Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (604)

Search Parameters:
Keywords = CH4 profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14851 KiB  
Article
Degradation of Synthetic Restoration Materials by Xerotolerant/Xerophilic Fungi Contaminating Canvas Paintings
by Amela Kujović, Katja Kavkler, Michel Alexander Wilson-Hernandez, Miloš Vittori, Luen Zidar, Cene Gostinčar, Kristina Sepčić, Yordanis Pérez-Llano, Ramón Alberto Batista-García, Nina Gunde-Cimerman and Polona Zalar
J. Fungi 2025, 11(8), 568; https://doi.org/10.3390/jof11080568 - 30 Jul 2025
Viewed by 242
Abstract
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and [...] Read more.
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and Regalrez 1094—to degradation by fourteen xerotolerant/xerophilic fungal strains. All tested Aspergillus and Penicillium species extensively colonized, especially artificially aged materials. FTIR-PAS analysis revealed chemical changes in carbonyl and C–H bonds in Laropal A81 and Regalrez 1094 colonized by Aspergillus spp. Scanning electron microscopy (SEM) imaging showed thinning of Lascaux glues and deformation of Regalrez 1094. Transcriptomic profiling of A. puulaauensis grown on Lascaux 498 HV and Regalrez 1094 identified altered expression of genes coding for esterases and oxidases, enzymes involved in synthetic polymer degradation. Esterase activity assays using 4-nitrophenol-based substrates confirmed significant enzymatic activity correlating with the presence of ester bonds. These findings highlight the vulnerability of synthetic restoration materials, specifically Laropal A81, Regalrez 1094, and Lascaux glues, to extremophilic fungi thriving in environments with low water activity. The results emphasize the urgent need for specific knowledge on fungi and their metabolic pathways to use/develop more durable conservation materials and strategies to protect cultural heritage objects from biodeterioration. Full article
Show Figures

Graphical abstract

13 pages, 1563 KiB  
Article
Activation of Peracetic Acid by Ozone for Recalcitrant Pollutant Degradation: Accelerated Kinetics, Byproduct Mitigation, and Microbial Inactivation
by Dihao Bai, Cong Liu, Siqing Zhang, Huiyu Dong, Lei Sun and Xiangjuan Yuan
Water 2025, 17(15), 2240; https://doi.org/10.3390/w17152240 - 28 Jul 2025
Viewed by 292
Abstract
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, [...] Read more.
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, transformation products, ecotoxicity, disinfection byproducts (DBPs), and microbial inactivation. The O3/PAA system synergistically activates PAA via O3 to generate hydroxyl radicals (OH) and organic radicals (CH3COO and CH3CO(O)O), achieving an IPM degradation rate constant of 0.10 min−1, which was significantly higher than individual O3 or PAA treatments. The degradation efficiency of IPM in the O3/PAA system exhibited a positive correlation with solution pH, achieving a maximum degradation rate constant of 0.23 min−1 under alkaline conditions (pH 9.0). Furthermore, the process demonstrated strong resistance to interference from coexisting anions, maintaining robust IPM removal efficiency in the presence of common aqueous matrix constituents. Furthermore, quenching experiments revealed OH dominated IPM degradation in O3/PAA system, while the direct oxidation by O3 and R-O played secondary roles. Additionally, based on transformation products (TPs) identification and ECOSAR predictions, the primary degradation pathways were elucidated and the potential ecotoxicity of TPs was systematically assessed. DBPs analysis after chlorination revealed that the O3/PAA (2.5:3) system achieved the lowest total DBPs concentration (99.88 μg/L), representing a 71.5% reduction compared to PAA alone. Amongst, dichloroacetamide (DCAM) dominated the DBPs profile, comprising > 60% of total species. Furthermore, the O3/PAA process achieved rapid 5–6 log reductions of E. coli. and S. aureus within 3 min. These results highlight the dual advantages of O3/PAA in effective disinfection and byproduct control, supporting its application in sustainable wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 5629 KiB  
Article
A Numerical Investigation of the Flame Characteristics of a CH4/NH3 Blend Under Different Swirl Intensity and Diffusion Models
by Ahmed Adam, Ayman Elbaz, Reo Kai and Hiroaki Watanabe
Energies 2025, 18(15), 3921; https://doi.org/10.3390/en18153921 - 23 Jul 2025
Viewed by 185
Abstract
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios [...] Read more.
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios of 0.77, 0.54, and 0.46 and two swirl numbers of 8 and 12, comparing the unity Lewis number (ULN) and mixture-averaged diffusion (MAD) models against the experimental data includes OH-PLIF and ON-PLIF reported in a prior study by the KAUST group. Both models produce similar flow fields, but the MAD model alters the flame structure and species distributions due to differential diffusion (DD) and limitations in its Flamelet library. Notably, the MAD library lacks unstable flame branch solutions, leading to extensive interpolation between extinction and stable branches. This results in overpredicted progress variable source terms and reactive scalars, both within and beyond the flame zone. The ULN model better reproduces experimental OH profiles and localizes NO formation near the flame front, whereas the MAD model predicts broader NO distributions due to nitrogen species diffusion. Higher swirl intensities shorten the flame and shift NO production upstream. While a low equivalence ratio provides enough air for good mixing, lower ammonia and higher NO contents in exhaust gases, respectively. Full article
Show Figures

