Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = CFRP manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 - 2 Aug 2025
Viewed by 184
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

20 pages, 5786 KiB  
Article
Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates
by Pawel Wysmulski
Materials 2025, 18(15), 3452; https://doi.org/10.3390/ma18153452 - 23 Jul 2025
Viewed by 324
Abstract
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2 [...] Read more.
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2/90°/−45°/45°]. Four central hole plates of 0 mm (reference), 2 mm, 4 mm, and 8 mm in diameter were analyzed. Tests were conducted using a Cometech universal testing machine in combination with the ARAMIS digital image correlation (DIC) system, enabling the non-contact measurement of real-time displacements and local deformations in the region of interest. The novel feature of this work was its dual use of independent measurement methods—machine-based and DIC-based—allowing for the assessment of boundary condition effects and grip slippage on failure load accuracy. The experiments were carried out until complete structural failure, enabling a post-critical analysis of material behavior and failure modes for different geometric configurations. The study investigated load–deflection and load–shortening curves, failure mechanisms, and ultimate loads. The results showed that the presence of a hole leads to localized deformation, a change in the failure mode, and a nonlinear reduction in load-carrying capacity—by approximately 30% for the largest hole. These findings provide complementary data for the design of thin-walled composite components with technological openings and serve as a robust reference for numerical model validation. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

27 pages, 5856 KiB  
Article
Buckypapers in Polymer-Based Nanocomposites: A Pathway to Superior Thermal Stability
by Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt and Philipp Höfer
Nanomaterials 2025, 15(14), 1081; https://doi.org/10.3390/nano15141081 - 11 Jul 2025
Viewed by 297
Abstract
The thermal stability of carbon fiber-reinforced plastic (CFRP) materials is constrained by the low thermal conductivity of its polymer matrix, resulting in inefficient heat dissipation, local overheating, and accelerated degradation during thermal loads. To overcome these limitations, composite materials can be modified with [...] Read more.
The thermal stability of carbon fiber-reinforced plastic (CFRP) materials is constrained by the low thermal conductivity of its polymer matrix, resulting in inefficient heat dissipation, local overheating, and accelerated degradation during thermal loads. To overcome these limitations, composite materials can be modified with buckypapers—thin, densely interconnected layers of carbon nanotubes (CNTs). In this study, sixteen 8552/IM7 prepreg plies were processed with up to nine buckypapers and strategically placed at various positions. The resulting nanocomposites were evaluated for manufacturability, material properties, and thermal resistance. The findings reveal that prepreg plies provide only limited matrix material for buckypaper infiltration. Nonetheless, up to five buckypapers, corresponding to 8 wt.% CNTs, can be incorporated into the material without inducing matrix depletion defects. This integration significantly enhances the material’s thermal properties while maintaining its mechanical integrity. The nanotubes embedded in the matrix achieve an effective thermal conductivity of up to 7 W/(m·K) based on theoretical modeling. As a result, under one-sided thermal irradiation at 50 kW/m2, thermo-induced damage and strength loss can be delayed by up to 20%. Therefore, thermal resistance is primarily determined by the nanotube concentration, whereas the arrangement of the buckypapers affects the material quality. Since this innovative approach enables the targeted integration of high particle fractions, it offers substantial potential for improving the safety and reliability of CFRP under thermal stress. Full article
(This article belongs to the Special Issue Advances in Nano-Enhanced Thermal Functional Materials)
Show Figures

Figure 1

33 pages, 6318 KiB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 315
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

16 pages, 3120 KiB  
Article
A Novel Method for Manufacturing Molds for CFRP Prepreg Lamination Using Polymeric Acrylic Resin–Aluminum Trihydrate
by Mihai Părpăriță, Paul Bere and Mircea Cioază
J. Manuf. Mater. Process. 2025, 9(6), 195; https://doi.org/10.3390/jmmp9060195 - 11 Jun 2025
Viewed by 526
Abstract
In the composite materials industry, the fabrication of complex parts often necessitates the use of specialized tools, such as milled molds with intricate geometries. Among these, machined aluminum molds are widely regarded as effective tools for laminating CFRP (Carbon Fiber Reinforced Polymer) prepreg [...] Read more.
In the composite materials industry, the fabrication of complex parts often necessitates the use of specialized tools, such as milled molds with intricate geometries. Among these, machined aluminum molds are widely regarded as effective tools for laminating CFRP (Carbon Fiber Reinforced Polymer) prepreg materials. However, the cost and time associated with machining aluminum molds can be significant. This paper presents a novel method for manufacturing molds using polymeric acrylic resin combined with aluminum trihydrate material (commercially known as DuPont Corian materials), offering a potential alternative with reduced complexity and cost. The study investigates the influence of various milling parameters, such as tool speed, tool type, feed rate, and depth of cut on the mechanical properties and surface finish of the molds. Also, laminating tests are conducted; results indicate that laminating tools produced through this method achieve competitive mechanical performance, including a hard, smooth surface with low roughness, making them viable candidates for industrial use. The proposed approach is particularly beneficial in terms of reducing machining time and overall costs while maintaining the necessary precision and durability for high-performance applications. This method, therefore, represents a promising solution for manufacturers seeking to optimize mold production processes in the composite materials industry. Full article
Show Figures

