Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,560)

Search Parameters:
Keywords = CFRP reinforcement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7055 KB  
Article
The Effect of Polymer Fiber Reinforcement on the Structural Performance of Timber Columns Under Axial Compression
by Haifa Abuhliga and Tahir Akgül
Buildings 2026, 16(3), 479; https://doi.org/10.3390/buildings16030479 - 23 Jan 2026
Viewed by 85
Abstract
This study investigates the compressive behavior of glued-laminated timber (Glulam) columns reinforced with different configurations of fiber-reinforced polymer (FRP) materials, including glass (GFRP) and carbon (CFRP) fibers in the form of rods, strip/panel, and fabrics. Axial compression tests were performed under controlled laboratory [...] Read more.
This study investigates the compressive behavior of glued-laminated timber (Glulam) columns reinforced with different configurations of fiber-reinforced polymer (FRP) materials, including glass (GFRP) and carbon (CFRP) fibers in the form of rods, strip/panel, and fabrics. Axial compression tests were performed under controlled laboratory conditions to examine the influence of reinforcement type and configuration on mechanical performance. Descriptive statistics, one-way ANOVA, and Tukey’s post hoc tests were used to determine the significance of differences between the tested groups. Finite element analysis (FEA) using ANSYS software2023 R1 was also conducted to validate the experimental results and to provide insight into stress distribution within the strengthened columns. The results revealed that FRP reinforcement clearly enhanced both the ultimate load and compressive stress compared to unreinforced samples. The highest performance was achieved with double CFRP rods and 5 cm carbon strips, which reached stress levels of about 43 MPa, representing an improvement of nearly 60% over raw wood. Statistical analysis confirmed that these increases were significant (p < 0.05), while FEA predictions showed strong agreement with the experimental findings. Observed failure modes shifted from crushing and buckling in unreinforced specimens to shear-splitting and delamination in reinforced ones, indicating improved confinement and delayed failure. Full article
Show Figures

Figure 1

15 pages, 2333 KB  
Article
Prediction of Fatigue Damage Evolution in 3D-Printed CFRP Based on Ultrasonic Testing and LSTM
by Erzhuo Li, Sha Xu, Hongqing Wan, Hao Chen, Yali Yang and Yongfang Li
Appl. Sci. 2026, 16(2), 1139; https://doi.org/10.3390/app16021139 - 22 Jan 2026
Viewed by 28
Abstract
To address the prediction of fatigue damage for 3D-printed Carbon Fiber Reinforced Polymer (CFRP), this study used 3D-printing technology to fabricate CFRP specimens. Through multi-stage fatigue testing, samples with varying porosity levels were obtained. Based on porosity test results and ultrasonic attenuation coefficient [...] Read more.
To address the prediction of fatigue damage for 3D-printed Carbon Fiber Reinforced Polymer (CFRP), this study used 3D-printing technology to fabricate CFRP specimens. Through multi-stage fatigue testing, samples with varying porosity levels were obtained. Based on porosity test results and ultrasonic attenuation coefficient measurements of specimens under different fatigue cycle counts, a quantitative relationship model was established between the porosity and ultrasonic attenuation coefficient of 3D-printed CFRP. According to the porosity and fatigue-loading cycles obtained from tests, the Time-series Generative Adversarial Network (TimeGAN) algorithm was employed for data augmentation to meet the requirements for neural-network training. Subsequently, the Long Short-Term Memory (LSTM) neural network was utilized to predict the fatigue damage evolution of 3D-printed CFRP specimens. Research findings indicate that by integrating the established relationship between porosity and ultrasonic attenuation coefficient, non-destructive testing of material fatigue damage evolution based on ultrasonic attenuation coefficient can be achieved. Full article
Show Figures