Figure 1

28 pages, 2736 KiB  
Article
Bioherbicidal Evaluation of Methanol Extract of Sorghum halepense L. Rhizome and Its Bioactive Components Against Selected Weed Species
by Jasmina Nestorović Živković, Milica Simonović, Danijela Mišić, Marija Nešić, Vladan Jovanović, Uroš Gašić, Ivana Bjedov and Slavica Dmitrović
Molecules 2025, 30(15), 3060; https://doi.org/10.3390/molecules30153060 - 22 Jul 2025
Viewed by 803
Abstract
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic [...] Read more.
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic technology and explores the effects of a methanol extract of S. halepense rhizomes (ShER) and its major bioactive compounds (p-hydroxybenzoic acid and chlorogenic acid) on three noxious weed species. The phytotoxic effects of ShER are reflected through the inhibition of seed germination and reduced seedling growth, which are accompanied by changes in the antioxidant system of seedlings. Phytotoxicity is species specific and concentration dependent, and it is more pronounced against Chenopodiastrum murale (L.) S. Fuentes, Uotila & Borsch and Datura stramonium L. than highly tolerant Amaranthus retroflexus L. Catalase (CAT) is most likely the major mediator in the removal of reactive oxygen species, which are generated during germination and early seedling growth of Ch. murale exposed to ShER. The results of the present study imply the high potential of ShER in the management of amaranthaceous and solanaceous weeds, such as Ch. murale and D. stramonium, respectively. The present study offers an environmentally friendly solution for the biological control of weeds belonging to the families Amaranthaceae and Solanaceae. Also, the results of this research highlight the possibility of effective management of S. halepense by using it as a feedstock for bioherbicide production. Full article
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 371
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

29 pages, 2729 KiB  
Article
Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases
by Paul Andrei Negru, Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit and Gabriela Bungau
Curr. Issues Mol. Biol. 2025, 47(7), 577; https://doi.org/10.3390/cimb47070577 - 21 Jul 2025
Viewed by 378
Abstract
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize [...] Read more.
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