Figure 1

32 pages, 2930 KiB  
Review
3D Printing Continuous Fiber Reinforced Polymers: A Review of Material Selection, Process, and Mechanics-Function Integration for Targeted Applications
by Haoyuan Zheng, Shaowei Zhu, Liming Chen, Lianchao Wang, Hanbo Zhang, Peixu Wang, Kefan Sun, Haorui Wang and Chengtao Liu
Polymers 2025, 17(12), 1601; https://doi.org/10.3390/polym17121601 - 9 Jun 2025
Viewed by 2110
Abstract
In recent years, the rapid development of three-dimensional (3D)-printed continuous fiber-reinforced polymer (CFRP) technology has provided novel strategies for customized manufacturing of high-performance composites. This review systematically summarizes research advancements in material systems, processing methods, mechanical performance regulation, and functional applications of this [...] Read more.
In recent years, the rapid development of three-dimensional (3D)-printed continuous fiber-reinforced polymer (CFRP) technology has provided novel strategies for customized manufacturing of high-performance composites. This review systematically summarizes research advancements in material systems, processing methods, mechanical performance regulation, and functional applications of this technology. Material-wise, the analysis focuses on the performance characteristics and application scenarios of carbon fibers, glass fibers, and natural fibers, alongside discussions on the processing behaviors of thermoplastic matrices such as polyetheretherketone (PEEK). At the process level, the advantages and limitations of fused deposition modeling (FDM) and photopolymerization techniques are compared, with emphasis on their impact on fiber–matrix interfaces. The review further examines the regulatory mechanisms of fiber orientation, volume fraction, and other parameters on mechanical properties, as well as implementation pathways for functional designs, such as electrical conductivity and self-sensing capabilities. Application case studies in aerospace lightweight structures and automotive energy-absorbing components are comprehensively analyzed. Current challenges are highlighted, and future directions proposed, including artificial intelligence (AI)-driven process optimization and multi-material hybrid manufacturing. This review aims to provide a comprehensive assessment of the current achievements in 3D printing CFRP technology and a forward-looking analysis of existing challenges, offering a systematic reference for accelerating the transformation of 3D printing CFRP technology from laboratory research to industrial-scale implementation. Full article
(This article belongs to the Special Issue Polymer-Based Composite Structures and Mechanical Metamaterials)
Show Figures

Figure 1

19 pages, 9059 KiB  
Article
Machine Vision Framework for Real-Time Surface Yarn Alignment Defect Detection in Carbon-Fiber-Reinforced Polymer Preforms
by Lun Li, Shixuan Yao, Shenglei Xiao and Zhuoran Wang
J. Compos. Sci. 2025, 9(6), 295; https://doi.org/10.3390/jcs9060295 - 7 Jun 2025
Viewed by 737
Abstract
Carbon-fiber-reinforced polymer (CFRP) preforms are vital for high-performance composite structures, yet the real-time detection of surface yarn alignment defects is hindered by complex textures. This study introduces a novel machine vision framework to enable the precise, real-time identification of such defects in CFRP [...] Read more.
Carbon-fiber-reinforced polymer (CFRP) preforms are vital for high-performance composite structures, yet the real-time detection of surface yarn alignment defects is hindered by complex textures. This study introduces a novel machine vision framework to enable the precise, real-time identification of such defects in CFRP preforms. We proposed obtaining the frequency spectrum by removing the zero-frequency component from the projection curve of images of carbon fiber fabric, aiding in the identification of the cycle number for warp and weft yarns. A texture structure recognition method based on the artistic conception drawing (ACD) revert is applied to distinguishing the complex and diverse surface texture of the woven carbon fabric prepreg from potential surface defects. Based on the linear discriminant analysis for defect area threshold extraction, a defect boundary tracking algorithm rule was developed to achieve defect localization. Using over 1500 images captured from actual production lines to validate and compare the performance, the proposed method significantly outperforms the other inspection approaches, achieving a 97.02% recognition rate with a 0.38 s per image processing time. This research contributes new scientific insights into the correlation between yarn alignment anomalies and a machine-vision-based texture analysis in CFRP preforms, potentially advancing our fundamental understanding of the defect mechanisms in composite materials and enabling data-driven quality control in advanced manufacturing. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

