Optimization Design and Mechanical Performance Study of Carbon Fiber-Reinforced Composite Load-Carrying Structures for Subway Driver Cabin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Performance Testing
2.1.1. Mechanical Characterization of CFRP
2.1.2. Mechanical Characterization of Foam Core Materials
2.2. Constitutive Relation and Strength Theory of Composite Materials
2.2.1. Constitutive Relationship Prediction
2.2.2. Material Strength Evaluation Criterion
2.3. The Simulation Model
2.3.1. The Subway Cabin Frame Structure
2.3.2. Static Condition
3. Results
3.1. Static Strength Analysis of Initial Structure
3.2. Cabin Frame Shape Optimization
3.3. Laminate Design Based on Stepwise Optimization
3.3.1. Free-Size Optimization
3.3.2. Sizing Optimization
3.3.3. Stacking Sequence Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mistry, P.J.; Johnson, M.S.; Galappaththi, U.I.K. Selection and ranking of rail vehicle components for optimal lightweighting using composite materials. Proc. Inst. Mech. Eng. Part F 2021, 253, 390–402. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, S.; Chen, J.; Li, P.; Yu, S.; Wang, C. Research Progress in Lightweight Design of Train Body. J. Mech. Eng. 2023, 59, 177–196. [Google Scholar] [CrossRef]
- Ding, S.; Tian, A.; Wang, J.; Teng, L. Research on application of carbon fiber composite in high speed EMUs. Electr. Locomot. Mass Transit Veh. 2015, 38, 1–8. [Google Scholar] [CrossRef]
- Xiao, S.; Jiang, L.; Jiang, W.; He, Z.; Yang, G.; Yang, B.; Zhu, T.; Wang, M. Application and prospect of composite materials in rail transit vehicles. J. Traffic Transp. Eng. 2021, 21, 154–176. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Puttegowda, M.; Oladijo, O.P.; Lai, C.W.; Gorbatyuk, S.; Matykiewicz, D.; Rangappa, S.M.; Siengchin, S. A comprehensive review on polymer composites in railway applications. Polym. Compos. 2022, 43, 1238–1251. [Google Scholar] [CrossRef]
- Sun, H.; Shi, Y.; Zhou, H.; Xia, S. Application and Development Trend of Carbon Fiber Composite in Rail Transit Vehicles. Mater. Rail Transp. Syst. 2023, 2, 29–32. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Han, J.; Li, H.; Sun, Z.; Wei, Y. Research and Application Progress of Carbon Fiber Composites in the Field of Rail Transit. Synth. Fiber China. 2024, 53, 19–25+39. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, Q. Application and Prospect of Carbon Fiber Composites in Rail Transit. Fiber Glass. 2024, 02, 35–40. [Google Scholar] [CrossRef]
- Geuenich, W. Fibre composite bogie has creep-controlled wheelsets. Railw. Gaz. 1985, 141, 279–282. [Google Scholar]
- Harte, A.M.; McNamara, J.F.; Roddy, I.D. A multilevel approach to the optimisation of a composite light rail vehicle bodyshell. Compos. Struct. 2004, 63, 447–453. [Google Scholar] [CrossRef]
- Robinson, M.; Matsika, E.; Peng, Q. Application of composites in rail vehicles. ICCM Int. Conf. Compos. Mater. 2017, 2017, 20–25. [Google Scholar] [CrossRef]
- Kitamo, A.; Sekido, T.; Miyoshi, N. High speed manufacturing for high speed trains. JEC Compos. 2004, 8, 118–123. [Google Scholar]
- Kim, J.S.; Lee, S.J.; Shin, K.B. Manufacturing and structural safety evaluation of a composite train carbody. Compos. Struct. 2007, 78, 468–476. [Google Scholar] [CrossRef]
- Kim, J.S.; Jeong, J.C.; Lee, S.J. Numerical and experimental studies on the deformational behavior a composite train carbody of the Korean tilting train. Compos. Struct. 2007, 81, 168–175. [Google Scholar] [CrossRef]
- Kim, J.S.; Jeong, J.C.; Lee, S.J.; Cho, S.H.; Yoon, S.H.; Han, S.H.; Seo, S.I. Structural safety evaluation of the hybrid composite bodyshell for Korean tilting train by a whole body test. Key Eng. Mater. 2007, 334, 313–316. [Google Scholar] [CrossRef]
- Luo, Y. Breakthrough Direction and Technical Progress of Carbon Fiber and its CFRP in Main Application Areas. Hi-Tech Fiber Appl. 2019, 44, 1–12. [Google Scholar] [CrossRef]
- Cai, F.; Wang, S.; Guo, F.; Liu, C.; Wei, Y. Current Status of High Performance Composite Materials in The Field of Mass Transit. Hi-Tech Fiber Appl. 2020, 45, 22–29. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, S.; Yang, G.; Yang, B.; Zhu, T. Application and research of carbon fiber composite materials in vehicle hood of high-speed train. Electr. Locomot. Mass Transit Veh. 2015, 38, 53–57. [Google Scholar] [CrossRef]
- Wang, F. Study on the application of carbon fiber composite materials in high-speed trains. Mater. Sci. Forum. 2017, 893, 31–34. [Google Scholar] [CrossRef]
- Wang, W.; Ji, W.; Zhang, D.; Zhao, H. Stepwise Optimization Design of Metro Train Cab Hood Made of Carbon Fiber Composite Material. Urban Mass Transit. 2018, 21, 27–31. [Google Scholar] [CrossRef]
- Gong, M.; Sun, S.G.; Li, Q. Carbon fiber reinforced composite materials for self-supporting subway train cab. Mater. Sci. Eng. 2018, 436, 012007. [Google Scholar] [CrossRef]
- Tang, H.; Tian, Q.; Shi, S.; Chen, B. Simulation of Metro Cab Cover with Fiber Reinforced Plastic Material. Editor. Off. J. Dalian Jiaotong Univ. 2020, 41, 46–50. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, G.; Cheng, Y. Structural Strength Simulation and Optimization of Carbon Fiber Composite Car Body. Editor. Off. J. Dalian Jiaotong Univ. 2021, 42, 23–27. [Google Scholar] [CrossRef]
- Jiang, S.; He, J. A high-efficiency material deployment design method assisted with multiscale analysis. Thin-Walled Struct. 2024, 197, 111540. [Google Scholar] [CrossRef]
- Pawlak, A.M.; Górny, T.; Dopierała, Ł.; Paczos, P. The use of CFRP for structural reinforcement—Literature review. Metals 2022, 12, 1470. [Google Scholar] [CrossRef]
- GB/T 4550-2005; Preparation of Unidirection Orientated Fiber Reinforced Plastic Plates for Test Purposes. Standardization Administration of China: Beijing, China, 2005.
- Junaedi, H.; Khan, T.; Sebaey, T.A. Characteristics of carbon-fiber-reinforced polymer face sheet and glass-fiber-reinforced rigid polyurethane foam sandwich structures under flexural and compression tests. Materials 2023, 16, 5101. [Google Scholar] [CrossRef]
- Kamble, Z. Advanced structural and multi-functional sandwich composites with prismatic and foam cores: A review. Polym. Compos. 2024, 45, 16355–16382. [Google Scholar] [CrossRef]
- Belinha, J. Multiscale Analysis of Sandwich Beams with Polyurethane Foam Core: A Comparative Study of Finite Element Methods and Radial Point Interpolation Method. Materials 2024, 17, 4466. [Google Scholar] [CrossRef]
- Khan, T.; Acar, V.; Aydin, M.R.; Hülagü, B.; Akbulut, H.; Seydibeyoğlu, M.Ö. A review on recent advances in sandwich structures based on polyurethane foam cores. Polym. Compos. 2020, 41, 2355–2400. [Google Scholar] [CrossRef]
- Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Li, J.; Yan, S.; Kong, W.; Li, S. Validation of the fully rationalized Tsai-Wu failure criterion for unidirectional laminates under multiaxial stress states through a ring-on-ring test. Compos. Sci. Technol. 2024, 257, 110813. [Google Scholar] [CrossRef]
- EN 12663-1: 2010; Railway Applications. Structural Requirements of Railway Vehicle Bodies-Locomotives and Passenger Rolling Stock (and Alternative Method for Freight Wagons). British Standards Institution (BSI): London, UK, 2020.
- An, H.; Youn, B.D.; Kim, H.S. Reliability-based design optimization of laminated composite structures under delamination and material property uncertainties. Int. J. Mech. Sci. 2021, 205, 106561. [Google Scholar] [CrossRef]
- An, H.; Long, T.; Ye, N.; Wang, Z. An optimization framework for composite structure design with bounded uncertainties. Structures 2025, 71, 108011. [Google Scholar] [CrossRef]
- Zhang, S.; Song, H.; Xu, L.; Cai, K. Application research on the lightweight design and optimization of carbon fiber reinforced polymers (CFRP) floor for automobile. Polymers 2022, 14, 4768. [Google Scholar] [CrossRef]
- Hou, W.; Shen, Y.; Jiang, K.; Wang, C. Study on mechanical properties of carbon fiber honeycomb curved sandwich structure and its application in engine hood. Compos. Struct. 2022, 286, 115302. [Google Scholar] [CrossRef]
- Zhou, M.; Fleury, R.; Kemp, M. Optimization of composite-recent advances and application. In Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, TX, USA, 13–15 September 2010. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, J.; Sun, Y.; Tian, K. Experimental and numerical investigation of open hole carbon fiber composite laminates under compression with three different stacking sequences. J. Mater. Res. Technol. 2019, 8, 2957–2968. [Google Scholar] [CrossRef]
- Cheng, F.; Zheng, C.; Liu, Y.; Zuo, W.; Wang, X.; Guo, G. Lightweight design of CFRP-laminated structures by combining microscopical homogenization and macroscopical optimization. Int. J. Automot. Technol. 2021, 22, 1427–1436. [Google Scholar] [CrossRef]
- Su, H.; An, D.; Ma, L.; He, Y. A survey of multi-scale optimization methods in fiber-reinforced polymer composites design for automobile applications. Proc. Inst. Mech. Eng. Part D 2024. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Elastic properties | , , , , |
Material strengths | , , , , , |
Properties | Value |
---|---|
Elastic properties | , |
Material strengths | , |
Properties | Predicted Value (GPa) | Experimental Value (GPa) | Error (%) |
---|---|---|---|
134.68 | 128.69 | 4.7 | |
8.69 | 8.97 | −3.1 | |
3.93 | 3.76 | 4.5 |
Layup Design | Failure Factor | Total Mass(kg) | ||
---|---|---|---|---|
Case 1 | Case 2 | Case 3 | ||
Original layup model | 0.62 | 0.67 | 0.64 | 78.15 |
Pre-optimization model | 0.78 | 0.92 | 0.59 | 66.28 |
Stepwise optimization model | 0.73 | 0.72 | 0.57 | 55.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yang, B.; Tian, H.; Wang, W.; Sang, X. Optimization Design and Mechanical Performance Study of Carbon Fiber-Reinforced Composite Load-Carrying Structures for Subway Driver Cabin. Materials 2025, 18, 2524. https://doi.org/10.3390/ma18112524
Wang J, Yang B, Tian H, Wang W, Sang X. Optimization Design and Mechanical Performance Study of Carbon Fiber-Reinforced Composite Load-Carrying Structures for Subway Driver Cabin. Materials. 2025; 18(11):2524. https://doi.org/10.3390/ma18112524
Chicago/Turabian StyleWang, Jinle, Bing Yang, Honglei Tian, Wenbin Wang, and Xu Sang. 2025. "Optimization Design and Mechanical Performance Study of Carbon Fiber-Reinforced Composite Load-Carrying Structures for Subway Driver Cabin" Materials 18, no. 11: 2524. https://doi.org/10.3390/ma18112524
APA StyleWang, J., Yang, B., Tian, H., Wang, W., & Sang, X. (2025). Optimization Design and Mechanical Performance Study of Carbon Fiber-Reinforced Composite Load-Carrying Structures for Subway Driver Cabin. Materials, 18(11), 2524. https://doi.org/10.3390/ma18112524