Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = Biskra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 796 KiB  
Article
Electroassisted Incorporation of Ferrocene Within Sol–Gel Silica Films to Enhance Electron Transfer—Part II: Boosting Protein Sensing with Polyelectrolyte-Modified Silica
by Rayane-Ichrak Loughlani, Alonso Gamero-Quijano and Francisco Montilla
Molecules 2025, 30(15), 3246; https://doi.org/10.3390/molecules30153246 - 2 Aug 2025
Viewed by 197
Abstract
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either [...] Read more.
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either negatively charged poly(4-styrene sulfonic acid) or positively charged poly(diallyl dimethylammonium chloride). These hybrid films were deposited onto ITO electrodes and evaluated via cyclic voltammetry in aqueous ferrocenium solutions. The polyelectrolyte charge played a key role in the electroassisted incorporation of ferrocene: silica-PSS films promoted accumulation, while silica-PDADMAC films hindered it due to electrostatic repulsion. In situ UV-vis spectroscopy confirmed that only a fraction of the embedded ferrocene was electroactive. Nevertheless, this fraction enabled effective mediated detection of cytochrome c in solution. These findings highlight the crucial role of ionic interactions and hybrid composition in electron transfer to redox proteins, providing valuable insights for the development of advanced bioelectronic sensors. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

25 pages, 10162 KiB  
Article
The Luminous Ambience of an Ancient Roman Public Building: A Characterization of the Inner Daylit Environment of Rogatianus Library in Thamugadi City (Timgad, Algeria)
by Hana Djouadi, Azeddine Belakehal and Paola Zanovello
Heritage 2025, 8(8), 300; https://doi.org/10.3390/heritage8080300 - 28 Jul 2025
Viewed by 533
Abstract
The Roman public library of Timgad (Algeria) constituted the study object of several extensive research works, particularly during the French colonial era. Following a virtual restitution-focused research work, this investigation aims to quantitatively characterize the daylighting conditions inside Timgad Public Library. Here, it [...] Read more.
The Roman public library of Timgad (Algeria) constituted the study object of several extensive research works, particularly during the French colonial era. Following a virtual restitution-focused research work, this investigation aims to quantitatively characterize the daylighting conditions inside Timgad Public Library. Here, it must be remembered that the luminous environment inside libraries is a main design parameter and a main environmentalfactor. In addition, it must be highlighted that the Timgad region’s luminous climate differs from where Rome’s designers and builders practiced. Hence, at a first step, a comparison is carried out between the precepts of Vitruvius, the pioneer of ancient Roman architecture, and the outcomes of previous studies related to Roman libraries. Then, as a second step, a double approach combining both 3D geometric modeling and numerical simulation using Radiance (2.0Beta) software. These simulations are mainly elaborated for the case of the large reading room, including most of the building’s main activities—consulting, reading, and storing books. Finally, this inner luminous environment’s characterization highlights that the Timgad Roman antic library was not uniformly daylit and suggests that its use varied spatially and temporally with respect to this environmental parameter. Full article
Show Figures