17 pages, 10560 KiB  
Article
Optimization Design and Mechanical Performance Study of Carbon Fiber-Reinforced Composite Load-Carrying Structures for Subway Driver Cabin
by Jinle Wang, Bing Yang, Honglei Tian, Wenbin Wang and Xu Sang
Materials 2025, 18(11), 2524; https://doi.org/10.3390/ma18112524 - 27 May 2025
Viewed by 520
Abstract
This study systematically investigates the optimization design and mechanical performance of carbon fiber-reinforced polymer (CFRP) load-carrying structures for subway driver cabins to meet the lightweight demands of rail transit. Through experimental testing and micromechanical modeling, the mechanical properties of CFRP and foam core [...] Read more.
This study systematically investigates the optimization design and mechanical performance of carbon fiber-reinforced polymer (CFRP) load-carrying structures for subway driver cabins to meet the lightweight demands of rail transit. Through experimental testing and micromechanical modeling, the mechanical properties of CFRP and foam core materials were characterized, with predicted elastic constants exhibiting an error of ≤5% compared with experimental data. A shape optimization framework integrating mesh morphing and genetic algorithms achieved a 22% mass reduction while preserving structural performance and maintaining load-carrying requirements. Additionally, a stepwise optimization strategy combining free-size, sizing, and stacking sequence optimization was developed to enhance layup efficiency. The final design reduced the total mass by 29.1% compared with the original model, with all failure factors remaining below critical thresholds across three loading cases. The increased failure factor confirmed that the optimized structure effectively exploited the material’s potential while eliminating redundancy. These findings provide valuable theoretical and technical insights into lightweight CFRP applications in rail transit, demonstrating significant improvements in structural efficiency, safety, and manufacturability. Full article
(This article belongs to the Special Issue Engineering Materials and Structural Integrity)
Show Figures

Figure 1

22 pages, 7789 KiB  
Article
Evaluating Effects of Wrinkle Defects on Impact Response and Residual Compressive Strength After Impact in CFRP
by Jian Wang, Huiming Ding, Shidi Zhang, Han Wang, Yunbo Bi and Zhengli Hua
Polymers 2025, 17(10), 1355; https://doi.org/10.3390/polym17101355 - 15 May 2025
Cited by 1 | Viewed by 339
Abstract
Carbon fiber-reinforced polymer (CFRP) has become widely applied in engineering fields such as aerospace and the automotive industries. Evaluating the damage tolerance of CFRP with manufacturing defects under impact loads is crucial in ensuring the reliable service of CFRP components. In this study, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) has become widely applied in engineering fields such as aerospace and the automotive industries. Evaluating the damage tolerance of CFRP with manufacturing defects under impact loads is crucial in ensuring the reliable service of CFRP components. In this study, four types of wrinkle defects are designed, and the effect mechanism is thoroughly discussed, focusing on the impact and compressive response. The results indicate that the wrinkle defects primarily affect the impact response via the wrinkle fibers being subjected to impact stress and wrinkle stress concentration. Notably, the first peak contact force of the specimen with a wrinkle at the 12th layer is reduced by approximately 20.00% compared to that of the specimen with a wrinkle at the third layer. Additionally, the first peak contact force of the specimen subjected to a reverse impact direction decreases by about 14.00% compared to that under a forward impact direction. The impact direction also plays a significant role in the impact response by altering the loading conditions of the wrinkle fibers during impact. Regarding the compressive performance after impact, specimens with a wrinkling layer close to the impact surface show a slight 4.80% increase in residual compressive strength, which is attributed to the greater suppression of impact damage by the wrinkle fibers. However, all other specimens with wrinkle defects demonstrate varying degrees of reduction in residual compressive strength after impact compared to the specimens without wrinkle defects. The maximum reduction is approximately 27.50% for specimens subjected to a reverse impact direction. Furthermore, the amplitude of the decrease in the residual compressive strength is mainly determined by the matrix damage and delamination that occur during impact. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