21 pages, 3089 KiB  
Article
Design, Synthesis, and Evaluation of 1-Benzylpiperidine and 1-Benzoylpiperidine Derivatives as Dual-Target Inhibitors of Acetylcholinesterase and Serotonin Transporter for Alzheimer′s Disease
by Juan Pablo González-Gutiérrez, Damián Castillo-Ríos, Víctor Ríos-Campos, Ignacio Alejandro González-Gutiérrez, Dánae Flores Melivilu, Emilio Hormazábal Uribe, Felipe Moraga-Nicolás, Kerim Segura, Valentina Hernández, Amaury Farías-Cea, Hernán Armando Pessoa-Mahana, Miguel Iván Reyes-Parada and Patricio Iturriaga-Vásquez
Molecules 2025, 30(14), 3047; https://doi.org/10.3390/molecules30143047 - 21 Jul 2025
Viewed by 719
Abstract
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from [...] Read more.
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from depression, frequently treated with selective serotonin reuptake inhibitors (SSRIs). Due to the multisymptomatic nature of AD, there is a growing interest in developing multitargeted ligands that simultaneously enhance cholinergic and serotonergic tone. This study presents the synthesis of novel ligands based on functionalized piperidines, evaluated through radioligand binding assays at the serotonin transporter (SERT) and AChE and butyrylcholinesterase (BuChE) inhibition. The pharmacological results showed that some compounds exhibited moderate inhibitory activity against AChE, with one compound 19 standing out as the most potent, also displaying a moderate BuChE inhibitory activity, while showing low affinity for SERT. On the other hand, compound 21 displayed an interesting polypharmacological profile, with good and selective activity against BuChE and SERT. The results underscore the difficulty of designing promiscuous ligands for these targets and suggest that future structural modifications could optimize their therapeutic potential in AD. Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurodegenerative Disorders—2nd Edition)
Show Figures

Graphical abstract

13 pages, 225 KiB  
Article
The Prognostic Value of Platelet Kinetics Assessment in Pediatric Chronic Idiopathic Thrombocytopenic Purpura
by Nebojsa Igrutinovic, Jelena Pantovic, Bojana Markovic, Marija Medovic, Milica Cekerevac, Vladimir Markovic, Strahinja Odalovic, Sanja Knezevic, Ana Vujic, Isidora Mihajlovic, Nevena Stojadinovic, Dragan Knezevic, Nina Urakovic, Ivana Andrejevic, Gordana J. Ristic, Vladimir Slavkovic, Kristina Andric and Rasa Medovic
Diagnostics 2025, 15(14), 1790; https://doi.org/10.3390/diagnostics15141790 - 16 Jul 2025
Cited by 1 | Viewed by 269
Abstract
Background/Objectives: The assessment of platelet kinetics (APK) is recommended for patients with chronic idiopathic thrombocytopenic purpura (chITP). The aim of this study was to examine the importance of APK as a prognostic instrument in the selection of therapy in children with chITP. [...] Read more.
Background/Objectives: The assessment of platelet kinetics (APK) is recommended for patients with chronic idiopathic thrombocytopenic purpura (chITP). The aim of this study was to examine the importance of APK as a prognostic instrument in the selection of therapy in children with chITP. Methods: Retrospective, observational research, which included chITP children who were treated and subjected to APK in Serbia for 25 years (total number was 152). Results: In the acute phase of the disease, 15% of patients had life-threatening bleeding, 15% were asymptomatic, and there were no cases of fatal bleeding. Mean platelet life was 0.89 ± 0.47 days. A total of 45% of patients had normal platelet production, and 35% had very low production. Among the patients, 55% exhibited splenic platelet sequestration, 35% had mixed sequestration, and 10% showed hepatic platelet sequestration. Platelet lifespan and production indices were less reliable parameters, due to numerous contradictory results, especially when compared with the location of platelet sequestration. Distribution of bleeding and therapy-resistant patients was dominant with mixed sequestration. Good therapy responders had dominant splenic sequestration. In