Figure 1

13 pages, 6402 KB  
Article
Design and Electromagnetic-Mechanical Coupled Analysis of a Wrapped Interior Permanent Magnet Synchronous Motor
by Kyeong-Won Kwak, Jang-Young Choi, Min-Mo Koo, Kyung-Hun Shin and Hyeon-Jae Shin
World Electr. Veh. J. 2026, 17(1), 49; https://doi.org/10.3390/wevj17010049 - 20 Jan 2026
Viewed by 101
Abstract
An interior permanent magnet synchronous motor (IPMSM) rotor equipped with a carbon-fiber-reinforced plastic (CFRP) sleeve, based on an electromagnetic–mechanical coupled analysis approach, was designed and analyzed. As the demand for high-speed traction motors increases, addressing the excessive rotor stress caused by higher rotational [...] Read more.
An interior permanent magnet synchronous motor (IPMSM) rotor equipped with a carbon-fiber-reinforced plastic (CFRP) sleeve, based on an electromagnetic–mechanical coupled analysis approach, was designed and analyzed. As the demand for high-speed traction motors increases, addressing the excessive rotor stress caused by higher rotational speeds has become critical. To mitigate this issue, a CFRP sleeve is used to enhance mechanical strength while minimizing the impact on electromagnetic performance. However, the introduction of the CFRP sleeve increases design complexity because of changes in air gap length and structural constraints. The crucial considerations required in the design and manufacturing processes, including tradeoffs between mechanical integrity and magnetic performance, are discussed. The proposed design methodology differentiates the rotor structure from conventional IPMSMs, offering a viable solution for high-speed, high-power-density motor applications. Full article
Show Figures

Figure 1

15 pages, 2796 KB  
Article
Research on Delamination Damage Factor of Hole-Making Process Optimization Based on Carbon Fiber Composite Materials
by Linsheng Liu, Yushu Lai, Yiwei Zhang, Lin Huang, Jiexiao Yang, Yuchi Jiang, Zhiwei Hu, Zhen Li and Bin Wang
Polymers 2026, 18(2), 219; https://doi.org/10.3390/polym18020219 - 14 Jan 2026
Viewed by 227
Abstract
Carbon fiber reinforced polymer (CFRP) is prone to delamination damage during drilling, which seriously affects the processing quality. This study focuses on the use of variable parameter drilling technology. Firstly, an anisotropic constitutive model and a Hashin failure model for CFRP were constructed. [...] Read more.
Carbon fiber reinforced polymer (CFRP) is prone to delamination damage during drilling, which seriously affects the processing quality. This study focuses on the use of variable parameter drilling technology. Firstly, an anisotropic constitutive model and a Hashin failure model for CFRP were constructed. Then, based on ABAQUS and VUMAT user subroutines, the influence laws of cutting parameters (spindle speed and feed rate) on delamination damage were explored. For the two methods of conventional fixed parameter drilling and variable parameter drilling (dynamic adjustment of feed rate when the drill reaches the exit plane), comparative simulation experiments were conducted. Subsequently, the genetic algorithm was introduced to optimize the spindle speed and feed rate under the variable parameter mode, and the results were verified through hole-making experiments. The results show that: under a constant spindle speed, the delamination damage factor increases monotonically with the increase in feed rate; under a constant feed rate, the delamination damage factor decreases first and then increases with the increase in spindle speed, presenting a nonlinear change characteristic. Among them, the variable parameter strategy of “first high feed, then low feed” can significantly reduce the delamination damage; the obtained optimal parameters can effectively balance the drilling quality and processing efficiency. This research provides theoretical and experimental support for optimizing CFRP hole-making parameters, addressing delamination control challenges in traditional drilling, and facilitating CFRP applications in aerospace and intelligent manufacturing. Full article
Show Figures

Figure 1

20 pages, 3786 KB  
Article
Mechanical Behavior of CFRP Laminates Manufactured from Plasma-Assisted Solvolysis Recycled Carbon Fibers
by Ilektra Tourkantoni, Konstantinos Tserpes, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Nikolaos Koutroumanis and Panagiotis Nektarios Pappas
J. Compos. Sci. 2026, 10(1), 49; https://doi.org/10.3390/jcs10010049 - 14 Jan 2026
Viewed by 228
Abstract
The mechanical behavior of carbon-fiber-reinforced polymer (CFRP) laminates manufactured using plasma-assisted solvolysis recycled fibers was evaluated experimentally through a comprehensive mechanical testing campaign. The plasma-assisted solvolysis parameters were selected based on an earlier sensitivity analysis. Prepregs made from both virgin and recycled carbon [...] Read more.
The mechanical behavior of carbon-fiber-reinforced polymer (CFRP) laminates manufactured using plasma-assisted solvolysis recycled fibers was evaluated experimentally through a comprehensive mechanical testing campaign. The plasma-assisted solvolysis parameters were selected based on an earlier sensitivity analysis. Prepregs made from both virgin and recycled carbon fibers were fabricated via a hand lay-up process and manually stacked to produce unidirectional laminates. Longitudinal tension tests, longitudinal compression tests, and interlaminar shear strength (ILSS) tests were performed to assess the fundamental mechanical response of the recycled laminates and quantify the retention of mechanical properties relative to the virgin-reference material. Prior to mechanical testing, all laminates underwent ultrasonic C-scan inspection to assess manufacturing quality. While both laminate types exhibited generally satisfactory quality, the recycled-fiber laminates showed a higher density of defects. The recycled laminates preserved around 80% of their original tensile strength and maintained an essentially unchanged elastic modulus. Compressive strength was more susceptible to imperfections introduced during remanufacturing, with the recycled laminates exhibiting roughly a 14% decrease compared with the virgin material. On the contrary, the compressive modulus was largely retained. The most substantial reduction occurred in ILSS, which dropped by 58%. Overall, the results demonstrate that plasma-assisted solvolysis enables the recovery of carbon fibers suitable for remanufacturing CFRP laminates, while the observed reduction in mechanical properties of recycled CFRPs is mainly attributed to defects in manufacturing quality rather than to intrinsic degradation of the recycled carbon fibers. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

22 pages, 9119 KB  
Article
Seismic Behaviour of Concrete-Filled End-Bearing Fibre-Reinforced Polymer (FRP) Piles in Cohesionless Soils Using Shaking Table Test
by Aliu Abdul-Hamid and Mohammad Tofigh Rayhani
Infrastructures 2026, 11(1), 22; https://doi.org/10.3390/infrastructures11010022 - 12 Jan 2026
Viewed by 90
Abstract
This study evaluates the performance of single concrete-filled frictional Fibre-Reinforced Polymer (FRP) piles embedded in saturated liquefiable sand and subjected to seismic loading using a shaking table. A unidirectional shaking table equipped with a 1000 mm × 1000 mm × 1000 mm laminar [...] Read more.
This study evaluates the performance of single concrete-filled frictional Fibre-Reinforced Polymer (FRP) piles embedded in saturated liquefiable sand and subjected to seismic loading using a shaking table. A unidirectional shaking table equipped with a 1000 mm × 1000 mm × 1000 mm laminar shear box with 27 lamina rings was utilized in the study. FRP tubes manufactured from epoxy-saturated Carbon Fibre-Reinforced Polymer (CFRP) and Glass Fibre-Reinforced Polymer (GFRP) fabrics were filled with 35 MPa concrete and allowed to cure for 28 days, serving as model piles for the experimental programme, with cylindrical concrete prisms employed to represent the behaviour of traditional piles. Pile dimensions and properties based on scaling relationships were selected to account for the nonlinear nature of soil–pile systems under seismic loading. Scaled versions of ground motions from the 2010 Val-des-Bois and 1995 Hyogo-Ken Nambu earthquakes were implemented as input motions in the tests. The results show limited variation in the inertial and kinematic responses of the piles, especially before liquefaction. Head rocking displacements were within 5% of each other during liquefaction. Post liquefaction, the concrete-filled FRP piles showed lower response compared to the traditional concrete pile. The results suggests that concrete-filled FRP piles, especially those made from carbon fibre, provide practical alternatives for use. Full article
Show Figures

Figure 1

22 pages, 5176 KB  
Article
Experimental Investigation of Shear Connection in Precast Concrete Sandwich Panels with Reinforcing Ribs
by Jan Macháček, Eliška Kafková, Věra Kabíčková and Tomáš Vlach
Polymers 2026, 18(2), 200; https://doi.org/10.3390/polym18020200 - 11 Jan 2026
Viewed by 290
Abstract
This paper presents an experimental investigation of the shear connection between outer layers of lightweight precast concrete sandwich panels (PCSP) made of high-performance concrete (HPC). The shear-transfer mechanism is based on reinforcing ribs composed of rigid polymer-based thermal insulation combined with carbon-fibre-reinforced polymer [...] Read more.
This paper presents an experimental investigation of the shear connection between outer layers of lightweight precast concrete sandwich panels (PCSP) made of high-performance concrete (HPC). The shear-transfer mechanism is based on reinforcing ribs composed of rigid polymer-based thermal insulation combined with carbon-fibre-reinforced polymer (CFRP) shear reinforcement. A total of seven full-scale sandwich panels were tested in four-point bending. This study compares three types of rigid thermal insulation used in the shear ribs—Purenit, Compacfoam CF400, and Foamglass F—and investigates the influence of the amount of CFRP shear reinforcement on the structural behavior of the panels. Additional specimens were used to evaluate the effect of reinforcing ribs and of polymer-based thermal insulation placed between the ribs. The experimental results show that panels with shear ribs made of Purenit and Compacfoam CF400 achieved significantly higher load-bearing capacities compared to Foamglass F, which proved unsuitable due to its brittle behavior. Increasing the amount of CFRP shear reinforcement increased the load-bearing capacity but had a limited effect on panel stiffness. The experimentally determined composite interaction coefficient ranged around α ≈ 0.03, indicating partial shear interaction between the outer concrete layers. A simplified strut-and-tie model was applied to predict the load-bearing capacity and showed conservative agreement with experimental results. The findings demonstrate that polymer-based materials, particularly CFRP reinforcement combined with rigid polymer insulation, enable efficient shear transfer without thermal bridging, making them suitable for lightweight and thermally efficient precast concrete sandwich panels. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

21 pages, 4661 KB  
Article
Fatigue Performance Enhancement of Open-Hole Steel Plates Under Alternating Tension–Compression Loading via Hotspot-Targeted CFRP Reinforcement
by Zhenpeng Jian, Byeong Hwa Kim, Jinlei Gai, Yunlong Zhao and Xujiao Yang
Buildings 2026, 16(2), 313; https://doi.org/10.3390/buildings16020313 - 11 Jan 2026
Viewed by 249
Abstract
Steel plates with open holes are common in engineering structures such as bridges and towers for pipeline penetrations and connections. These openings, however, induce significant stress concentration under alternating tension–compression loading (stress ratio R = −1), drastically accelerating fatigue crack initiation and threatening [...] Read more.
Steel plates with open holes are common in engineering structures such as bridges and towers for pipeline penetrations and connections. These openings, however, induce significant stress concentration under alternating tension–compression loading (stress ratio R = −1), drastically accelerating fatigue crack initiation and threatening structural integrity. Effective identification and mitigation of such stress concentrations is crucial for enhancing the fatigue resistance of perforated components. This study proposes a closed-loop methodology integrating theoretical weak zone identification, targeted CFRP reinforcement, and experimental validation to improve the fatigue performance of open-hole steel plates. Analytical solutions for dynamic stresses around the hole were derived using complex function theory and conformal mapping, identifying critical stress concentration angles. Experimental tests compared unreinforced and CFRP-reinforced specimens in terms of circumferential strain distribution, dynamic stress concentration behavior, and fatigue life. Results indicate that Carbon fiber-reinforced polymer (CFRP) reinforcement significantly reduces stress concentration near 90°, smooths polar strain distributions, and slows strain decay. The S–N curves shift upward, indicating extended fatigue life under identical stress amplitude and increased allowable stress at identical life cycles. Comparison with standardized design curves confirms that reinforced specimens meet higher fatigue categories, providing practical design guidance for perforated plates under alternating loads. This work establishes a systematic framework from theoretical prediction to experimental verification, offering a reliable reference for engineering applications. Full article
Show Figures

Figure 1

5 pages, 153 KB  
Editorial
Advances in Carbon Fiber Reinforced Polymers
by Francesca Lionetto
Materials 2026, 19(2), 231; https://doi.org/10.3390/ma19020231 - 7 Jan 2026
Viewed by 248
Abstract
Carbon fiber reinforced polymers (CFRPs) have become increasingly widespread across a remarkable range of industries thanks to their unique combination of strength, lightness and durability [...] Full article
(This article belongs to the Special Issue Carbon Fiber Reinforced Polymers (2nd Edition))
17 pages, 4406 KB  
Article
Fastener Flexibility Analysis of Metal-Composite Hybrid Joint Structures Based on Explainable Machine Learning
by Xinyu Niu and Xiaojing Zhang
Aerospace 2026, 13(1), 58; https://doi.org/10.3390/aerospace13010058 - 7 Jan 2026
Viewed by 178
Abstract
Metal-composite joints, leveraging the high specific strength/stiffness and superior fatigue resistance of carbon fiber reinforced polymers (CFRP) alongside metallic materials’ excellent toughness and formability, have become prevalent in aerospace structures. Fastener flexibility serves as a critical parameter governing load distribution prediction and fatigue [...] Read more.
Metal-composite joints, leveraging the high specific strength/stiffness and superior fatigue resistance of carbon fiber reinforced polymers (CFRP) alongside metallic materials’ excellent toughness and formability, have become prevalent in aerospace structures. Fastener flexibility serves as a critical parameter governing load distribution prediction and fatigue life assessment, where accurate quantification directly impacts structural reliability. Current approaches face limitations: experimental methods require extended testing cycles, numerical simulations exhibit computational inefficiency, and conventional machine learning (ML) models suffer from “black-box” characteristics that obscure mechanical principle alignment, hindering aerospace implementation. This study proposes an integrated framework combining numerical simulation with explainable ML for fastener flexibility analysis. Initially, finite element modeling (FEM) constructs a dataset encompassing geometric features, material properties, and flexibility values. Subsequently, a random forest (RF) prediction model is developed with five-fold cross-validation and residual analysis ensuring accuracy. SHapley Additive exPlanations (SHAP) methodology then quantifies input features’ marginal contributions to flexibility predictions, with results interpreted in conjunction with theoretical flexibility formulas to elucidate key parameter influence mechanisms. The approach achieves 0.99 R2 accuracy and 0.11 s computation time while resolving explainability challenges, identifying fastener diameter-to-plate thickness ratio as the dominant driver with negligible temperature/preload effects, thereby providing a validated efficient solution for aerospace joint optimization. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

36 pages, 7218 KB  
Article
Effectiveness of Passive CFRP and Active Fe-SMA Confinement in Enhancing Drift Capacity and Seismic Performance of RC Columns Under Extreme Drift Levels
by Adel Al Ekkawi and Raafat El-Hacha
Buildings 2026, 16(1), 243; https://doi.org/10.3390/buildings16010243 - 5 Jan 2026
Viewed by 215
Abstract
This study presents an experimental investigation into the seismic performance of seismically deficient reinforced concrete (RC) bridge columns retrofitted with passive and active confinement systems. Four single-cantilever RC columns, representing 1/3-scale bridge piers, were constructed with poor transverse reinforcement detailing to simulate seismic [...] Read more.
This study presents an experimental investigation into the seismic performance of seismically deficient reinforced concrete (RC) bridge columns retrofitted with passive and active confinement systems. Four single-cantilever RC columns, representing 1/3-scale bridge piers, were constructed with poor transverse reinforcement detailing to simulate seismic deficiency. One column was left un-strengthened for baseline comparison, while the remaining three were retrofitted using: (1) a CFRP jacket, (2) welded Fe-SMA plates, and (3) bolted Fe-SMA plates. All columns were subjected to quasi-static lateral cyclic push-only loading reaching extreme drift levels exceeding 16% and high loading rates up to 6 mm/s. The study specifically explores the confinement effectiveness of CFRP and thermally activated Fe-SMA plates, comparing their contributions to lateral strength, ductility, energy dissipation, failure mode, and damage suppression. The results show that while the as-built column failed at 3.65% drift due to brittle flexural-shear failure, all retrofitted columns demonstrated significantly enhanced ductility, drift capacity, and post-peak behaviour. The CFRP and Fe-SMA jackets effectively delayed damage initiation, minimized core degradation, and improved energy dissipation. The bolted Fe-SMA system exhibited the highest and full restoration of lateral strength, while the welded system achieved the greatest increase in cumulative energy dissipation of around 40%. This research highlights the practical advantages and seismic effectiveness of Fe-SMA and CFRP confinement systems under extreme drift levels. However, future work should explore full-scale column applications, refine anchorage techniques for improved composite interaction, and investigate long-term durability under cyclic environmental conditions. Full article
Show Figures

Figure 1

28 pages, 7160 KB  
Article
Evaluation of the Seismic Behavior of Carbon-Grid-Reinforced Walls with Varying Anchorage and Axial Load Ratios
by Kyung-Min Kim, Sung-Woo Park, Bhum-Keun Song, Kyung-Jae Min and Seon-Hee Yoon
Polymers 2026, 18(1), 144; https://doi.org/10.3390/polym18010144 - 5 Jan 2026
Viewed by 271
Abstract
Fiber-reinforced polymers (FRPs) are being increasingly used to replace rebars as reinforcements for concrete. This study evaluated the seismic behavior of concrete walls reinforced with grid-type carbon FRP (CFRP; carbon grid) through quasi-static cyclic tests and compared the results with that of the [...] Read more.
Fiber-reinforced polymers (FRPs) are being increasingly used to replace rebars as reinforcements for concrete. This study evaluated the seismic behavior of concrete walls reinforced with grid-type carbon FRP (CFRP; carbon grid) through quasi-static cyclic tests and compared the results with that of the reinforced concrete (RC) wall. The experimental variables were the ratio of the carbon-grid anchorage length in the foundation to the wall length and the axial force ratio. Based on the results of the quasi-static cyclic tests, the ratio of the equivalent stiffness at the crushing of the compression-edge cover concrete to the initial stiffness of the carbon-grid-reinforced concrete specimens was 0.14 on average. This indicates that the specimens reached their maximum load due to the crushing of the compression-edge cover concrete after a significant reduction in stiffness due to cracking. The skeleton curve for the carbon-grid-reinforced concrete specimens was found to be bilinear, with reduced stiffness due to cracking and failure due to the crushing of the compression-edge cover concrete, making it definable and predictable. Additionally, in specimens with a high axial force or small ratio of the anchorage length in the foundation to the wall length, some of the longitudinal CFRP strands fractured at the same time as they reached the failure load. Moreover, the load at the crushing of the compression-edge cover concrete of the carbon-grid-reinforced concrete specimen increased by 1.10 times with the increase in the axial force ratio and decreased by 0.96 times with the decrease in the ratio of the anchorage length in the foundation to the wall length. It was found to be 0.73–0.80 times the flexural strength based on the assumption of plane sections remaining plane. In comparison with RC specimen, the cumulative absorbed energy of the carbon-grid-reinforced concrete specimen began to decrease after a story drift ratio of 1%, and the cumulative absorbed energy up to the target story drift ratio of 3.0% was found to be 0.60–0.62 times that of the RC specimen. Full article
(This article belongs to the Special Issue Polymer Composites in Construction Materials)
Show Figures

Figure 1

25 pages, 5256 KB  
Article
Flexural Behavior and Capacity Modeling of Damaged RC Beams Strengthened with CFRP Grid
by Peng Niu, Zhuang Chen, Chunfu Jin, Yanchuan Hui, Feng Shi and Rui Ma
Buildings 2026, 16(1), 205; https://doi.org/10.3390/buildings16010205 - 2 Jan 2026
Viewed by 349
Abstract
This study investigates the strengthening mechanisms of a Carbon Fiber-Reinforced Polymer (CFRP) grid and Polymer-modified Cement Mortar (PCM) system for damaged reinforced concrete (RC) beams in flexure. Experimental tests were conducted on five short beams to systematically observe the failure modes, load-carrying capacity, [...] Read more.
This study investigates the strengthening mechanisms of a Carbon Fiber-Reinforced Polymer (CFRP) grid and Polymer-modified Cement Mortar (PCM) system for damaged reinforced concrete (RC) beams in flexure. Experimental tests were conducted on five short beams to systematically observe the failure modes, load-carrying capacity, strain development, and deflection evolution. A finite element model was established and validated against the experimental results to analyze the effects of key parameters, including the damage degree, number of grid layers, and grid spacing. Theoretical formulas for calculating the ultimate flexural capacity under different failure modes were also derived. The results demonstrate that strengthening undamaged beams yields a more significant improvement in ultimate and cracking loads than strengthening pre-damaged beams. The composite system effectively suppresses crack propagation by enhancing stiffness, albeit at the expense of reduced ductility. The theoretical predictions show good agreement with the experimental data. Parametric analysis reveals that lightly damaged beams exhibit a higher load-bearing potential, whereas severely damaged beams display more ductile behavior. The increase in load capacity converges when the number of grid layers exceeds three. In contrast, reducing the grid spacing significantly enhances flexural capacity due to improved meso-scale structural effects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 3090 KB  
Article
Experimental and Numerical Assessment of Flexural Behavior of CFRP–Strengthened Timber Beams
by Milot Muhaxheri, Enes Krasniqi, Naser Kabashi, Ylli Murati and Ridvan Mahmuti
Polymers 2026, 18(1), 134; https://doi.org/10.3390/polym18010134 - 1 Jan 2026
Viewed by 398
Abstract
Glued laminated timber (glulam) is increasingly adopted as a sustainable structural material; however, its performance under bending can be limited by brittle tensile failures and variability caused by natural defects. This study examines the flexural behavior of glulam beams strengthened with externally bonded [...] Read more.
Glued laminated timber (glulam) is increasingly adopted as a sustainable structural material; however, its performance under bending can be limited by brittle tensile failures and variability caused by natural defects. This study examines the flexural behavior of glulam beams strengthened with externally bonded carbon fiber reinforced polymer (CFRP) sheets. A four-point bending experimental program was carried out on glulam beams with varying CFRP bonded lengths, including unreinforced control beams. The results demonstrate that CFRP reinforcement enhanced load–carrying capacity by up to 48%, increased stiffness, and shifted failure modes from brittle tension–side ruptures to more favorable compression–controlled mechanisms. A nonlinear finite element (FE) model was developed using DIANA software 10.5 to simulate the structural response of both unreinforced and CFRP–strengthened beams. The numerical model accurately reproduced the experimental load–deflection behavior, stress redistribution, and failure trends, with deviations in ultimate load prediction generally within ±16% across all reinforcement configurations. The simulations further revealed the critical influence of CFRP bonded length on stress transfer efficiency and failure mode transition, mimicking experimental observations. By integrating experimental findings with numerical simulations and simplified analytical predictions, the study demonstrates that reinforcement length and bond activation govern the effectiveness of CFRP strengthening. The proposed combined methodology provides a reliable framework for evaluating and designing CFRP strengthened glulam beams. Full article
Show Figures

Figure 1

20 pages, 6002 KB  
Article
Design and Experimental Verification of a Compact Robot for Large-Curvature Surface Drilling
by Shaolei Ren, Xun Li, Daxi Geng, Zhefei Sun, Haiyang Xu, Jianchao Fu and Deyuan Zhang
Actuators 2026, 15(1), 24; https://doi.org/10.3390/act15010024 - 1 Jan 2026
Viewed by 268
Abstract
Automated precision drilling is essential for aircraft skin manufacturing, yet current robotic systems face dual challenges: chatter-induced inaccuracies in hole quality and limited access to confined spaces such as air inlets. To overcome these limitations, this paper develops a compact drilling robot for [...] Read more.
Automated precision drilling is essential for aircraft skin manufacturing, yet current robotic systems face dual challenges: chatter-induced inaccuracies in hole quality and limited access to confined spaces such as air inlets. To overcome these limitations, this paper develops a compact drilling robot for drilling large-curvature skins of aircraft air inlets. Targeting the precision drilling requirements for complex-curvature aircraft air inlets, we present the robot’s overall design scheme, detailing each module’s composition to ensure precision drilling. In-depth analysis of the robot’s large-curvature adaptability precisely calculates the wheel assembly dimensions. To ensure high-precision drilling bit entry into guide mechanisms, a flexible drilling spindle mechanism is designed, with calculated and verified elastic ranges. An integrated intelligent control system is developed, combining vision recognition, real-time pose adjustment, and automated drilling workflow planning. Finally, traversability and drilling capabilities are validated using a simplified air inlet model. Test results confirm successful traversal on R200 mm curvature skins and automated drilling of Carbon Fiber-Reinforced Polymer (CFRP)/7075 aluminum stacks with a diameter of Φ4–Φ6 mm, achieving dimensional errors of less than 0.05 mm and normal direction errors of less than 0.65°. Full article
Show Figures

Figure 1

Back to TopTop