18 pages, 7263 KiB  
Article
Investigating the Machining Behavior of the Additively Manufactured Polymer-Based Composite Using Adaptive Neuro-Fuzzy Learning
by Anastasios Tzotzis, Dumitru Nedelcu, Simona-Nicoleta Mazurchevici and Panagiotis Kyratsis
Appl. Sci. 2025, 15(10), 5373; https://doi.org/10.3390/app15105373 - 12 May 2025
Viewed by 538
Abstract
This study presents an experimental and computational investigation into the machinability of additively manufactured (AM) fiber-reinforced PETG during external CNC turning. A series of machining trials were conducted under dry conditions, with cutting speed (Vc), feed (f), and depth-of-cut [...] Read more.
This study presents an experimental and computational investigation into the machinability of additively manufactured (AM) fiber-reinforced PETG during external CNC turning. A series of machining trials were conducted under dry conditions, with cutting speed (Vc), feed (f), and depth-of-cut (ap) as the primary input parameters. The corresponding surface roughness (Ra) and tool-tip temperature (T) were recorded as key output responses. An Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed to model the process behavior, utilizing a 3–3–3 architecture with triangular membership functions. The resulting models demonstrated high predictive accuracy across training, testing, and validation datasets. Experimental results revealed that elevated feed rates and depth-of-cut significantly increase surface roughness, while combinations of high cutting speed and feed contribute to elevated tool temperatures. Multi-objective optimization using the Non-Dominated Sorting Genetic Algorithm 2 (NSGA-II) algorithm was employed to minimize both Ra and T simultaneously. The Pareto-optimal front indicated that optimal performance could be achieved within the range of 100–200 m/min for Vc, 0.054–0.059 mm/rev for f, and 0.512–0.516 mm for ap. The outcomes of this research provide valuable insights into the machinability of reinforced polymer-based AM components and establish a robust framework for predictive modeling and process optimization. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

16 pages, 3498 KiB  
Article
Mechanical and Solvothermal Recycling of End-of-Life Carbon Fibre-Reinforced Plastic Products: Process Feasibility and Flexural Performance of Recycled Composites
by Dario De Fazio, Luca Boccarusso, Antonio Formisano, Rossella Grappa, Giuseppina Luciani, Francesco Branda and Massimo Durante
Polymers 2025, 17(7), 878; https://doi.org/10.3390/polym17070878 - 25 Mar 2025
Viewed by 515
Abstract
The increasing demand for high-performance materials has led to an increase in the use of carbon fibre-reinforced plastics (CFRPs) in recent decades, increasing the waste from end-of-life materials and off-cuts. The recycling of CFRPs, especially when thermosetting matrices are used, still remains an [...] Read more.
The increasing demand for high-performance materials has led to an increase in the use of carbon fibre-reinforced plastics (CFRPs) in recent decades, increasing the waste from end-of-life materials and off-cuts. The recycling of CFRPs, especially when thermosetting matrices are used, still remains an open challenge for academia and industry, with chemical, thermal and mechanical strategies being explored. Among them, mechanical methods have garnered growing interest since they do not require high specific energy consumption or expensive apparatus. However, from the literature it was observed that when using these methods, traces of old matrix remain on the fibre’s surface, compromising the fibre–matrix adhesion efficiency and limiting their use in recycled composites. On the other hand, solvothermal methods are known for their high matrix dissolution efficiency that in turn improves the fibre–matrix adhesion. Therefore, in this paper, end-of-life CFRPs from the aeronautic sector were machined using a milling-based mechanical recycling method, while to remove the residual matrix from the fibre surface, the recovered chips were chemically treated with a two-step treatment at low temperature. Then, two types of recycled composite laminates were manufactured using the compression moulding technique: the first using recycled fibres only from the mechanical recycled method, and the second one using recycled fibres deriving from both recycling methods. The feasibility of the process was analysed observing that the additional chemical treatment led to a mass loss of almost 24% in the recycled fibres. FTIR analysis revealed the complete matrix dissolution since no spectra of epoxy resin groups were detected. Finally, the flexural behaviour of the recycled composites was investigated, revealing an increase in the flexural strength and modulus of the second sample typology, respectively, of almost 42% and 76% thanks to the improved fibre–matrix adhesion as a consequence of the solvothermal treatment. Full article
(This article belongs to the Special Issue Mechanical Characterization of Polymer Composites)
Show Figures