Graphical abstract

22 pages, 1255 KiB  
Article
Assessment of Bacterial Contamination and Biofilm Formation in Popular Street Foods of Biskra, Algeria
by Sara Boulmaiz, Ammar Ayachi and Widad Bouguenoun
Acta Microbiol. Hell. 2025, 70(3), 32; https://doi.org/10.3390/amh70030032 - 28 Jul 2025
Viewed by 499
Abstract
This study assessed microbiological contamination in street-sold meat products, focusing on Enterobacterales and coagulase-negative staphylococci (CoNS) species and their antibiotic resistance. Chicken and mutton street foods like shawarma and brochettes were tested for bacterial load, species distribution. and resistance profiles. The results showed [...] Read more.
This study assessed microbiological contamination in street-sold meat products, focusing on Enterobacterales and coagulase-negative staphylococci (CoNS) species and their antibiotic resistance. Chicken and mutton street foods like shawarma and brochettes were tested for bacterial load, species distribution. and resistance profiles. The results showed significant contamination, with Enterobacter cloacae (5.38 Log 10 CFU/g). Staphylococcus lentus and Staphylococcus xylosus were also common, reaching 6.23 Log 10 CFU/g in some samples. Contamination levels varied significantly by food type, with chicken shawarma showing the highest risk. Antimicrobial susceptibility testing revealed high multidrug resistance, particularly among E. cloacae and Staphylococcus species. Biofilm formation an indicator of resistance was observed mainly in staphylococci and enhanced under fed-batch culture. These findings highlight public health concerns tied to poor hygiene and undercooking in street food environments. The study emphasizes the need for improved hygiene practices, standardized cooking methods, and systematic food safety monitoring to reduce contamination and antibiotic resistance risks. Full article
Show Figures

Figure 1

18 pages, 6300 KiB  
Article
Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis
by Sarra Zouaoui, Brahim Djemoui, Miloud Mohamed Mazari, Margherita Miele, Vittorio Pace, Haroun Houicha, Sérine Madji, Choukry Kamel Bendeddouche, Mehdi Adjdir and Seif El Islam Lebouachera
Processes 2025, 13(8), 2378; https://doi.org/10.3390/pr13082378 - 26 Jul 2025
Viewed by 418
Abstract
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper [...] Read more.
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper oxide (CuO) nanoparticles and their subsequent application in organic transformations. Clove extract was employed to reduce copper chloride via a simple co-precipitation method under mild conditions, yielding CuO nanoparticles characterized by XRD, FTIR, and SEM-EDX techniques. These nanoparticles were then used as catalysts in the copper-catalyzed azide–alkyne cycloaddition (CuAAC) to afford eugenol-based 1,2,3-triazoles in excellent yields. This dual use of clove extract exemplifies a sustainable approach that merges natural product valorization with efficient catalysis for triazole synthesis. Full article
Show Figures

Figure 1

20 pages, 3263 KiB  
Article
Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023
by Tallal Abdel Karim Bouzir, Djihed Berkouk, Safieddine Ounis, Sami Melik, Noradila Rusli and Mohammed M. Gomaa
Urban Sci. 2025, 9(7), 282; https://doi.org/10.3390/urbansci9070282 - 18 Jul 2025
Viewed by 316
Abstract
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), [...] Read more.
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), Nefta (Tunisia), Ghadames (Libya), and Siwa (Egypt) over the period 2000–2023, using Landsat satellite imagery. A three-step analysis was employed: calculation of NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index), and LST, followed by supervised land cover classification and statistical tests to examine the relationships between the studied variables. The results reveal substantial reductions in bare soil (e.g., 48.10% in Siwa) and notable urban expansion (e.g., 136.01% in Siwa and 48.46% in Ghadames). Vegetation exhibited varied trends, with a slight decline in Tolga (0.26%) and a significant increase in Siwa (+27.17%). LST trends strongly correlated with land cover changes, demonstrating increased temperatures in urbanized areas and moderated temperatures in vegetated zones. Notably, this study highlights that traditional urban designs integrated with dense palm groves significantly mitigate thermal stress, achieving lower LST compared to modern urban expansions characterized by sparse, heat-absorbing surfaces. In contrast, areas dominated by fragmented vegetation or seasonal crops exhibited reduced cooling capacity, underscoring the critical role of vegetation type, spatial arrangement, and urban morphology in regulating oasis microclimates. Preserving palm groves, which are increasingly vulnerable to heat-driven pests, diseases and the introduction of exotic species grown for profit, together with a revival of the traditional compact urban fabric that provides shade and has been empirically confirmed by other oasis studies to moderate the microclimate more effectively than recent low-density extensions, will maintain the crucial synergy between buildings and vegetation, enhance the cooling capacity of these settlements, and safeguard their tangible and intangible cultural heritage. Full article
(This article belongs to the Special Issue Geotechnology in Urban Landscape Studies)
Show Figures