the chronic phase of the disease, initial therapy was sufficient for 40–45% of patients, while another 25% required second-line therapy, regardless of platelet sequestration location. A total of 25% percent of patients had undergone splenectomy, and all of them were in stable remission. The remaining 10%, which represented the most severe cases, required all available therapies, had equally mixed and liver sequestration, and splenectomy showed no effect. Conclusions: APK may be a determining factor for the selection of splenectomy as a therapeutic option in case of predominantly splenic sequestration. Although the platelet production index has been explored in several studies, its clinical relevance remains controversial. In our findings, it did not contribute to therapeutic decision-making and may even lead to misinterpretation. The factors distinguishing the minority of bleeding and therapy-resistant patients with similar laboratory profiles remain unclear. Full article
(This article belongs to the Special Issue Advances in Pathology and Diagnosis of Hematology)
18 pages, 1197 KiB  
Article
Precision Enhanced Bioactivity Prediction of Tyrosine Kinase Inhibitors by Integrating Deep Learning and Molecular Fingerprints Towards Cost-Effective and Targeted Cancer Therapy
by Fatma Hilal Yagin, Yasin Gormez, Cemil Colak, Abdulmohsen Algarni, Fahaid Al-Hashem and Luca Paolo Ardigò
Pharmaceuticals 2025, 18(7), 975; https://doi.org/10.3390/ph18070975 - 28 Jun 2025
Viewed by 806
Abstract
Background and Objective: Dysregulated tyrosine kinase signaling is a central driver of tumorigenesis, metastasis, and therapeutic resistance. While tyrosine kinase inhibitors (TKIs) have revolutionized targeted cancer treatment, identifying compounds with optimal bioactivity remains a critical bottleneck. This study presents a robust machine learning [...] Read more.
Background and Objective: Dysregulated tyrosine kinase signaling is a central driver of tumorigenesis, metastasis, and therapeutic resistance. While tyrosine kinase inhibitors (TKIs) have revolutionized targeted cancer treatment, identifying compounds with optimal bioactivity remains a critical bottleneck. This study presents a robust machine learning framework—leveraging deep artificial neural networks (dANNs), convolutional neural networks (CNNs), and structural molecular fingerprints—to accurately predict TKI bioactivity, ultimately accelerating the preclinical phase of drug development. Methods: A curated dataset of 28,314 small molecules from the ChEMBL database targeting 11 tyrosine kinases was analyzed. Using Morgan fingerprints and physicochemical descriptors (e.g., molecular weight, LogP, hydrogen bonding), ten supervised models, including dANN, SVM, CatBoost, and CNN, were trained and optimized through a randomized hyperparameter search. Model performance was evaluated using F1-score, ROC–AUC, precision–recall curves, and log loss. Results: SVM achieved the highest F1-score (87.9%) and accuracy (85.1%), while dANNs yielded the lowest log loss (0.25096), indicating superior probabilistic reliability. CatBoost excelled in ROC–AUC and precision–recall metrics. The integration of Morgan fingerprints significantly improved bioactivity prediction across all models by enhancing structural feature recognition. Conclusions: This work highlights the transformative role of machine learning—particularly dANNs and SVM—in rational drug discovery. By enabling accurate bioactivity prediction, our model pipeline can effectively reduce experimental burden, optimize compound selection, and support personalized cancer treatment design. The proposed framework advances kinase inhibitor screening pipelines and provides a scalable foundation for translational applications in precision oncology. By enabling early identification of bioactive compounds with favorable pharmacological profiles, the results of this study may support more efficient candidate selection for clinical drug development, particularly in regards to cancer therapy and kinase-associated disorders. Full article
Show Figures

