Advances in Carbon Fiber Reinforced Polymers
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Phiri, R.; Rangappa, S.M.; Siengchin, S.; Oladijo, O.P.; Ozbakkaloglu, T. Advances in Lightweight Composite Structures and Manufacturing Technologies: A Comprehensive Review. Heliyon 2024, 10, e39661. [Google Scholar] [CrossRef] [PubMed]
- Koumoulos, E.P.; Trompeta, A.-F.; Santos, R.-M.; Martins, M.; dos Santos, C.M.; Iglesias, V.; Böhm, R.; Gong, G.; Chiminelli, A.; Verpoest, I. Research and Development in Carbon Fibers and Advanced High-Performance Composites Supply Chain in Europe: A Roadmap for Challenges and the Industrial Uptake. J. Compos. Sci. 2019, 3, 86. [Google Scholar] [CrossRef]
- Bhong, M.; Khan, T.K.H.; Devade, K.; Krishna, B.V.; Sura, S.; Eftikhaar, H.K.; Thethi, H.P.; Gupta, N. Review of Composite Materials and Applications. Mater. Today Proc. 2023, in press. [Google Scholar]
- Yu, J.; Chen, T.; Zhao, Y. Study on Optimization of Drilling Parameters for Laminated Composite Materials. Materials 2023, 16, 1796. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Lin, S.; Wang, W.; Yang, Y.; Yan, X.; Yang, H. Study on Dynamic Mechanical Properties of Carbon Fiber-Reinforced Polymer Laminates at Ultra-Low Temperatures. Materials 2023, 16, 2654. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Pandey, A.; Shukla, A. Strategy to Enhance the Collapse Capacity of Composite Cylindrical Tubes: Experiments and Simulations. Materials 2025, 18, 1458. [Google Scholar] [CrossRef] [PubMed]
- Okeola, A.A.; Hernandez-Limon, J.E.; Tatar, J. Core–Shell Rubber Nanoparticle-Modified CFRP/Steel Ambient-Cured Adhesive Joints: Curing Kinetics and Mechanical Behavior. Materials 2024, 17, 749. [Google Scholar] [CrossRef] [PubMed]
- Pomázi, Á.; Poór, D.I.; Geier, N.; Toldy, A. Optimising Recycling Processes for Polyimine-Based Vitrimer Carbon Fibre-Reinforced Composites: A Comparative Study on Reinforcement Recovery and Material Properties. Materials 2024, 17, 2372. [Google Scholar] [CrossRef] [PubMed]
- Nuhoglu, K.; Baltodano, N.M., Jr.; Celik, E. Investigation of Fiber–Matrix Interface Strength via Single-Fiber Pull-Out Test in 3D-Printed Thermoset Composites: A Simplified Methodology. Materials 2024, 17, 2433. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, G.; Kim, D. Effect of Carboxymethyl Cellulose and Polyvinyl Alcohol on the Dispersibility and Chemical Functional Group of Nonwoven Fabrics Composed of Recycled Carbon Fibers. Materials 2024, 17, 4209. [Google Scholar] [CrossRef]
- Donadei, V.; Lionetto, F.; Wielandt, M.; Offringa, A.; Maffezzoli, A. Effects of Blank Quality on Press-Formed PEKK/Carbon Composite Parts. Materials 2018, 11, 1063. [Google Scholar] [CrossRef]
- Kukwi, T.; Shan, C.; Pengfei, L.; Zhang, B.; Leiyang, G.; Wang, Z. Continuous Improvement in Composite Manufacturing: A Review of Automated Fiber Placement Process Evolution and Future Research Prospects. Appl. Compos. Mater. 2025, 32, 1267–1314. [Google Scholar] [CrossRef]
- Bozzini, B.; D’Urzo, L.; Mele, C.; Busson, B.; Humbert, C.; Tadjeddine, A. Doubly Resonant Sum Frequency Generation Spectroscopy of Adsorbates at an Electrochemical Interface. J. Phys. Chem. C 2008, 112, 11791–11795. [Google Scholar] [CrossRef]
- Lionetto, F.; Timo, A.; Frigione, M. Curing Kinetics of Epoxy-Deep Eutectic Solvent Mixtures. Thermochim. Acta 2015, 612, 70–78. [Google Scholar] [CrossRef]
- Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers 2022, 14, 2074. [Google Scholar] [CrossRef] [PubMed]
- Bozzini, B.; Amati, M.; Gregoratti, L.; Mele, C.; Abyaneh, M.K.; Prasciolu, M.; Kiskinova, M. In-Situ Photoelectron Microspectroscopy during the Operation of a Single-Chamber SOFC. Electrochem. Commun. 2012, 24, 104–107. [Google Scholar] [CrossRef]
- Kumar, V.; Mistri, A.; Babbar, A.; Sharma, A.; Bansal, S.; Laishram, N.; Singh, O.G. The State of the Art in Advanced Fabrication and Characterization Techniques for Composites: Research Insights and Future Directions. In Fabrication Techniques and Machining Methods of Advanced Composite Materials; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–24. [Google Scholar]
- Liu, L.; Jia, C.; He, J.; Zhao, F.; Fan, D.; Xing, L.; Wang, M.; Wang, F.; Jiang, Z.; Huang, Y. Interfacial Characterization, Control and Modification of Carbon Fiber Reinforced Polymer Composites. Compos. Sci. Technol. 2015, 121, 56–72. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, J.; Qian, B.; Zhao, M. Progress in Surface Modification Preparation, Interface Characterization and Properties of Continuous Carbon Fiber Reinforced Polymer Matrix Composites. Compos. Interfaces 2024, 31, 729–758. [Google Scholar] [CrossRef]
| Contribution | Topic | Aim | Methodology |
|---|---|---|---|
| Yu et al. [4] | Drilling optimization | Reduce delamination and improve hole quality | FEM analysis; experimental analysis |
| Zhao et al. [5] | Cryogenic dynamic properties | Understand mechanical response in extreme environments | Dynamic testing; modeling; simulation |
| Jain et al. [6] | Underwater composite pipes | Increase collapse capacity in marine environments | Implosion testing; FEM analysis |
| Okeola et al. [7] | Adhesives for CFRP/steel joints | Improve joint strength and ductility | Epoxy modification; joint testing |
| Pomazi et al. [8] | Vitrimer composite recycling | Optimize fiber recovery and material reuse | Chemical dissolution; mechanical testing |
| Nuhoglu et al. [9] | Nonwoven fabrics from recycled carbon fibers | Improve dispersibility and mechanical properties | Effect of additives; chemical and mechanical analysis |
| Kim et al. [10] | 3D printed fiber-matrix interface | Evaluate interface strength in additive manufacturing | Direct Ink Writing; pull-out testing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lionetto, F. Advances in Carbon Fiber Reinforced Polymers. Materials 2026, 19, 231. https://doi.org/10.3390/ma19020231
Lionetto F. Advances in Carbon Fiber Reinforced Polymers. Materials. 2026; 19(2):231. https://doi.org/10.3390/ma19020231
Chicago/Turabian StyleLionetto, Francesca. 2026. "Advances in Carbon Fiber Reinforced Polymers" Materials 19, no. 2: 231. https://doi.org/10.3390/ma19020231
APA StyleLionetto, F. (2026). Advances in Carbon Fiber Reinforced Polymers. Materials, 19(2), 231. https://doi.org/10.3390/ma19020231