Figure 1

14 pages, 1235 KiB  
Proceeding Paper
Quadrotor Trajectory Tracking Under Wind Disturbance Using Backstepping Control Based on Different Optimization Techniques
by Imam Barket Ghiloubi, Latifa Abdou, Oussama Lahmar and Abdel Hakim Drid
Eng. Proc. 2025, 87(1), 93; https://doi.org/10.3390/engproc2025087093 - 16 Jul 2025
Viewed by 296
Abstract
Enhancing quadrotor control to improve both precision and responsiveness is essential for expanding their deployment in complex and dynamic environments. These aerial vehicles are widely used in applications, such as aerial mapping, delivery, disaster response, and defense, where maintaining stability and accuracy is [...] Read more.
Enhancing quadrotor control to improve both precision and responsiveness is essential for expanding their deployment in complex and dynamic environments. These aerial vehicles are widely used in applications, such as aerial mapping, delivery, disaster response, and defense, where maintaining stability and accuracy is critical, especially under external disturbances like wind. This paper makes three key contributions. First, it develops a nonlinear mathematical model of a quadrotor and designs a backstepping controller for trajectory tracking. Second, the controller’s parameters are optimized using three nature-inspired algorithms: Gray Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and the Flower Pollination Algorithm (FPA), enabling performance comparisons in terms of their tracking precision and control effort. Third, the robustness of the best-performing optimized controller is evaluated by applying wind disturbances at the simulation level, modeled as external forces acting along the x-axis and summed with the control input. The simulation results highlight the comparative efficiency of the optimization methods and demonstrate the robustness of the selected controller in maintaining stability and accuracy under wind-induced perturbations. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

27 pages, 8571 KiB  
Article
Optimising Thermal Comfort in Algerian Reference Hotel Across Eight Climate Zones: A Comparative Study of Simulation and Psychrometric Chart Results
by Ahmed Kaihoul, Mohammad El Youssef, Efisio Pitzalis, Leila Sriti, Yasmine Dechouk, Khaoula Amraoui and Alla Eddine Khelil
Sustainability 2025, 17(14), 6249; https://doi.org/10.3390/su17146249 - 8 Jul 2025
Viewed by 1216
Abstract
Since gaining independence in 1962, Algeria has significantly developed its tourism infrastructure, including notable projects by Fernand Pouillon. The thermal performance of hotel buildings, measured by discomfort hours and considering the design parameters for both PMV-PPD and adaptive comfort models, is a crucial [...] Read more.
Since gaining independence in 1962, Algeria has significantly developed its tourism infrastructure, including notable projects by Fernand Pouillon. The thermal performance of hotel buildings, measured by discomfort hours and considering the design parameters for both PMV-PPD and adaptive comfort models, is a crucial study area across Algeria’s eight climate zones. This research focuses on the M’Zab Hotel in Ghardaïa, designed by Pouillon, utilising in situ measurements and dynamic simulations with EnergyPlus. After validating the simulation model, the performance of the optimised model, derived from sensitivity analysis parameters, is explored. A comparative study is conducted, analysing results obtained through simulation and psychrometric charts for both comfort models across Algeria’s climate zones. The findings indicate that the optimised design significantly reduces discomfort hours by 27.9% to 54.8% for the PMV-PPD model and 38.8% to 90.3% for the adaptive model, compared to the actual design performance. Strong correlations are observed between the simulation and psychrometric chart results for the PMV-PPD model, while the correlation for the adaptive model requires further investigation. Full article
Show Figures

Figure 1

21 pages, 2880 KiB  
Article
Valorization of a Natural Compound Library in Exploring Potential Marburg Virus VP35 Cofactor Inhibitors via an In Silico Drug Discovery Strategy
by Mohamed Mouadh Messaoui, Mebarka Ouassaf, Nada Anede, Kannan R. R. Rengasamy, Shafi Ullah Khan and Bader Y. Alhatlani
Curr. Issues Mol. Biol. 2025, 47(7), 506; https://doi.org/10.3390/cimb47070506 - 2 Jul 2025
Viewed by 463
Abstract
This study focuses on exploring potential inhibitors of the Marburg virus interferon inhibitory domain protein (MARV-VP35), which is responsible for immune evasion and immunosuppression during viral manifestation. A combination of in silico techniques was applied, including structure-based pharmacophore virtual screening, molecular docking, absorption, [...] Read more.
This study focuses on exploring potential inhibitors of the Marburg virus interferon inhibitory domain protein (MARV-VP35), which is responsible for immune evasion and immunosuppression during viral manifestation. A combination of in silico techniques was applied, including structure-based pharmacophore virtual screening, molecular docking, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, molecular dynamics (MD), and molecular stability assessment of the identified hits. The docking scores of the 14 selected ligands ranged between −6.88 kcal/mol and −5.28 kcal/mol, the latter being comparable to the control ligand. ADMET and drug likeness evaluation identified Mol_01 and Mol_09 as the most promising candidates, both demonstrating good predicted antiviral activity against viral targets. Density functional theory (DFT) calculations, along with relevant quantum chemical descriptors, correlated well with the docking score hierarchy, and molecular electrostatic potential (MEP) mapping confirmed favorable electronic distributions supporting the docking orientation. Molecular dynamics simulations further validated complex stability, with consistent root mean square deviation (RMSD), root mean square fluctuation (RMSF), and secondary structure element (SSE) profiles. These findings support Mol_01 and Mol_09 as viable candidates for experimental validation. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

39 pages, 10552 KiB  
Article
An Investigation of Microclimatic Influences on Pedestrian Perception and Walking Experience in Contrasting Urban Fabrics: The Case of the Old Town and the Lower City of Béjaïa, Algeria
by Yacine Mansouri, Mohamed Elhadi Matallah, Abdelghani Attar, Waqas Ahmed Mahar and Shady Attia
Urban Sci. 2025, 9(7), 243; https://doi.org/10.3390/urbansci9070243 - 26 Jun 2025
Viewed by 1209
Abstract
This study explores the impact of microclimatic variations on thermal perception and walking experience in Béjaïa, Algeria, focusing on two contrasting urban areas: the compact historic medina and the modern lower city. A mixed-method approach combined microclimatic measurements (Ta, Ts, Va, RH) with [...] Read more.
This study explores the impact of microclimatic variations on thermal perception and walking experience in Béjaïa, Algeria, focusing on two contrasting urban areas: the compact historic medina and the modern lower city. A mixed-method approach combined microclimatic measurements (Ta, Ts, Va, RH) with subjective evaluations from 70 participants. After urban morphological analysis, walking itineraries were designed and studied through accompanied walks. Participants reported their thermal sensations and walking comfort via questionnaires and mental maps, while environmental data were simultaneously collected (21–28 July 2022). Results show that transitions between urban fabrics significantly affect thermal sensation and walking thermal comfort (WTC). Strong correlations were observed between surface temperature (Ts) and sky view factor (SVF), and between ASV and WTC (Kendall’s τᵦ = 0.79, 95% CI [0.70, 0.88]). Beyond physical factors, perceptual variables like vegetation (OR = 1.50), maintenance (OR = 1.40), and views (OR = 1.30) significantly increased WTC, while fatigue (OR = 0.70) and safety concerns (OR = 0.80) reduced it. The findings highlight strong contrasts between the two areas and support planning strategies emphasizing vegetation, spatial optimization, and the integration of perceptual thermal factors in urban design. Full article
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Thermal, Metallurgical, and Mechanical Analysis of Single-Pass INC 738 Welded Parts
by Cherif Saib, Salah Amroune, Mohamed-Saïd Chebbah, Ahmed Belaadi, Said Zergane and Barhm Mohamad
Metals 2025, 15(6), 679; https://doi.org/10.3390/met15060679 - 18 Jun 2025
Viewed by 401
Abstract
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a [...] Read more.
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a surface Gaussian distribution and a volumetric model, both implemented via DFLUX subroutines to simulate welding on butt-jointed plates. The simulation accounted for key welding parameters, including current, voltage, welding speed, and plate dimensions. The thermophysical properties of the INC 738 LC nickel superalloy were used in the model. Solidification characteristics, such as dendritic arm spacing, were estimated based on cooling rates around the weld pool. The model also calculated transverse residual stresses and applied a hot cracking criterion to identify regions vulnerable to cracking. The peak transverse stress, recorded in the heat-affected zone (HAZ), reached 1.1 GPa under Goldak’s heat input model. Additionally, distortions in the welded plates were evaluated for both heat source configurations. Full article
Show Figures

Figure 1

17 pages, 3508 KiB  
Article
Zero-Sequence Voltage Outperforms MCSA-STFT for a Robust Inter-Turn Short-Circuit Fault Diagnosis in Three-Phase Induction Motors: A Comparative Study
by Mouhamed Houili, Mohamed Sahraoui, Antonio J. Marques Cardoso and Abdeldjalil Alloui
Machines 2025, 13(6), 501; https://doi.org/10.3390/machines13060501 - 7 Jun 2025
Viewed by 1140
Abstract
Three-phase induction motors are widely adopted in industrial systems due to their robustness, ease of maintenance, and simple operation. However, they are prone to various types of faults, notably stator winding faults. Previous research indicates that 20–40% of three-phase induction motor failures are [...] Read more.
Three-phase induction motors are widely adopted in industrial systems due to their robustness, ease of maintenance, and simple operation. However, they are prone to various types of faults, notably stator winding faults. Previous research indicates that 20–40% of three-phase induction motor failures are stator-related, with inter-turn short circuits as a leading cause. These faults can pose significant risks to both the motor and connected equipment. Therefore, the early detection of inter-turn short circuit (ITSC) faults is essential to prevent system breakdowns and improve the safety and reliability of industrial operations. This paper presents a comparative investigation of two distinct diagnostic methodologies for the detection of ITSC faults in induction motors. The first methodology is based on a Motor Current Signature Analysis (MCSA) utilizing the short-time Fourier transform (STFT) for the real-time monitoring of fault-related harmonics. The second methodology is centered around the monitoring of the zero-sequence voltage (ZSV). The findings from several experimental tests performed on a 1.1 kW three-phase induction motor across a range of operating conditions highlight the superior performance of the ZSV method with respect to the MCSA-based STFT method in terms of reliability, rapidity, and precision for the diagnosis of ITSC faults. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

30 pages, 4325 KiB  
Article
Discovery of Novel Natural Inhibitors of H5N1 Neuraminidase Using Integrated Molecular Modeling and ADMET Prediction
by Afaf Zekri, Mebarka Ouassaf, Shafi Ullah Khan, Kannan R. R. Rengasamy and Bader Y. Alhatlani
Bioengineering 2025, 12(6), 622; https://doi.org/10.3390/bioengineering12060622 - 7 Jun 2025
Viewed by 832
Abstract
The avian influenza virus, particularly the highly pathogenic H5N1 subtype, represents a significant public health threat due to its interspecies transmission potential and growing resistance to current antiviral therapies. To address this, the identification of novel and effective neuraminidase (NA) inhibitors is critical. [...] Read more.
The avian influenza virus, particularly the highly pathogenic H5N1 subtype, represents a significant public health threat due to its interspecies transmission potential and growing resistance to current antiviral therapies. To address this, the identification of novel and effective neuraminidase (NA) inhibitors is critical. In this study, an integrated in silico strategy was employed, beginning with the generation of an energy-optimized pharmacophore model (e-pharmacophore, ADDN) based on the reference inhibitor Zanamivir. A virtual screening of 47,781 natural compounds from the PubChem database was performed, followed by molecular docking validated through an enrichment assay. Promising hits were further evaluated via ADMET predictions, density functional theory (DFT) calculations to assess chemical reactivity, and molecular dynamics (MD) simulations to examine the stability of the ligand–protein complexes. Three lead compounds (C1: CID 102209473, C2: CID 85692821, and C3: CID 45379525) demonstrated strong binding affinity toward NA. Their ADMET profiles predicted favorable bioavailability and low toxicity. The DFT analyses indicated suitable chemical reactivity, particularly for C2 and C3. The MD simulations confirmed the structural stability of all three ligand–NA complexes, supported by robust and complementary intermolecular interactions. In contrast, Zanamivir exhibited limited hydrophobic interactions, compromising its binding stability within the active site. These findings offer a rational foundation for further experimental validation and the development of next-generation NA inhibitors derived from natural sources. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

22 pages, 4847 KiB  
Article
Design and Implementation of a Comparative Study of Fractional-Order Fuzzy Logic and Conventional PI Controller for Optimizing Stand-Alone DFIG Performance in Wind Energy Systems
by Fella Boucetta, Mohamed Toufik Benchouia, Amel Benmouna, Mohamed Chebani, Amar Golea, Mohamed Becherif and Mohammed Saci Chabani
Sci 2025, 7(2), 80; https://doi.org/10.3390/sci7020080 - 5 Jun 2025
Viewed by 602
Abstract
This paper introduces a novel fractional-order fuzzy logic controller (FOFLC) designed for stator voltage control in standalone doubly fed induction generator (DFIG) systems used in wind energy applications. Unlike traditional fuzzy logic controllers (FLCs), which are limited by integer-order dynamics, the FOFLC leverages [...] Read more.
This paper introduces a novel fractional-order fuzzy logic controller (FOFLC) designed for stator voltage control in standalone doubly fed induction generator (DFIG) systems used in wind energy applications. Unlike traditional fuzzy logic controllers (FLCs), which are limited by integer-order dynamics, the FOFLC leverages the advanced principles of fractional-order (FO) calculus. By integrating fuzzy logic with fractional-order operators, the FOFLC enhances system precision, adaptability, and interpretability while addressing the inherent limitations of conventional proportional-integral (PI) controllers and integer-order FLCs. A key innovation of the FOFLC is its dual-mode architecture, enabling it to operate seamlessly as either a traditional FLC or a fractional-order FOFLC controller. This versatility allows for independent tuning of fractional parameters, optimizing the system’s response to transients, steady-state errors, and disturbances. The controller’s flexibility makes it particularly well-suited for nonlinear and dynamically complex stand-alone renewable energy systems. The FOFLC is experimentally validated on a 3-kW DFIG test bench using the dSPACE-1104 platform under various operating conditions. Compared to a conventional PI controller, the FOFLC demonstrated superior performance, achieving 80% reduction in response time, eliminating voltage overshoot and undershoot, reducing stator power and torque ripples by over 46%, and decreasing total harmonic distortion (THD) of both stator voltage and current by more than 50%. These results confirm the FOFLC’s potential as a robust and adaptive control solution for stand-alone renewable energy systems, ensuring high-quality power output and reliable operation. Full article
Show Figures

Figure 1

24 pages, 2094 KiB  
Article
Optimizing Hybrid Renewable Energy Systems for Isolated Applications: A Modified Smell Agent Approach
by Manal Drici, Mourad Houabes, Ahmed Tijani Salawudeen and Mebarek Bahri
Eng 2025, 6(6), 120; https://doi.org/10.3390/eng6060120 - 1 Jun 2025
Viewed by 1130
Abstract
This paper presents the optimal sizing of a hybrid renewable energy system (HRES) for an isolated residential building using modified smell agent optimization (mSAO). The paper introduces a time-dependent approach that adapts the selection of the original SAO control parameters as the algorithm [...] Read more.
This paper presents the optimal sizing of a hybrid renewable energy system (HRES) for an isolated residential building using modified smell agent optimization (mSAO). The paper introduces a time-dependent approach that adapts the selection of the original SAO control parameters as the algorithm progresses through the optimization hyperspace. This modification addresses issues of poor convergence and suboptimal search in the original algorithm. Both the modified and standard algorithms were employed to design an HRES system comprising photovoltaic panels, wind turbines, fuel cells, batteries, and hydrogen storage, all connected via a DC-bus microgrid. The components were integrated with the microgrid using DC-DC power converters and supplied a designated load through a DC-AC inverter. Multiple operational scenarios and multi-objective criteria, including techno-economic metrics such as levelized cost of energy (LCOE) and loss of power supply probability (LPSP), were evaluated. Comparative analysis demonstrated that mSAO outperforms the standard SAO and the honey badger algorithm (HBA) used for the purpose of comparison only. Our simulation results highlighted that the PV–wind turbine–battery system achieved the best economic performance. In this case, the mSAO reduced the LPSP by approximately 38.89% and 87.50% over SAO and the HBA, respectively. Similarly, the mSAO also recorded LCOE performance superiority of 4.05% and 28.44% over SAO and the HBA, respectively. These results underscore the superiority of the mSAO in solving optimization problems. Full article
Show Figures

Figure 1

21 pages, 3483 KiB  
Article
Impact of Climate Change on Wheat Production in Algeria and Optimization of Irrigation Scheduling for Drought Periods
by Youssouf Ouzani, Fatima Hiouani, Mirza Junaid Ahmad and Kyung-Sook Choi
Water 2025, 17(11), 1658; https://doi.org/10.3390/w17111658 - 29 May 2025
Viewed by 789
Abstract
This study investigates the impact of climate variability on wheat production in Algeria’s semi-arid interior plains from 2014 to 2024, aiming to curb the challenges of rainfed wheat cultivation, optimize irrigation, and improve water productivity. The Soil–Water–Atmosphere–Plant (SWAP) model-driven approach refined irrigation scheduling [...] Read more.
This study investigates the impact of climate variability on wheat production in Algeria’s semi-arid interior plains from 2014 to 2024, aiming to curb the challenges of rainfed wheat cultivation, optimize irrigation, and improve water productivity. The Soil–Water–Atmosphere–Plant (SWAP) model-driven approach refined irrigation scheduling to mitigate climate-induced losses and improve resource efficiency. Using historical climate data, soil properties, and wheat growth observations from the experimental farm of the Technical Institute for Field Crops, the SWAP model was calibrated and validated using one-factor-at-a-time sensitivity analysis, achieving a coefficient of determination (R2) of 0.93 and a Normalized Root Mean Squared Error (NRMSE) of 17.75. Two drought-based irrigation indices, Soil Moisture Drought Index (SMDI) and Crop Water Stress Index (CWSI), guided adaptive irrigation strategies, showing a significant reduction in crop failure during drought periods. Results revealed a strong link between rainfall variability and wheat yield. Adopting a 9-day irrigation interval could increase water productivity to 18.91 kg ha1 mm1, enhancing yield stability under varying climatic conditions. The SMDI approach maintained soil moisture during extreme drought, while CWSI optimized water use in normal and wet years. This study integrates SMDI and CWSI into a validated irrigation framework, offering data-driven strategies to enhance wheat production resilience. Findings support sustainable water management and provide practical insights for policymakers and farmers to refine irrigation planning and climate adaptation, contributing to long-term agricultural sustainability. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

Back to TopTop