Valorization of a Natural Compound Library in Exploring Potential Marburg Virus VP35 Cofactor Inhibitors via an In Silico Drug Discovery Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Sequence Alignment
2.2. Protein Preparation
2.3. Dataset Preparation and Initial Screening Strategy
2.4. E-Pharmacophore Virtual Screening and Molecular Docking
2.5. ADMET, Drug Likeness, and Antiviral Activity Prediction
2.6. Chemical Stability and Reactivity
2.7. Molecular Dynamics
3. Results and Discussion
3.1. Sequence Alignment Between MARV VP35 and EBOV VP35 Proteins
3.2. E-Pharmacophore Virtual Screening and Molecular Docking
3.3. Pharmacokinetics and Toxicity Prediction
3.4. Drug Likeness and Antiviral Activity
3.5. Binding Modes and Interaction Maps
3.6. Density Functional Analysis and Chemical Stability of Candidate HITS
3.7. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COCONUT database | Collection of open natural products molecular database |
DFT | Density functional theory |
dsRNA | Double-stranded ribonucleic acid |
EBOV | Ebola virus |
FDA | Food and Drug Administration |
HOMO | Higher occupied molecular orbital |
IFN-1 | Interferons type-1 |
IID | Interferon inhibitory domain |
IP | Ionization potential |
LD50 | Half-lethal dose |
LUMO | Lower unoccupied molecular orbitals |
MARV | Marburg virus |
MD | Molecular dynamics |
MDA5 | Melanoma differentiation-associated protein-5 |
PL | Protein–ligand complex |
RBD | RNA binding domain |
Rdrp | RNA-Dependent RNA Polymerase |
RIG-I | Retinoic acid-inducible gene I |
RMSD | Root mean square deviation |
RMSF | Root mean square fluctuation |
SSE | Secondary structure elements |
TD | Time-dependent |
VP35 | Viral polymerase cofactor 35 |
WHO | World Health Organization |
References
- Kuhn, J.; Andersen, K.; Bào, Y.; Bavari, S.; Becker, S.; Bennett, R.; Bergman, N.; Blinkova, O.; Bradfute, S.; Brister, J.; et al. Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses 2014, 6, 3663–3682. [Google Scholar] [CrossRef] [PubMed]
- Mühlberger, E.; Weik, M.; Volchkov, V.E.; Klenk, H.-D.; Becker, S. Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems. J. Virol. 1999, 73, 2333–2342. [Google Scholar] [CrossRef]
- Kirchdoerfer, R.N.; Wasserman, H.; Amarasinghe, G.K.; Saphire, E.O. Filovirus Structural Biology: The Molecules in the Machine. In Marburg- and Ebolaviruses; Mühlberger, E., Hensley, L.L., Towner, J.S., Eds.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2017; Volume 411, pp. 381–417. ISBN 978-3-319-68946-3. [Google Scholar]
- Slenczka, W.; Klenk, H.D. Forty Years of Marburg Virus. J. Infect. Dis. 2007, 196, S131–S135. [Google Scholar] [CrossRef] [PubMed]
- Bausch, D.; Nichol, S.; Muyembe-Tamfum, J.; Borchert, M.; Rollin, P.; Sleurs, H.; Campbell, P.; Tshioko, F.; Roth, C.; Colebunders, R. International Scientific and Technical Committee for Marburg Hemorrhagic Fever Control in the Democratic Republic of the Congo. Marburg Hemorrhagic Fever Associated with Multiple Genetic Lineages of Virus. N. Engl. J. Med. 2006, 355, 909–919. [Google Scholar] [CrossRef]
- Towner, J.S.; Khristova, M.L.; Sealy, T.K.; Vincent, M.J.; Erickson, B.R.; Bawiec, D.A.; Hartman, A.L.; Comer, J.A.; Zaki, S.R.; Ströher, U.; et al. Marburgvirus Genomics and Association with a Large Hemorrhagic Fever Outbreak in Angola. J. Virol. 2006, 80, 6497–6516. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Kiley, M.P.; Holloway, B.P.; Auperin, D.D. Sequence Analysis of the Ebola Virus Genome: Organization, Genetic Elements, and Comparison with the Genome of Marburg Virus. Virus Res. 1993, 29, 215–240. [Google Scholar] [CrossRef]
- Bharat, T.A.M.; Noda, T.; Riches, J.D.; Kraehling, V.; Kolesnikova, L.; Becker, S.; Kawaoka, Y.; Briggs, J.A.G. Structural Dissection of Ebola Virus and Its Assembly Determinants Using Cryo-Electron Tomography. Proc. Natl. Acad. Sci. USA 2012, 109, 4275–4280. [Google Scholar] [CrossRef]
- Berke, I.C.; Modis, Y. MDA5 Cooperatively Forms Dimers and ATP-Sensitive Filaments upon Binding Double-Stranded RNA: MDA5 Forms Dimers and Filaments on Binding dsRNA. EMBO J. 2012, 31, 1714–1726. [Google Scholar] [CrossRef]
- Edwards, M.R.; Liu, G.; Mire, C.E.; Sureshchandra, S.; Luthra, P.; Yen, B.; Shabman, R.S.; Leung, D.W.; Messaoudi, I.; Geisbert, T.W.; et al. Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins. Cell Rep. 2016, 14, 1632–1640. [Google Scholar] [CrossRef]
- Andrejeva, J.; Childs, K.S.; Young, D.F.; Carlos, T.S.; Stock, N.; Goodbourn, S.; Randall, R.E. The V Proteins of Paramyxoviruses Bind the IFN-Inducible RNA Helicase, Mda-5, and Inhibit Its Activation of the IFN -β Promoter. Proc. Natl. Acad. Sci. USA 2004, 101, 17264–17269. [Google Scholar] [CrossRef]
- Hartmann, G. Nucleic Acid Immunity. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 133, pp. 121–169. ISBN 978-0-12-812409-3. [Google Scholar]
- Leung, D.W.; Ginder, N.D.; Fulton, D.B.; Nix, J.; Basler, C.F.; Honzatko, R.B.; Amarasinghe, G.K. Structure of the Ebola VP35 Interferon Inhibitory Domain. Proc. Natl. Acad. Sci. USA 2009, 106, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, P.; Edwards, M.R.; Shabman, R.S.; Leung, D.W.; Endlich-Frazier, A.C.; Borek, D.M.; Otwinowski, Z.; Liu, G.; Huh, J.; Basler, C.F.; et al. Structural Basis for Marburg Virus VP35–Mediated Immune Evasion Mechanisms. Proc. Natl. Acad. Sci. USA 2012, 109, 20661–20666. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.J.; Davis, M.E.; Gack, M.U. Regulation of RIG-I-like Receptor Signaling by Host and Viral Proteins. Cytokine Growth Factor Rev. 2014, 25, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Health Alert Network (HAN)—00517|First Marburg Virus Disease Outbreak in the Republic of Rwanda. Available online: https://emergency.cdc.gov/han/2024/han00517.asp (accessed on 13 November 2024).
- Marburg Virus Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/marburg-virus-disease (accessed on 13 November 2024).
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; et al. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola Virus in Rhesus Monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef]
- Abdullah, G. Auranofin Inhibits Ebola Virus Replication by Targeting NP-NP and NP-VP35 Interactions. Ph.D. Thesis, Howard University, Washington, DC, USA, 2024. [Google Scholar]
- Vanmechelen, B.; Stroobants, J.; Chiu, W.; Naesens, L.; Schepers, J.; Vermeire, K.; Maes, P. Development and Optimization of Biologically Contained Marburg Virus for High-Throughput Antiviral Screening. Antivir. Res. 2022, 207, 105426. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Wu, H.; Wang, X.; Zheng, H.; Feng, J.; Wang, J.; Luo, L.; Xiao, H.; Qiao, C.; et al. A Novel MARV Glycoprotein-Specific Antibody with Potentials of Broad-Spectrum Neutralization to Filovirus. eLife 2024, 12, RP91181. [Google Scholar] [CrossRef]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef]
- Song, X. Antibacterial, Antifungal, and Antiviral Bioactive Compounds from Natural Products. Molecules 2024, 29, 825. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, X.; Shan, L.; Liu, L.; Chen, J. The Antiviral Activity of Currently Used Medicinal Plants in Aquaculture and Structure–Activity Relationship of Their Active Ingredients. Rev. Aquac. 2024, 16, 154–173. [Google Scholar] [CrossRef]
- Bale, S.; Julien, J.-P.; Bornholdt, Z.A.; Kimberlin, C.R.; Halfmann, P.; Zandonatti, M.A.; Kunert, J.; Kroon, G.J.A.; Kawaoka, Y.; MacRae, I.J.; et al. Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism. PLoS Pathog. 2012, 8, e1002916. [Google Scholar] [CrossRef]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT Online: Collection of Open Natural Products Database. J. Cheminformatics 2021, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Pandit, N.K.; Mann, S.S.; Mohanty, A.; Meena, S.S. E-Pharmacophore Modeling and in Silico Study of CD147 Receptor against SARS-CoV-2 Drugs. Genom. Inf. 2023, 21, e17. [Google Scholar] [CrossRef]
- Yang, S.-Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- Kutlushina, A.; Khakimova, A.; Madzhidov, T.; Polishchuk, P. Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. Molecules 2018, 23, 3094. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, S.; Chen, T.; Niu, M.-M. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking and Biological Evaluation for Identification of Potential Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors. Molecules 2019, 24, 4258. [Google Scholar] [CrossRef]
- Alsaady, I.M.; Bajrai, L.H.; Alandijany, T.A.; Gattan, H.S.; El-Daly, M.M.; Altwaim, S.A.; Alqawas, R.T.; Dwivedi, V.D.; Azhar, E.I. Cheminformatics Strategies Unlock Marburg Virus VP35 Inhibitors from Natural Compound Library. Viruses 2023, 15, 1739. [Google Scholar] [CrossRef]
- Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A Novel Approach to Pharmacophore Modeling and 3D Database Searching. Chem. Biol. Drug Des. 2006, 67, 370–372. [Google Scholar] [CrossRef]
- Caruba, T.; Jaccoulet, E. Pharmacologie et Thérapeutiques: Unité d’enseignement 2.11; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018; ISBN 2-294-76071-9. [Google Scholar]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2024, 52, gkae303. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Wang, L.; Ding, J.; Pan, L.; Cao, D.; Jiang, H.; Ding, X. Quantum Chemical Descriptors in Quantitative Structure–Activity Relationship Models and Their Applications. Chemom. Intell. Lab. Syst. 2021, 217, 104384. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian16 Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Abdou, A. Synthesis, Structural, Molecular Docking, DFT, Vibrational Spectroscopy, HOMO-LUMO, MEP Exploration, Antibacterial and Antifungal Activity of New Fe(III), Co(II) and Ni(II) Hetero-Ligand Complexes. J. Mol. Struct. 2022, 1262, 132911. [Google Scholar] [CrossRef]
- Schrödinger Release 2023: Desmond Molecular Dynamics System MaestroDesmond Interoperability Tools; D. E. Shaw Research: New York, NY, USA, 2017.
- Banks, J.L.; Beard, H.S.; Cao, Y.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.; Halgren, T.A.; Mainz, D.T.; Maple, J.R.; et al. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem. 2005, 26, 1752–1780. [Google Scholar] [CrossRef]
- Toukmaji, A.Y.; Board, J.A. Ewald Summation Techniques in Perspective: A Survey. Comput. Phys. Commun. 1996, 95, 73–92. [Google Scholar] [CrossRef]
- Zielkiewicz, J. Structural Properties of Water: Comparison of the SPC, SPCE, TIP4P, and TIP5P Models of Water. J. Chem. Phys. 2005, 123, 104501. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover Chains: The Canonical Ensemble via Continuous Dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Lo, M.K.; Albariño, C.G.; Perry, J.K.; Chang, S.; Tchesnokov, E.P.; Guerrero, L.; Chakrabarti, A.; Shrivastava-Ranjan, P.; Chatterjee, P.; McMullan, L.K.; et al. Remdesivir Targets a Structurally Analogous Region of the Ebola Virus and SARS-CoV-2 Polymerases. Proc. Natl. Acad. Sci. USA 2020, 117, 26946–26954. [Google Scholar] [CrossRef]
- Cross, R.W.; Bornholdt, Z.A.; Prasad, A.N.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Abelson, D.M.; Kim, D.H.; Shestowsky, W.S.; Campbell, L.A.; et al. Combination Therapy Protects Macaques against Advanced Marburg Virus Disease. Nat. Commun. 2021, 12, 1891. [Google Scholar] [CrossRef] [PubMed]
- Secretariat, U.E. Globally Harmonized System of Classification and Labelling of Chemicals (GHS); UNECE: Geneva, Switzerland, 2023. [Google Scholar]
- Muslikh, F.A.; Kurniawati, E.; Ma’arif, B.; Zenmas, S.Z.; Salmasfattah, N.; Dhafin, A.A.; Prasetyawan, F. ADMET Prediction of the Dominant Compound from Mangosteen (Garcinia mangostana L.) Using pkCSM: A Computational Approach. Int. J. Contemp. Sci. 2023, 1, 33–38. [Google Scholar]
- Baell, J.B.; Holloway, G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef] [PubMed]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3, 435–444. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Yang, Z.-J.; He, J.-H.; Lu, A.-P.; Liu, S.; Hou, T.-J.; Cao, D.-S. Benchmarking the Mechanisms of Frequent Hitters: Limitation of PAINS Alerts. Drug Discov. Today 2021, 26, 1353–1358. [Google Scholar] [CrossRef]
- Ononamadu, C.; Ibrahim, A. Molecular Docking and Prediction of ADME/Drug-Likeness Properties of Potentially Active Antidiabetic Compounds Isolated from Aqueous-Methanol Extracts of Gymnema Sylvestre and Combretum Micranthum. BioTechnologia 2021, 102, 85–99. [Google Scholar] [CrossRef]
- Bonnet, P. Is Chemical Synthetic Accessibility Computationally Predictable for Drug and Lead-like Molecules? A Comparative Assessment between Medicinal and Computational Chemists. Eur. J. Med. Chem. 2012, 54, 679–689. [Google Scholar] [CrossRef]
- Ertl, P.; Schuffenhauer, A. Estimation of Synthetic Accessibility Score of Drug-like Molecules Based on Molecular Complexity and Fragment Contributions. J. Cheminformatics 2009, 1, 8. [Google Scholar] [CrossRef]
- Denison, M.R.; Spaan, W.J.M.; Van Der Meer, Y.; Gibson, C.A.; Sims, A.C.; Prentice, E.; Lu, X.T. The Putative Helicase of the Coronavirus Mouse Hepatitis Virus Is Processed from the Replicase Gene Polyprotein and Localizes in Complexes That Are Active in Viral RNA Synthesis. J. Virol. 1999, 73, 6862–6871. [Google Scholar] [CrossRef]
- Slanina, H.; Madhugiri, R.; Bylapudi, G.; Schultheiß, K.; Karl, N.; Gulyaeva, A.; Gorbalenya, A.E.; Linne, U.; Ziebuhr, J. Coronavirus Replication–Transcription Complex: Vital and Selective NMPylation of a Conserved Site in Nsp9 by the NiRAN-RdRp Subunit. Proc. Natl. Acad. Sci. USA 2021, 118, e2022310118. [Google Scholar] [CrossRef] [PubMed]
- Furman, P.A.; St Clair, M.H.; Fyfe, J.A.; Rideout, J.L.; Keller, P.M.; Elion, G.B. Inhibition of Herpes Simplex Virus-Induced DNA Polymerase Activity and Viral DNA Replication by 9-(2-Hydroxyethoxymethyl)Guanine and Its Triphosphate. J. Virol. 1979, 32, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, E.; Grünewald, K.; Elias, P.; Hällberg, B.M. Dynamics of the Herpes Simplex Virus DNA Polymerase Holoenzyme during DNA Synthesis and Proof-Reading Revealed by Cryo-EM. Nucleic Acids Res. 2024, 52, 7292–7304. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.W.; Prins, K.C.; Borek, D.M.; Farahbakhsh, M.; Tufariello, J.M.; Ramanan, P.; Nix, J.C.; Helgeson, L.A.; Otwinowski, Z.; Honzatko, R.B.; et al. Structural Basis for dsRNA Recognition and Interferon Antagonism by Ebola VP35. Nat. Struct. Mol. Biol. 2010, 17, 165–172. [Google Scholar] [CrossRef]
- Woolsey, C.; Borisevich, V.; Agans, K.N.; O’Toole, R.; Fenton, K.A.; Harrison, M.B.; Prasad, A.N.; Deer, D.J.; Gerardi, C.; Morrison, N.; et al. A Highly Attenuated Panfilovirus VesiculoVax Vaccine Rapidly Protects Nonhuman Primates Against Marburg Virus and 3 Species of Ebola Virus. J. Infect. Dis. 2023, 228, S660–S670. [Google Scholar] [CrossRef]
- Walker, M.G.; Mendez, C.G.; Ho, P.S. Non-classical Non-covalent σ-Hole Interactions in Protein Structure and Function: Concepts for Potential Protein Engineering Applications. Chem. Asian J. 2023, 18, e202300026. [Google Scholar] [CrossRef]
- Sagaama, A.; Issaoui, N.; Al-Dossary, O.; Kazachenko, A.S.; Wojcik, M.J. Non Covalent Interactions and Molecular Docking Studies on Morphine Compound. J. King Saud Univ. Sci. 2021, 33, 101606. [Google Scholar] [CrossRef]
- Vijayaraj, R.; Subramanian, V.; Chattaraj, P.K. Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: A QSAR Perspective. J. Chem. Theory Comput. 2009, 5, 2744–2753. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Eryilmaz, S.; Gul, M.; İnkaya, E. Investigation of Global Reactivity Descriptors of Some Perillaldehyde Derivatives in Different Solvents by DFT Method. Indian J. Chem. Technol. 2019, 26, 235–238. [Google Scholar]
- Ismael, M.; Abdel-Mawgoud, A.-M.M.; Rabia, M.K.; Abdou, A. Ni(II) Mixed-Ligand Chelates Based on 2-Hydroxy-1-Naphthaldehyde as Antimicrobial Agents: Synthesis, Characterization, and Molecular Modeling. J. Mol. Liq. 2021, 330, 115611. [Google Scholar] [CrossRef]
- Chaudhary, A.P.; Bharti, S.K.; Kumar, S.; Ved, K.; Padam, K. Study of Molecular Structure, Chemical Reactivity and First Hyperpolarizability of a Newly Synthesized N-(4-Oxo-2-Phenylquinazolin-3(4H)-Yl)-1H-Indole-2-Carboxamide Using Spectral Analysis. J. Mol. Struct. 2017, 1148, 356–363. [Google Scholar] [CrossRef]
- Singh, H. A DFT Approach for Theoretical and Experimental Study of Structure, Electronic, Hirshfeld Surface and Spectroscopic Properties of 12-(4-Bromophenyl)-2-(Prop-2-Ynyloxy)-9,10-Dihydro-8H-Benzo[a]Xanthen-11(12H)-on Single Crystal. Chem. Phys. 2019, 524, 1–13. [Google Scholar] [CrossRef]
Tag | Lipinski #Violations | Veber #Violations | B.A Score | PAINS #Alerts | Brenk #Alerts | S.A Score |
---|---|---|---|---|---|---|
Mol_01 | 0 | 0 | 0.55 | 0 | 0 | 4.88 |
Mol_02 | 0 | 0 | 0.55 | 0 | 0 | 4.2 |
Mol_03 | 0 | 0 | 0.55 | 0 | 0 | 3.05 |
Mol_04 | 0 | 0 | 0.55 | 0 | 0 | 3.15 |
Mol_05 | 0 | 0 | 0.55 | 0 | 0 | 4.58 |
Mol_06 | 0 | 0 | 0.55 | 0 | 0 | 4.2 |
Mol_07 | 0 | 0 | 0.55 | 1 | 1 | 3.83 |
Mol_08 | 0 | 0 | 0.56 | 0 | 1 | 4.45 |
Mol_09 | 0 | 0 | 0.55 | 0 | 0 | 4.68 |
Mol_10 | 0 | 0 | 0.55 | 0 | 0 | 2.8 |
Mol_11 | 0 | 0 | 0.55 | 1 | 1 | 3.9 |
Mol_12 | 0 | 0 | 0.55 | 0 | 0 | 3.21 |
Mol_13 | 0 | 0 | 0.55 | 0 | 1 | 4.84 |
Mol_14 | 0 | 0 | 0.55 | 0 | 0 | 4.17 |
Control | 2 | 2 | 0.17 | 0 | 1 | 6.43 |
Ligand | 2D Structure | Target | Confidence |
---|---|---|---|
Mol_01 | Replicase polyprotein 1ab | 0.8015 | |
Mol_09 | Replicase polyprotein 1ab | 0.8733 | |
DNA polymerase | 0.1141 | ||
Human herpesvirus 1 DNA polymerase | 0.1141 |
VP35-Mol_01 “Com_01” | VP35-Mol_09 “Com_09” | VP35-Control “Com_ctrl” | ||||||
---|---|---|---|---|---|---|---|---|
Residue | Distance | Type | Residue | Distance | Type | Residue | Distance | Type |
A:TYR317 A:ARG285 A:THR291 A:GLN233 A:ILE284 A:ALA214 | 2.87 2.08 2.21 1.98 4.40 4.81 | H-bond H-bond H-bond H-bond Pi-Alkyl Pi-Alkyl | A:LYS237 A:LYS237 A:LYS237 A:LYS237 A:THR291 A:VAL283 A:VAL283 A:PRO293 A:ILE284 | 2.88 2.62 2.36 2.56 2.47 1.89 1.78 5.07 4.81 | H-bond H-bond H-bond H-bond H-bond H-bond H-bond Pi-Alkyl Pi-Alkyl | A:GLN233 A:LYS237 A:GLN233 A:ASN225 A:ILE284 A:PHE218 A:PHE218 A:ILE284 A:PRO293 | 1.84 2.80 2.19 2.45 2.87 5.42 5.08 4.48 4.64 | H-bond H-bond H-bond Carbon H-bond Pi-sigma Pi-alkyl Pi-alkyl Pi-alkyl Pi-alkyl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messaoui, M.M.; Ouassaf, M.; Anede, N.; Rengasamy, K.R.R.; Khan, S.U.; Alhatlani, B.Y. Valorization of a Natural Compound Library in Exploring Potential Marburg Virus VP35 Cofactor Inhibitors via an In Silico Drug Discovery Strategy. Curr. Issues Mol. Biol. 2025, 47, 506. https://doi.org/10.3390/cimb47070506
Messaoui MM, Ouassaf M, Anede N, Rengasamy KRR, Khan SU, Alhatlani BY. Valorization of a Natural Compound Library in Exploring Potential Marburg Virus VP35 Cofactor Inhibitors via an In Silico Drug Discovery Strategy. Current Issues in Molecular Biology. 2025; 47(7):506. https://doi.org/10.3390/cimb47070506
Chicago/Turabian StyleMessaoui, Mohamed Mouadh, Mebarka Ouassaf, Nada Anede, Kannan R. R. Rengasamy, Shafi Ullah Khan, and Bader Y. Alhatlani. 2025. "Valorization of a Natural Compound Library in Exploring Potential Marburg Virus VP35 Cofactor Inhibitors via an In Silico Drug Discovery Strategy" Current Issues in Molecular Biology 47, no. 7: 506. https://doi.org/10.3390/cimb47070506
APA StyleMessaoui, M. M., Ouassaf, M., Anede, N., Rengasamy, K. R. R., Khan, S. U., & Alhatlani, B. Y. (2025). Valorization of a Natural Compound Library in Exploring Potential Marburg Virus VP35 Cofactor Inhibitors via an In Silico Drug Discovery Strategy. Current Issues in Molecular Biology, 47(7), 506. https://doi.org/10.3390/cimb47070506