Figure 1

9 pages, 8450 KiB  
Proceeding Paper
Non-Contact Non-Destructive Testing Methods for Large-Scale Carbon Fiber-Reinforced Polymer Aircraft Parts
by Daniella B. Deutz, Arnoud F. Bosch, Dion E. Baptista, Erik S. Veen, D. Jacco Platenkamp and H. Patrick Jansen
Eng. Proc. 2025, 90(1), 25; https://doi.org/10.3390/engproc2025090025 - 12 Mar 2025
Viewed by 412
Abstract
Non-contact NDT methods that can provide fast, automated, in-line quality assurance information on the manufacturing and maintenance of large-scale, thin-walled aircraft parts are necessary for the implementation of thermoplastic CFRP in the next generation of aircraft. Infrared thermography (IRT) is a promising method [...] Read more.
Non-contact NDT methods that can provide fast, automated, in-line quality assurance information on the manufacturing and maintenance of large-scale, thin-walled aircraft parts are necessary for the implementation of thermoplastic CFRP in the next generation of aircraft. Infrared thermography (IRT) is a promising method to fill this gap. Here, the detection of flat bottom holes, inclusions, and interlaminar delaminations in fuselage skin is studied for two types of IRT and compared with ultrasound inspection. Unique to this work are three demonstrations of the potential of IRT to deliver a time-effective, automated inspection approach for large-scale, thin-walled thermoplastic CFRP aircraft parts. Full article
Show Figures

Figure 1

27 pages, 2579 KiB  
Article
Assembly Quality Control Technologies in Forced Clamping and Compensation Processes for Large and Integrated Aeronautical Composite Structures
by Feiyan Guo, Qiangwei Bao, Jialiang Liu and Xiliang Sha
Machines 2025, 13(2), 159; https://doi.org/10.3390/machines13020159 - 18 Feb 2025
Cited by 2 | Viewed by 750
Abstract
For the new type of CFRP (Carbon Fiber Reinforced Plastic) thin-walled components with a large size and weak rigid structure, due to the integration of geometric features and the reduction in the amount of parts, the assembly size transmission chain is short compared [...] Read more.
For the new type of CFRP (Carbon Fiber Reinforced Plastic) thin-walled components with a large size and weak rigid structure, due to the integration of geometric features and the reduction in the amount of parts, the assembly size transmission chain is short compared to traditional metal assembly structures. In addition, the manufacturing errors and layer parameters of large composite parts in different regions are different, and they also have a lower forming accuracy. For the current assembly method that mainly concerns geometric dimensions and tolerances, it is difficult to support precise analysis and accurate geometric error forms for different local and global regions. As a result, in practical engineering, the forced method of applying a local clamping force is inevitably adopted to passively reduce and compensate for assembly errors. However, uneven stress distribution and possible internal damage occur. To avoid the assembly quality problems caused by forced clamping operations, the research status on the optimization of forced clamping process parameters before assembly, the flexible position–force adjustment of fixtures during assembly, and gap compensation and strengthening before assembly completion was analyzed systematically. The relevant key technologies, such as force limit setting, geometric gap reduction, stress/damage evolution prediction, the reverse optimization of clamping process parameters, and precise stress/damage measurement, are proposed and resolved in this paper. With the specific implementation solutions, geometric and mechanical assembly status coupling analysis, active control, and a collaborative guarantee could be achieved. Finally, future research work is proposed, i.e., dynamic evolution behavior modeling and the equalization of the induction and control of physical assembly states. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

22 pages, 4812 KiB  
Article
Mechanical Characterization of a Novel Cyclic Olefin-Based Hot-Melt Adhesive
by Vasco C. M. B. Rodrigues, Ana T. F. Venâncio, Eduardo A. S. Marques, Ricardo J. C. Carbas, Armina Klein, Ejiri Kazuhiro, Björn Nelson and Lucas F. M. da Silva
Materials 2025, 18(4), 855; https://doi.org/10.3390/ma18040855 - 15 Feb 2025
Cited by 1 | Viewed by 806
Abstract
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through [...] Read more.
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through adhesive characterizations tests. The glass transition temperature was determined using dynamic mechanical analysis (DMA). For mechanical characterization, bulk and thick adherend shear specimens were manufactured and tested at a quasi-static rate, where at least three specimens were used to calculate the average and standard deviation values. Tensile tests revealed the effects of molecular chain drawing and reorientation before the onset of strain hardening. Thick adherend shear specimens were used to retrieve shear properties. Fracture behaviour was assessed with the double cantilever beam (DCB) test and end-notched flexure (ENF) test, for characterization under modes I and II, respectively. To study the in-joint behaviour, single lap joints (SLJs) of aluminium and carbon fibre-reinforced polymer (CFRP) were manufactured and tested under different temperatures. Results showed a progressive interfacial failure following adhesive plasticization, allowing deformation prior to failure at 8 MPa. An adhesive failure mode was confirmed through scanning electron microscopy (SEM) analysis of aluminium SLJ. The adhesive exhibits tensile properties comparable to existing adhesives, while demonstrating enhanced lap shear strength and a distinctive failure mechanism. These characteristics suggest potential advantages in applications involving heat and pressure across automotive, electronics and structural bonding sectors. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop