Optimizing Hybrid Renewable Energy Systems for Isolated Applications: A Modified Smell Agent Approach
Abstract
:1. Introduction
- The paper presents a modified version of the smell agent optimization (SAO) algorithm, which uses a time-dependent approach to adapt the control parameters dynamically as the algorithm progresses. This modification improves convergence and search efficiency, addressing the limitations of the original SAO algorithm.
- The paper applies the modified and standard SAO algorithms to design a hybrid renewable energy system (HRES) for an isolated residential building in Annaba, Algeria. The system includes photovoltaic panels, wind turbines, fuel cells, batteries, and hydrogen storage, all integrated with a DC bus microgrid.
- The paper compares the modified SAO against the standard SAO, and both SAO variants are validated against the honey badger algorithm (HBA).
- Through simulations, the paper demonstrates that modified SAO (mSAO) significantly outperforms both the standard SAO and HBA in economic performance. It achieves a substantially lower loss of power supply and levelized cost of energy compared to the results obtained with the standard SAO and HBA.
2. Configuration of the System Under Study
2.1. System Modeling
- A.
- PV model
- B.
- Wind turbine model
- C.
- Energy Storage
- Charging mode, when there is excess energy, i.e.,
- Discharging mode, when there is an energy deficit, i.e.,
- D.
- Inverter model
2.2. Problem Formulation
2.2.1. Objective Function
2.2.2. Different Constraints
3. Optimization Approaches for Microgrid Energy Management
3.1. Smell Agent Optimizer
- Sniffing Mode: Initial exploration of the search space.
- 2.
- Trailing Mode: Agents follow the best solution found.
- 3.
- Random Mode: Random exploration to avoid local optimum.
3.2. Modified Smell Agent Optimizer (mSAO)
4. Multisource Model Energy Management Strategy
5. Results and Discussion
Optimization Technique Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviation List
Lower limit of solar panels number | Battery self-discharge rate | ||
Upper limit of solar panels number | Efficiency of the solar panel | ||
Number of wind turbines | Battery charging system efficiency | ||
Lower limit number of the WT | Battery discharging efficiency | ||
Upper limit number of the WT | Electrolyzer efficiency | ||
Power balance | Fuel cell efficiency | ||
Energy consumed to charge the batteries | SOC | State of charge of the battery | |
Energy supplied by the batteries to the load | SOC min | State of charge minimal of battery | |
Fuel cells’ power output power | Upper limit of battery capacity | ||
Fuel cells’ rating power | Energy available at (t) in the tank | ||
Amount of hydrogen generated | Energy available in the tank at (t − 1) | ||
Amount of hydrogen generated and stored | Hydrogen minimum permissible energy | ||
Energy consumed by fuel cells to generate power | Nominal capacity hydrogen tank | ||
Inverter rating power | Lower limit number of hydrogen tanks | ||
Energy available at (t) in the batteries | Upper limit number of hydrogen tanks | ||
Energy available in the batteries at (t-1) | