline |
PLGA | Poly(lactic-co-glycolic acid) |
Rho | Rhodamine 6G |
Rho-Nem | Rhodamine loaded in nanoemulsion |
Rho-E | Rhodamine loaded in ethanol |
THC | Tetrahydrocannabinol |
TNBC | Triple-negative breast cancer |
References
- Torres, C.; Iturriaga, M.; Cruz, P. Hormonal Carcinogenesis in Canine Mammary Cancer: Molecular Mechanisms of Estradiol Involved in Malignant Progression. Animals 2021, 11, 608. [Google Scholar] [CrossRef]
- Oliveira-Lopes, A.F.; Götze, M.M.; Lopes-Neto, B.E.; Guerreiro, D.D.; Bustamante-Filho, I.C.; Moura, A.A. Molecular and Pathobiology of Canine Mammary Tumour: Defining a Translational Model for Human Breast Cancer. Vet. Comp. Oncol. 2024, 22, 340–358. [Google Scholar] [CrossRef]
- Merlo, D.F.; Rossi, L.; Pellegrino, C.; Ceppi, M.; Cardellino, U.; Capurro, C.; Ratto, A.; Sambucco, P.L.; Sestito, V.; Tanara, G.; et al. Cancer incidence in pet dogs: Findings of the Animal Tumor Registry of Genoa, Italy. J. Vet. Intern. Med. 2008, 22, 976–984. [Google Scholar] [CrossRef]
- Vascellari, M.; Capello, K.; Carminato, A.; Zanardelo, C.; Baioni, E.; Mutinelli, F. Incidence of mammary tumors in the canine population living in the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer. Prev. Vet. Med. 2016, 126, 183–189. [Google Scholar] [CrossRef]
- Canadas, A.; França, M.; Pereira, C.; Vilaça, R.; Vilhena, H.; Tinoco, F.; Silva, M.J.; Ribeiro, J.; Medeiros, R.; Oliveira, P.; et al. Canine Mammary Tumors: Comparison of Classification and Grading Methods in a Survival Study. Vet. Pathol. 2019, 56, 208–219. [Google Scholar] [CrossRef]
- Sleeckx, N.; Rooster, H.; Veldhuis, K.E.; Van Ginneken, C.; Van Brantegem, L. Canine mammary tumours, an overview. Reprod. Domest. Anim. 2011, 46, 1112–1131. [Google Scholar] [CrossRef]
- Sorenmo, K. Canine Mammary Gland Tumors. Vet. Clin. N. Am. Small Anim. Pract. 2003, 33, 573–596. [Google Scholar] [CrossRef]
- Elbaz, M.; Nasser, M.W.; Ravi, J.; Wani, N.A.; Ahirwar, D.K.; Zhao, H.; Oghumu, S.; Satoskar, A.R.; Shilo, K.; Carson, W.E.; et al. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of Cannabidiol in breast cancer. Mol. Oncol. 2015, 9, 906–919. [Google Scholar] [CrossRef]
- Seltzer, E.; Watters, A.; Mackenzie, D.; Granat, L.; Zhang, D. Cannabidiol (CBD) as a Promising Anti-Cancer Drug. Cancers 2020, 12, 3203. [Google Scholar] [CrossRef]
- Henry, J.G.; Shoemaker, G.; Prieto, J.M.; Hannon, M.B.; Wakshlag, J.J. The effect of cannabidiol on canine neoplastic cell proliferation and mitogen-activated protein kinase activation during autophagy and apoptosis. Vet. Comp. Oncol. 2021, 19, 253–265. [Google Scholar] [CrossRef]
- Heider, C.G.; Itenberg, S.A.; Rao, J.; Ma, H.; Wu, X. Mechanisms of Cannabidiol (CBD) in Cancer Treatment: A Review. Biology 2022, 11, 817. [Google Scholar] [CrossRef]
- Marzo, V.D.; Piscitelli, F. The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics 2015, 692, 8. [Google Scholar] [CrossRef]
- Sultan, A.; Marie, M.A.; Sheweita, S.A. Novel mechanism of cannabidiol-induced apoptosis in breast cancer cell lines. Breast 2018, 41, 34–41. [Google Scholar] [CrossRef]
- Zuo, X.; Zhao, X.; Zhang, X.; Li, Q.; Jiang, X.; Huang, S.; Chen, X.; Chen, X.; Jia, W.; Zou, H.; et al. PTPN20 promotes metastasis through activating NF-kappaB signaling in triple-negative breast cancer. Breast Cancer Res. 2024, 26, 155. [Google Scholar] [CrossRef]
- Jennotte, O.; Koch, N.; Lechanteur, A.; Evrard, B. Formulation and quality consideration of cannabidiol printed forms produced by fused-deposition modeling. J. Drug Deliv. Sci. Technol. 2023, 87, 104837. [Google Scholar] [CrossRef]
- Nakano, Y.; Tajima, M.; Sugiyama, E.; Sato, V.H.; Sato, H. Development of a Novel Nano-emulsion Formulation to Improve Intestinal Absorption of Cannabidiol. Med. Cannabis Cannabinoids 2019, 2, 35–42. [Google Scholar] [CrossRef]
- Tavčar, E.; Vidak, M. Experimental investigation and thermodynamic modelling of cannabidiol and curcumin in different solvents. J. Mol. Liq. 2024, 410, 125511. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Torres-Suárez, A.; Cohen, M.; Delie, F.; Bastida-Ruiz, D.; Yart, L.; Martin-Sabroso, C.; Fernández-Carballido, A. PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment. Pharmaceutics 2020, 12, 439. [Google Scholar] [CrossRef]
- Viudez-Martinez, A.; Garcia-Gutierrez, M.S.; Navarron, C.M.; Morales-Calero, M.I.; Navarrete, F.; Torres-Suarez, A.I. Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Addict. Biol. 2018, 23, 154–164. [Google Scholar] [CrossRef]
- Aparicio-Blanco, J.; Sebastián, V.; Benoit, J.P.; Torres-Suárez, A.I. Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters. Eur. J. Pharm. Biopharm. 2019, 134, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Greish, K.; Mathur, A.; Al Zahrani, R.; Elkaissi, S.; Al Jishi, M.; Nazzal, O.; Taha, S.; Pittalà, V.; Taurin, S. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J. Control Release 2018, 291, 184–195. [Google Scholar] [CrossRef]
- Anuar, N.; Sabri, A.; Bustami, T.; Hamid, K. Development and characterisation of ibuprofen-loaded nanoemulsion with enhanced oral bioavailability. Heliyon 2020, 6, 7. [Google Scholar] [CrossRef]
- Fraguas-Sanchez, A.I.; Martin-Sabroso, C.; Fernandez-Carballido, A.; Torres-Suarez, A.I. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacology 2019, 84, 689–706. [Google Scholar] [CrossRef]
- Guerrero, S.; Inostroza-Riquelme, M.; Contreras-Orellana, P.; Diaz-Garcia, V.; Lara, P.; Vivanco-Palma, A.; Cárdenas, A.; Miranda, V.; Robert, P.; Leyton, L.; et al. Curcumin-loaded nanoemulsion: A new safe and effective formulation to prevent tumor reincidence and metástasis. Nanoscale 2018, 21, 10. [Google Scholar] [CrossRef]
- Andradas, C.; Blasco-Benito, S.; Castillo-Lluva, S.; Dillenburg-Pilla, P.; Diez-Alarcia, R.; Juanes-Garcia, A.; García-Taboada, E.; Hernando-Llorente, R.; Soriano, J.; Hamann, S.; et al. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget 2016, 7, 47565–47575. [Google Scholar] [CrossRef]
- Afrin, F.; Chi, M.; Eamens, A.; Duchatel, R.; Douglas, A.; Schneider, J.; Gedye, C.; Woldu, A.S.; Dun, M.D. Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer. Cancers 2020, 12, 1033. [Google Scholar] [CrossRef]
- Cerda-Opazo, P.; Gotteland, M.; Oyarzun-Ampuero, F.; Garcia, L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll. 2021, 111, 106370. [Google Scholar] [CrossRef]
- Villamizar-Sarmiento, M.; Guerrero, J.; Moreno-Villoslada, I.D.; Oyarzun-Ampuero, F. The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions. Eur. J. Pharm. Biopharm. 2021, 166, 19–29. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Fernández-Carballidoa, A.; Simancas-Herbadaa, R.; Martin-Sabrosoa, C.; Torres-Suáreza, A.I. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm. 2020, 25, 574. [Google Scholar] [CrossRef]
- Caceres, S.; Peña, L.; de Andres, P.J.; Illera, M.J.; Lopez, M.S.; Woodward, W.A.; Reuben, J.M.; Illera, J.C. Establishment and characterization of a new cell line of canine inflammatory mammary cancer: IPC-366. PLoS ONE 2015, 10, e0122277. [Google Scholar] [CrossRef]
- Serrano, C.; Guzmán, S.; Arias, J.; Torres, C. Melatonin decreases in vitro viability and migration of spheres derived from CF41.Mg canine mammary carcinoma cells. BMC Vet. Res. 2019, 15, 390. [Google Scholar] [CrossRef]
- Iturriaga, M.; Paredes, R.; Arias, J.; Torres, C. Meloxicam decreases the migration and invasion of CF41.Mg canine mammary carcinoma cells. Oncol. Lett. 2017, 14, 2198–2206. [Google Scholar] [CrossRef]
- Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Mazzetti, C.; Ferri, E.; Pozzi, M.; Labra, M. Quantification of the content of cannabinol in commercially available e-liquids and studies on their thermal and photo-stability. Sci. Rep. 2020, 10, 3697. [Google Scholar] [CrossRef]
- Millar, S.; Maguire, R.; Yates, A.; O’sullivan, S. Towards Better Delivery of Cannabidiol (CBD). Pharmaceuticals 2020, 13, 219. [Google Scholar] [CrossRef]
- Grifoni, L.; Vanti, G.; Donato, R.; Sacco, C.; Bilia, A.R. Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities. Molecules 2022, 27, 6070. [Google Scholar] [CrossRef]
- Lewinska, A. Optimizing the Process Design of Oil-in-Water Nanoemulsion for Delivering Poorly Soluble Cannabidiol Oil. Processes 2021, 9, 1180. [Google Scholar] [CrossRef]
- Lazzarotto, E.R.; Rauber, G.S.; Caon, T. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications. Int. J. Pharm. 2023, 635, 122727. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Sannikova, N.; Guo, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Nature 2021, 11, 72. [Google Scholar] [CrossRef]
- Villamizar-Sarmiento, M.; Molina-Soto, E.; Guerrero, J.; Shibue, T.; Nishide, H.; Moreno-Villoslada, I.; Oyarzun-Ampuero, F.A. A New Methodology to Create Polymeric Nanocarriers ContainingHydrophilic Low Molecular-Weight Drugs: A Green StrategyProviding a Very High Drug Loading. Mol. Pharm. 2019, 16, 7. [Google Scholar] [CrossRef]
- Villamizar-Sarmiento, M.; Yáñez, O.; Flores, M.E.; Álvarez-Acevedo, G.; González-Nilo, F.; Guerrero, J.; Moreno-Villoslada, I.; Oyarzun-Ampuero, F.A. Colloidal nanomedicines with prolonged release of chloroquine based on interactions with aromatic polymers after mixing two liquids: From in silico simulation of nanoparticle formation to efficient in-bench scale up. J. Mol. Liq. 2024, 395, 123906. [Google Scholar] [CrossRef]
- Melchert, D.; Schaare, F.; Winterhalter, P.; Beuerle, T. CBD products: Labeling accuracy of an obscure niche market. Food Control 2024, 160, 110375. [Google Scholar] [CrossRef]
- Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Baumann, N.; Baumgarten, J.; Kunick, C.; Bunjes, H. Prolonged release from lipid nanoemulsions by modification of drug lipophilicity. J. Control. Release 2024, 374, 478–488. [Google Scholar] [CrossRef]
- Duse, L.; Agel, M.R.; Pinnapireddy, S.R.; Schafer, J.; Selo, M.A.; Ehrhardt, C.; Bakowsky, U. Photodynamic Therapy of Ovarian Carcinoma Cells with Curcumin-Loaded Biodegradable Polymeric Nanoparticles. Pharmaceutics 2019, 11, 282. [Google Scholar] [CrossRef]
- Murugan, K.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Pillay, V. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int. J. Nanomed. 2015, 10, 2191–2206. [Google Scholar] [CrossRef]
- Attia, M.F.; Dieng, S.M.; Collot, M.; Klymchenko, A.S.; Bouillot, C.; Serra, C.A.; Schmutzet, M.; Er-Rafik, M.; Vandamme, T.F.; Anton, N. Functionalizing nanoemulsions with carboxylates: Impact on the biodistribution and pharmacokinetics in mice. Macromol. Biosci. 2017, 17, 1600471. [Google Scholar] [CrossRef]
- Cunha, A.; Prévot, G.; Mousli, Y.; Barthélémy, P.; Crauste-Manciet, S.; Dehay, B.; Desvergnes, V. Synthesis and intracellular uptake of rhodamine-nucleolipid conjugates into a nanoemulsion vehicle. ACS Omega 2020, 5, 5815–5823. [Google Scholar] [CrossRef]
- Quignard, S.; Frébourg, G.; Chen, Y.; Fattaccioli, J. Nanometric emulsions encapsulating solid particles as alternative carriers for intracellular delivery. Nanomedicine 2016, 11, 2059–2072. [Google Scholar] [CrossRef]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef]
- Mashabela, M.D.; Kappo, A.P. Anti-Cancer and Anti-Proliferative Potential of Cannabidiol: A Cellular and Molecular Perspective. Int. J. Mol. Sci. 2024, 25, 5659. [Google Scholar] [CrossRef]
- Laliberte, S.; Hocker, S.; Mutsaers, A. Assessment of Cannabinoid Receptor Expression and Anti-neoplastic Effects of Cannabidiol (CBD) in Canine Urothelial Carcinoma Cells. In Proceedings of the VCS Annual Conference, Boise, ID, USA, 14–16 October 2021. [Google Scholar]
- Ligresti, A.; Moriello, A.S.; Starowicz, K.; Matias, I.; Pisanti, S.; De Petrocellis, L.; Laezza, C.; Portella, G.; Bifulco, M.; Di Marzo, V. Antitumor Activity of Plant Cannabinoids with Emphasis on the Effect of Cannabidiol on Human Breast Carcinoma. J. Pharmacol. Exp. Ther. 2006, 318, 1375–1387. [Google Scholar] [CrossRef]
- Drori, A.; Permyakova, A.; Hadar, R.; Udi, S.; Nemirovski, A.; Tam, J. Cannabinoid-1 receptor regulates mitochondrial dynamics and function in renal proximal tubular cells. Diabetes Obes. Metab. 2019, 21, 146–159. [Google Scholar] [CrossRef]
- Udi, S.; Hinden, L.; Ahmad, M.; Drori, A.; Iyer, M.R.; Cinar, R.; Herman-Edelstein, M.; Tam, J. Dual inhibition of cannabinoid CB1 receptor and inducible NOS attenuates obesity-induced chronic kidney disease. Br. J. Pharmacol. 2020, 177, 110–127. [Google Scholar] [CrossRef]
- Pan, Z.; Luo, Y.; Xia, Y.; Zhang, X.; Qin, Y.; Liu, W. Cinobufagin induces cell cycle arrest at the S phase and promotes apoptosis in nasopharyngeal carcinoma cells. Biomed. Pharmacother. 2020, 122, 109763. [Google Scholar] [CrossRef]
- Shrivastava, A.; Kuzontkoski, P.; Groopman, J.; Prasad, A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther. 2011, 10, 1161–1172. [Google Scholar] [CrossRef]
- Kisková, T.; Mungenast, F.; Suváková, M.; Jäger, W.; Thalhammer, T. Future Aspects for Cannabinoids in Breast Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 1673. [Google Scholar] [CrossRef]
- Kogan, N. Cannabinoids and Cancer. Mini-Reviews. Med. Chem. 2006, 5, 10. [Google Scholar]
- Caffarel, M.; Sarrió, D.; Palacios, J.; Guzmán, M.; Sánchez, C. Δ9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 2006, 66, 6615–6621. [Google Scholar] [CrossRef]
- D’Aloia, A.; Ceriani, M.; Tisi, R.; Stucchi, S.; Sacco, E.; Costa, B. Cannabidiol Antiproliferative Effect in Triple-Negative Breast Cancer MDA-MB-231 Cells Is Modulated by Its Physical State and by IGF-1. Int. J. Mol. Sci. 2022, 23, 7145. [Google Scholar] [CrossRef]
- Hüttemann, M.; Helling, S.; Sanderson, T.H.; Sinkler, C.; Samavati, L.; Mahapatra, G. Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim. Biophys. Acta 2012, 1817, 598–609. [Google Scholar] [CrossRef]
- McAllister, S.D.; Christian, R.T.; Horowitz, M.P.; Garcia, A.; Desprez, P.Y. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther. 2007, 6, 2921–2927. [Google Scholar] [CrossRef]
Hydrodynamic Diameter (nm) | Polidispersity Index (PDI) | Zeta Potential (mV) | Nem Concentration (Nanoparticles/mL) | Encapsulation Efficiency | |
---|---|---|---|---|---|
Nem | 150 ± 9 | 0.14 ± 0.1 | −51 ± 2 | 1.2 × 1013 ± 413 | |
CBD-Nem | 155 ± 12 | 0.14 ± 0.1 | −53 ± 7 | 4.8 × 1013 ± 613 | ≥99% |
Rhod-Nem | 138.1 ± 7 | 0.13 ± 0.1 | −56 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, F.J.; Velasco, G.; Villamizar-Sarmiento, M.G.; Torres, C.G.; Oyarzun-Ampuero, F.A. Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells. Pharmaceutics 2025, 17, 970. https://doi.org/10.3390/pharmaceutics17080970
Medina FJ, Velasco G, Villamizar-Sarmiento MG, Torres CG, Oyarzun-Ampuero FA. Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells. Pharmaceutics. 2025; 17(8):970. https://doi.org/10.3390/pharmaceutics17080970
Chicago/Turabian StyleMedina, Francisca J., Guillermo Velasco, María G. Villamizar-Sarmiento, Cristian G. Torres, and Felipe A. Oyarzun-Ampuero. 2025. "Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells" Pharmaceutics 17, no. 8: 970. https://doi.org/10.3390/pharmaceutics17080970
APA StyleMedina, F. J., Velasco, G., Villamizar-Sarmiento, M. G., Torres, C. G., & Oyarzun-Ampuero, F. A. (2025). Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells. Pharmaceutics, 17(8), 970. https://doi.org/10.3390/pharmaceutics17080970