Figure 1

39 pages, 7561 KiB  
Article
Aluminum Stress Response Is Regulated Through a miR156/SPL13 Module in Medicago sativa
by Gamalat Allam, Solihu K. Sakariyahu, Binghui Shan, Banyar Aung, Tim McDowell, Yousef Papadopoulos, Mark A. Bernards and Abdelali Hannoufa
Genes 2025, 16(7), 751; https://doi.org/10.3390/genes16070751 - 27 Jun 2025
Viewed by 1151
Abstract
Background: Aluminum (Al) toxicity severely limits Medicago sativa (alfalfa) production on acidic soils, resulting in major yield losses worldwide. The highly conserved miRNA156 (miR156) functions by downregulating at least 11 SQUAMOSA promoter-binding protein-like (SPL) transcription factors in alfalfa, including SPL13, but its role [...] Read more.
Background: Aluminum (Al) toxicity severely limits Medicago sativa (alfalfa) production on acidic soils, resulting in major yield losses worldwide. The highly conserved miRNA156 (miR156) functions by downregulating at least 11 SQUAMOSA promoter-binding protein-like (SPL) transcription factors in alfalfa, including SPL13, but its role in Al stress remains unclear. This study aimed to investigate the miR156/SPL regulatory network’s function in alfalfa under Al stress. Methods: Gene expression analyses, histochemical staining, nutrient profiling, phenotypic assays, transcriptome profiling, and ChIP-seq were conducted on alfalfa plants with altered miR156 and SPL13 expression to assess their roles in the Al stress response. Results: Al stress induced SPL13 expression while repressing miR156 in the roots. Elevated miR156 intensified Al accumulation, lipid peroxidation, and plasma membrane damage, accompanied by reduced leaf nitrogen, magnesium, sulfur, and phosphorus content. Phenotypically, increased SPL13 enhanced the root length and Al tolerance, whereas SPL13 silencing reduced tolerance. Transcriptome profiling of SPL13-silenced plants identified differentially expressed genes involved in the Al response, including aluminum-activated malate transporters and various transcription factors (GRAS, Myb-related, bHLH041, NAC, WRKY53, bZIP, and MADS-box). ChIP-seq revealed that SPL13 directly regulates genes encoding a protein kinase, cytochrome P450, and fasciclin-like arabinogalactan proteins. Conclusions: The MsmiR156/MsSPL13 network plays a crucial regulatory role in alfalfa’s response to Al toxicity. These findings provide novel genetic targets and foundational knowledge to advance molecular breeding for enhanced Al tolerance in alfalfa. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

35 pages, 4054 KiB  
Article
High-Value Brown Algae Extracts Using Deep Eutectic Solvents and Microwave-Assisted Extraction
by Meirielly Jesus, Aloia Romaní, Joana Santos, Preciosa Pires, Pablo Del-Río, Fernando Mata, Élia Fernandes, Carla Ramos and Manuela Vaz-Velho
Foods 2025, 14(13), 2280; https://doi.org/10.3390/foods14132280 - 27 Jun 2025
Viewed by 489
Abstract
Utilizing deep eutectic solvents (DESs) combined with microwave-assisted extraction (MAE) provides a sustainable method for extracting bioactive compounds from the macroalgae Ascophyllum nodosum and Laminaria hyperborea. Two DES formulations, choline chloride/lactic acid (ChCl/LA) and sodium acetate/lactic acid (AcNa/LA), were evaluated under varying [...] Read more.
Utilizing deep eutectic solvents (DESs) combined with microwave-assisted extraction (MAE) provides a sustainable method for extracting bioactive compounds from the macroalgae Ascophyllum nodosum and Laminaria hyperborea. Two DES formulations, choline chloride/lactic acid (ChCl/LA) and sodium acetate/lactic acid (AcNa/LA), were evaluated under varying extraction conditions. For L. hyperborea, ChCl/LA at 150 °C for 10 min yielded a total phenolic content (TPC) of 15.34 mg GAE/g DW, with antioxidant activities measured by DPPH (34.55 mg TE/g DW) and ABTS (27.06 mg TE/g DW). Extending the extraction to 20 min at 130 °C increased the TPC to 19.12 mg GAE/g DW. A. nodosum exhibited higher bioactivity, with the TPC reaching 47.51 mg GAE/g DW under the same conditions. High-performance liquid chromatography (HPLC) identified significant phenolics such as 3,4-dihydroxybenzoic acid (678.05 µg/g DW) and vanillin (6718.5 µg/g DW). Antimicrobial assays revealed strong inhibition (zones > 20 mm) against Clostridium perfringens, moderate activity against Staphylococcus aureus, and selective activity against Escherichia coli. FT-IR confirmed the presence of phenolics, polysaccharides, and lipids. Thermal and structural characterization revealed that A. nodosum residue showed an amorphous structure, while L. hyperborea retained crystallinity with decomposition profiles indicating potential bioenergy potential. SEM images revealed significant cell wall disruption correlating with extraction efficiency. These results demonstrate DES–MAE as an effective, green strategy for producing high-value algal extracts and valorizing residual biomass for biotechnological applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 2172 KiB  
Article
High-Precision Methane Emission Quantification Using UAVs and Open-Path Technology
by Donatello Fosco, Maurizio De Molfetta, Pietro Alexander Renzulli, Bruno Notarnicola and Francesco Astuto
Methane 2025, 4(3), 15; https://doi.org/10.3390/methane4030015 - 26 Jun 2025
Viewed by 504
Abstract
Quantifying methane (CH4) emissions is essential for climate change mitigation; however, current estimation methods often suffer from substantial uncertainties, particularly at the site level. This study introduces a drone-based approach for measuring CH4 emissions using an open-path Tunable Diode Laser [...] Read more.
Quantifying methane (CH4) emissions is essential for climate change mitigation; however, current estimation methods often suffer from substantial uncertainties, particularly at the site level. This study introduces a drone-based approach for measuring CH4 emissions using an open-path Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor mounted parallel to the ground, rather than in the traditional nadir-pointing configuration. Controlled CH4 release experiments were conducted to evaluate the method’s accuracy, employing a modified mass-balance technique to estimate emission rates. Two wind data processing strategies were compared: a logarithmic wind profile (LW) and a constant scalar wind speed (SW). The LW approach yielded highly accurate results, with an average recovery rate of 98%, while the SW approach showed greater variability with increasing distance from the source, although it remained reliable in close proximity. The method demonstrated the ability to quantify emissions as low as 0.08 g s−1 with approximately 4% error, given sufficient sampling. These findings suggest that the proposed UAV-based system is a promising, cost-effective tool for accurate CH4 emission quantification in sectors, such as agriculture, energy, and waste management, where traditional monitoring techniques may be impractical or limited. Full article
Show Figures

Graphical abstract

19 pages, 2780 KiB  
Article
Volatile Metabolome and Transcriptomic Analysis of Kosakonia cowanii Ch1 During Competitive Interaction with Sclerotium rolfsii Reveals New Biocontrol Insights
by Yoali Fernanda Hernández Gómez, Jacqueline González Espinosa, Griselda Catalina Olvera Rivas, Jackeline Lizzeta Arvizu Gómez, José Humberto Valenzuela Soto, Miguel Angel Ramos López, Aldo Amaro Reyes, Eloy Rodríguez de León, Carlos Saldaña, José Luis Hernández Flores and Juan Campos Guillén
Microorganisms 2025, 13(7), 1483; https://doi.org/10.3390/microorganisms13071483 - 26 Jun 2025
Viewed by 666
Abstract
The volatile organic compounds (VOCs) produced by K. cowanii Ch1 play a significant role in the inhibition of the mycelial growth of phytopathogen strains. As a continuation of our previous studies, we aim to elucidate the mechanisms of the responses of K. cowanii [...] Read more.
The volatile organic compounds (VOCs) produced by K. cowanii Ch1 play a significant role in the inhibition of the mycelial growth of phytopathogen strains. As a continuation of our previous studies, we aim to elucidate the mechanisms of the responses of K. cowanii Ch1 against S. rolfsii during a colonization competence interaction in the presence and absence of a mixture of bacterial VOCs under in vitro conditions. The results of this study showed that, in the absence of bacterial VOCs, K. cowanii Ch1 cannot compete against S. rolfsii, and the RNA-Seq analysis revealed the differential expression of genes related to the oxidative stress response in K. cowanii Ch1 for survival. However, in the presence of bacterial VOCs, an interesting phenotypical response was observed in K. cowanii Ch1, resulting in the mycelial growth inhibition of S. rolfsii. The upregulated genes were related to the siderophore-mediated iron transport system, zinc ion transport system, antibiotic biosynthesis monooxygenase, carbohydrate metabolism, polyketide synthase modules, and related proteins, and katG was probably related to the phenotype resulting in the formation of gas bubbles by K. cowanii. In addition, the VOC profile analyzed at 36 h for bacterial growth revealed a cocktail with an ability to increase the competence of K. cowanii Ch1 against S. rolfsii in vitro and in vivo. This study provides evidence regarding the key role that VOCs play during the colonization competition involving K. cowanii Ch1, the comprehension of which may enable the development of new biocontrol strategies. Full article
Show Figures

Figure 1

25 pages, 7385 KiB  
Article
Anaerobic Digestion of Food Waste and Granular Inoculum: Study on Temperature Effect and Substrate-to-Inoculum Ratio on Biogas Production
by Madalina Ivanovici, Gabriela-Alina Dumitrel, Vasile Daniel Gherman, Teodor Todinca, Ana-Maria Pana and Valentin Laurentiu Ordodi
Fermentation 2025, 11(6), 348; https://doi.org/10.3390/fermentation11060348 - 15 Jun 2025
Viewed by 829
Abstract
The development of food waste anaerobic digestion (AD) is a contemporary research topic addressed in the scientific community to meet the requirements of food waste valorization and proper substrate configuration for an efficient AD process. In this study, multiple AD experiments were performed [...] Read more.
The development of food waste anaerobic digestion (AD) is a contemporary research topic addressed in the scientific community to meet the requirements of food waste valorization and proper substrate configuration for an efficient AD process. In this study, multiple AD experiments were performed on food waste together with industrial inoculum using laboratory-scale bioreactors. Food waste consisted mainly of fruits and vegetables (80.9%) and boiled rice (19.1%). The effect of operating temperature (33 °C, 37 °C, 41 °C, 45 °C) and the ratio between food waste mixture and inoculum-FIR (1:1, 3:2 and 2:1, w/w) on the production and composition of biogas, and the conversion yield for CH4 and organic carbon, were investigated. The best results were obtained at an FIR of 2:1 and a temperature of 37 °C, with a total biogas production of 468.59 NL h−1 kg−1VSadded (51% v/v CH4 conc.) and a conversion yield of 36.42% for CH4. A modified Gompertz model was applied on the accumulated CH4 and biogas to evaluate the process performance. The model parameters were investigated in conjunction with the physico-chemical characteristics of the substrate, inoculum taxonomic profile, pH measurements, and TG-DTA analysis. The conducted analyses emphasized the susceptibility of the selected substrate towards easy degradation and improved biotransformation reactions when temperature and FIR were increased. Full article
Show Figures

Figure 1

19 pages, 4558 KiB  
Article
Genome-Wide Characterization and Expression Profile of the Jumonji-C Family Genes in Populus alba × Populus glandulosa Reveal Their Potential Roles in Wood Formation
by Zhenghao Geng, Rui Liu and Xiaojing Yan
Int. J. Mol. Sci. 2025, 26(12), 5666; https://doi.org/10.3390/ijms26125666 - 13 Jun 2025
Viewed by 439
Abstract
The Jumonji C (JMJ-C) domain-containing gene family regulates epigenetic and developmental processes in plants. We identified 55 JMJ-C genes in Populus alba × Populus glandulosa using HMM and BLASTp analyses. Chromosomal mapping revealed an asymmetric distribution with conserved synteny. Phylogenetic reconstruction revealed that [...] Read more.
The Jumonji C (JMJ-C) domain-containing gene family regulates epigenetic and developmental processes in plants. We identified 55 JMJ-C genes in Populus alba × Populus glandulosa using HMM and BLASTp analyses. Chromosomal mapping revealed an asymmetric distribution with conserved synteny. Phylogenetic reconstruction revealed that PagJMJ genes segregate into five evolutionarily conserved subfamilies, exhibiting classification patterns identical to those of Arabidopsis thaliana and Populus trichocarpa. Synteny analysis indicated a closer relationship with P. trichocarpa than with A. thaliana. Motif and promoter analyses highlighted subfamily-specific features and diverse cis-elements, particularly light-responsive motifs. Expression profiling revealed tissue-specific patterns, with key genes enriched in roots, vascular tissues, and leaves. Developmental analysis in cambium and xylem identified four expression clusters related to wood formation. Co-expression analysis identified six key PagJMJ genes (PagJMJ6, 29, 34, 39, 53, and 55) strongly associated with wood formation-related transcription factors. ChIP-qPCR analysis revealed that key genes co-expressed with PagJMJ genes were marked by H3K4me3 and H3K9me2 modifications. These findings provide insights into the evolutionary and functional roles of PagJMJ genes in poplar vascular development and wood formation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop