Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates
Abstract
1. Introduction
2. Test Specimen and Methodology
- Calibration: The system is calibrated to determine the geometric parameters of the two cameras and their relative positions.
- Lighting: The surface of the object under investigation is illuminated and covered with a random pattern that facilitates the tracking of changes.
- Image registration: Two cameras take a series of images of the object under study at a set frequency. Each camera captures the images in its own perspective.
- Image correlation: The software analyzes the images from the two cameras, identifying the same points on the surface of the object in successive images. It then compares their positions in 3D space.
- Calculation of displacements and deformations: Based on the differences in the positions of the points, the system calculates the 3D displacements and deformations at each point on the object surface.
- Data analysis: The results of the measurements are presented in the form of deformation maps, which allow the analysis of the behavior of the material under load.
3. Results and Discussion
- Testing machine—shortening was determined based on the displacement of the machine’s upper crosshead (global displacement), which includes the total movement of the grips but does not account for local deformation effects of the specimen within the grips or possible slips.
- ARAMIS system (DIC)—shortening was measured directly in the specimen’s measurement area (20 × 100 mm) using the digital image correlation (DIC) method, allowing for the capture of the actual local material shortening within the analyzed region.
4. Conclusions
- Hole size strongly influences failure load, with a nonlinear reduction ranging from ~13% for a 2 mm hole to nearly 30% for an 8 mm hole. The most significant drop occurs between 4 mm and 8 mm, indicating a critical geometric threshold for structural degradation.
- Deformation and failure modes evolve with hole diameter: from uniform buckling in the reference plate to asymmetric, localized damage and delamination near the hole edges in larger openings.
- Dual measurement methods—global machine displacement and local DIC—provide consistent results in the elastic and critical state but diverge in the post-critical state. DIC enables more accurate detection of local deformation, especially near failure.
- The presence of the hole alters load paths and local stiffness, triggering the earlier onset of post-buckling behavior and limiting the load-carrying capacity of the structure.
- Quantitative analysis of deflection and shortening confirms the need for localized strain monitoring in design and testing of thin-walled CFRP structures with holes.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kopecki, T.; Lis, T.; Mazurek, P. Post-Critical Deformation of Thin-Walled Load-Bearing Aircraft Structure Representing Fragment of the One-Way Torsion Box. Adv. Sci. Technol. Res. J. 2018, 12, 203–209. [Google Scholar] [CrossRef]
- Campbell, F.C. Manufacturing Technology for Aerospace Structural Materials, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Stewart, R. Rebounding automotive industry welcome news for FRP. Reinf. Plast. 2011, 55, 38–44. [Google Scholar] [CrossRef]
- Ahmad, H.; Markina, A.A.; Porotnikov, M.V.; Ahmad, F. A review of carbon fiber materials in automotive industry. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 032011. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Qi, J.; Zhou, J.; Zheng, X.; Liu, H. Experimental and numerical studies on filled-hole compression of FRP laminates considering different countersunk hole configurations. Constr. Build. Mater. 2024, 417, 135305. [Google Scholar] [CrossRef]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J.; Falkowicz, K.; Jojczuk, M.; Nogalski, A.; Przekora, A. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 1—α/β tricalcium phosphate (TCP). Compos. Struct. 2024, 343, 118306. [Google Scholar] [CrossRef]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jojczuk, M.; Jonak, J.; Nogalski, A. Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements. Materials 2022, 15, 2197. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J.; Falkowicz, K.; Jojczuk, M.; Nogalski, A.; Przekora, A. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 2—Hydroxyapatite. Compos. Struct. 2024, 343, 118308. [Google Scholar] [CrossRef]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J.; Falkowicz, K.; Jojczuk, M.; Nogalski, A.; Przekora, A. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 3—Glassy carbon. Compos. Struct. 2024, 343, 118307. [Google Scholar] [CrossRef]
- Tai, J.L.; Grzejda, R.; Sultan, M.T.H.; Łukaszewicz, A.; Shahar, F.S.; Tarasiuk, W.; Rychlik, A. Experimental Investigation on the Corrosion Detectability of A36 Low Carbon Steel by the Method of Phased Array Corrosion Mapping. Materials 2023, 16, 5297. [Google Scholar] [CrossRef] [PubMed]
- Grzejda, R. Thermal strength analysis of a steel bolted connection under bolt loss conditions. Eksploat. I Niezawodn. 2022, 24, 269–274. [Google Scholar] [CrossRef]
- Nozdrzykowski, K.; Grządziel, Z.; Grzejda, R.; Warzecha, M.; Stępień, M. An Analysis of Reaction Forces in Crankshaft Support Systems. Lubricants 2022, 10, 151. [Google Scholar] [CrossRef]
- Yu, S.; Colton, J.S. A compact open-hole compression test fixture for composite materials. Compos. Part B Eng. 2021, 223, 109126. [Google Scholar] [CrossRef]
- Wysmulski, P. Numerical and Experimental Study of Crack Propagation in the Tensile Composite Plate with the Open Hole. Adv. Sci. Technol. Res. J. 2023, 17, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Yongbo, Z.; Zhihua, W.; Huimin, F. Tensile failure analysis and residual strength prediction of CFRP laminates with open hole. Compos. Part B Eng. 2017, 126, 49–59. [Google Scholar] [CrossRef]
- Takamoto, K.; Ogasawara, T.; Kodama, H.; Mikami, T.; Oshima, S.; Aoki, K.; Higuchi, R.; Yokozeki, T. Experimental and numerical studies of the open-hole compressive strength of thin-ply CFRP laminates. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106365. [Google Scholar] [CrossRef]
- Gupta, S.; Pal, S.; Ray, B.C. An overview of mechanical properties and failure mechanism of FRP laminates with hole/cutout. J. Appl. Polym. Sci. 2023, 140, e53862. [Google Scholar] [CrossRef]
- Timoshenko, S.; Gere, J.M. Theory of Elastic Stability, 2nd ed.; Dover, Ed.; Dover Publications: Mineola, NY, USA, 2009. [Google Scholar]
- Jayashankarbabu, B.S.; Karisiddappa, K. Stability Of Square Plate With Concentric Cutout. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Eng. 2014, 8, 259–267. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Cedolin, L.; World Scientific (Firm). Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories; World Scientific Pub. Co.: Singapore; Hackensack, NJ, USA, 2010. [Google Scholar]
- Suemasu, H.; Takahashi, H.; Ishikawa, T. On failure mechanisms of composite laminates with an open hole subjected to compressive load. Compos. Sci. Technol. 2006, 66, 634–641. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Guan, Z.; Li, Z.; Wang, Y.; Zhang, M.; Bao, J.; Du, S. Clustering effect on mechanical properties and failure mechanism of open hole high modulus carbon fiber reinforced composite laminates under compression. Compos. Struct. 2019, 229, 111377. [Google Scholar] [CrossRef]
- Cai, H.; Miyano, Y.; Nakada, M. Long-term Open-hole Compression Strength of CFRP Laminates based on Strain Invariant Failure Theory. J. Thermoplast. Compos. Mater. 2009, 22, 63–81. [Google Scholar] [CrossRef]
- Ma, Q.; Huang, Z.-M. Failure prediction of an open-hole laminate under compression. Compos. Struct. 2024, 342, 118226. [Google Scholar] [CrossRef]
- Khedkar, S.; Chinthapenta, V.; Madhavan, M.; Ramji, M. Progressive failure analysis of CFRP laminate with interacting holes under compressive loading. J. Compos. Mater. 2015, 49, 3263–3283. [Google Scholar] [CrossRef]
- Guynn, E.; Bradley, W.; Elber, W. Micromechanics of Compression Failures in Open Hole Composite Laminates. In Composite Materials: Fatigue and Fracture, Second Volume; American Society for Testing & Materials: West Conshohocken, PA, USA, 1989; pp. 118–136. [Google Scholar]
- Hu, H.; Cao, D.; Cao, Z.; Li, S. Experimental and numerical investigations of wrinkle effect on failure behavior of curved composite laminates. Compos. Struct. 2021, 261, 113541. [Google Scholar] [CrossRef]
- Rozylo, P.; Wysmulski, P. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM). Compos. Struct. 2021, 262, 113597. [Google Scholar] [CrossRef]
- Ye, J.; Gong, Y.; Tao, J.; Cao, T.; Zhao, L.; Zhang, J.; Hu, N. Efficiently determining the R-curve and bridging traction-separation relation of mode I delamination in a simple way. Compos. Struct. 2022, 288, 115388. [Google Scholar] [CrossRef]
- De Maio, U.; Gaetano, D.; Greco, F.; Lonetti, P.; Pranno, A. An adaptive cohesive interface model for fracture propagation analysis in heterogeneous media. Eng. Fract. Mech. 2025, 325, 111330. [Google Scholar] [CrossRef]
- Duan, Q.; Hu, H.; Cao, D.; Cai, W.; Li, S. A new mechanism based cohesive zone model for Mode I delamination coupled with fiber bridging of composite laminates. Compos. Struct. 2024, 332, 117931. [Google Scholar] [CrossRef]
- Fabbrocino, F.; Funari, M.F.; Greco, F.; Lonetti, P.; Luciano, R.; Penna, R. Dynamic crack growth based on moving mesh method. Compos. Part B Eng. 2019, 174, 107053. [Google Scholar] [CrossRef]
- Falkowicz, K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Compos. Struct. 2023, 305, 116474. [Google Scholar] [CrossRef]
- Rozylo, P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model. Compos. Struct. 2021, 257, 113303. [Google Scholar] [CrossRef]
- Kopp, R.; Ni, X.; Nordin, P.; Hallander, P.; Selegård, L.; Wardle, B.L. Hygrothermal progressive damage in open-hole compression of composite laminates with aligned carbon nanotube interlaminar reinforcement studied by X-ray micro-computed tomography. Compos. Part B Eng. 2024, 278, 111391. [Google Scholar] [CrossRef]
- Williamson, C.; Thatcher, J. Investigation Into the Failure of Open Holes in Cfrp Laminates Under Biaxial Loading Conditions. In Experimental Analysis of Nano and Engineering Materials and Structures; Gdoutos, E.E., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 939–940. [Google Scholar]
- Debski, H.; Rozylo, P.; Wysmulski, P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Compos. Struct. 2020, 252, 112716. [Google Scholar] [CrossRef]
- Banat, D.; Kolakowski, Z.; Mania, R.J. Investigations of fml profile buckling and post-buckling behaviour under axial compression. Thin-Walled Struct. 2016, 107, 335–344. [Google Scholar] [CrossRef]
- Ascione, F. Influence of initial geometric imperfections in the lateral buckling problem of thin walled pultruded GFRP I-profiles. Compos. Struct. 2014, 112, 85–99. [Google Scholar] [CrossRef]
- Wysmulski, P. Analysis of the Effect of an Open Hole on the Buckling of a Compressed Composite Plate. Materials 2024, 17, 1081. [Google Scholar] [CrossRef] [PubMed]
- Debski, H.; Rozylo, P.; Wysmulski, P.; Falkowicz, K.; Ferdynus, M. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Compos. Part B Eng. 2021, 226, 109346. [Google Scholar] [CrossRef]
- Loughlan, J. The buckling of CFRP composite plates in compression and shear and thin-walled composite tubes in torsion—The effects of bend-twist coupling and the applied shear direction on buckling performance. Thin-Walled Struct. 2019, 138, 392–403. [Google Scholar] [CrossRef]
- Czapski, P.; Jakubczak, P.; Lunt, A.J.G.; Kaźmierczyk, F.; Urbaniak, M.; Kubiak, T. Numerical and experimental studies of the influence of curing and residual stresses on buckling in thin-walled, CFRP square-section profiles. Compos. Struct. 2021, 275, 114411. [Google Scholar] [CrossRef]
- Wysmulski, P. The effect of load eccentricity on the compressed CFRP Z-shaped columns in the weak post-critical state. Compos. Struct. 2022, 301, 116184. [Google Scholar] [CrossRef]
- Różyło, P. Experimental-numerical test of opensection composite columns stabilitysubjected to axial compression. Arch. Mater. Sci. Eng. 2017, 84, 58–64. [Google Scholar] [CrossRef]
- Falkowicz, K.; Ferdynus, M.; Rozylo, P. Experimental and numerical analysis of stability and failure of compressed composite plates. Compos. Struct. 2021, 263, 113657. [Google Scholar] [CrossRef]
- Cózar, I.R.; Guerrero, J.M.; Maimí, P.; Arteiro, A.; García-Rodríguez, S.; Herman, M.; Turon, A. Influence of unidirectional composite failure envelope shape on predicting compressive failure of a laminate with a filled-hole. Compos. Part B Eng. 2024, 276, 111352. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, J.; Wang, J.; Zhang, W.; Guan, Z. A comparative study on failure mechanisms of open-hole and filled-hole composite laminates: Experiment and numerical simulation. Thin-Walled Struct. 2024, 198, 111730. [Google Scholar] [CrossRef]
- Rodríguez-Sereno, J.M.; Pernas-Sánchez, J.; Artero-Guerrero, J.A.; López-Puente, J. A constitutive model for rate-dependency analysis of open hole woven composites under compression loading. Compos. Struct. 2024, 343, 118274. [Google Scholar] [CrossRef]
- Wysmulski, P.; Mieczkowski, G. Influence of Size of Open Hole on Stability of Compressed Plate Made of Carbon Fiber Reinforced Polymer. Adv. Sci. Technol. Res. J. 2024, 18, 238–247. [Google Scholar] [CrossRef]
- Aidi, B.; Case, S.W. Experimental and Numerical Analysis of Notched Composites Under Tension Loading. Appl. Compos. Mater. 2015, 22, 837–855. [Google Scholar] [CrossRef]
- Russo, A.; Zuccarello, B. An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading. Mech. Compos. Mater. 2007, 43, 359–376. [Google Scholar] [CrossRef]
- Wang, J.; Callus, P.J.; Bannister, M.K. Experimental and numerical investigation of the tension and compression strength of un-notched and notched quasi-isotropic laminates. Compos. Struct. 2004, 64, 297–306. [Google Scholar] [CrossRef]
- Carlsson, L.A.; Aronsson, C.-G.; Bäcklund, J. Notch sensitivity of thermoset and thermoplastic laminates loaded in tension. J. Mater. Sci. 1989, 24, 1670–1682. [Google Scholar] [CrossRef]
- Różyło, P.; Dębski, H.; Kral, J. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression. AIP Conf. Proc. 2018, 1992, 080001. [Google Scholar] [CrossRef]
- Duarte, A.P.C.; Díaz Sáez, A.; Silvestre, N. Comparative study between XFEM and Hashin damage criterion applied to failure of composites. Thin-Walled Struct. 2017, 115, 277–288. [Google Scholar] [CrossRef]
- Motamedi, D.; Mohammadi, S. Fracture analysis of composites by time independent moving-crack orthotropic XFEM. Int. J. Mech. Sci. 2012, 54, 20–37. [Google Scholar] [CrossRef]
- Wysmulski, P. Failure Mechanism of Tensile CFRP Composite Plates with Variable Hole Diameter. Materials 2023, 16, 4714. [Google Scholar] [CrossRef] [PubMed]
Reference | Material | Layup | Geometry l × w (mm × mm) | Hole Diameter (mm) |
---|---|---|---|---|
[51] | CFRP | [0°/±45°/90°]s | 127 × 25.4 | 3.175; 6.35; 9.525 |
[52] | CFRP GFRP | [0°/±45°/90°]s [0°/90°]2s | L × 30 | 1.5; 3; 5; 7.5; 10; 12; 15 |
[53] | CFRP | [45°/0/−45°/90°]2s | 305 × 38.1 | 2; 3.81; 6.35; 9.55 |
[54] | CFRP | [0°/90°/±45°]2s | 280 × 76 | 6.35; 12.7; 25.4 |
Specimen | Deflection | Shortening |
---|---|---|
[mm] | [mm] | |
plate_1 | 2.25 | 0.19 |
plate_2 | 2.58 | 0.22 |
plate_3 | 3.67 | 0.35 |
plate_4 | 8.99 | 1.73 |
Specimen | Hole Diameter | Failure Load—Deflection | Failure Load—Shortening | Failure Load—Average | Relative Error |
---|---|---|---|---|---|
[mm] | [N] | [N] | [N] | [%] | |
plate_1 | 0 | 239.1 | 236.2 | 237.6 | 1.21 |
plate_2 | 2 | 208.2 | 206.1 | 207.1 | 1.01 |
plate_3 | 4 | 196 | 194.3 | 195.1 | 0.87 |
plate_4 | 8 | 167.6 | 166.5 | 167.1 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysmulski, P. Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates. Materials 2025, 18, 3452. https://doi.org/10.3390/ma18153452
Wysmulski P. Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates. Materials. 2025; 18(15):3452. https://doi.org/10.3390/ma18153452
Chicago/Turabian StyleWysmulski, Pawel. 2025. "Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates" Materials 18, no. 15: 3452. https://doi.org/10.3390/ma18153452
APA StyleWysmulski, P. (2025). Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates. Materials, 18(15), 3452. https://doi.org/10.3390/ma18153452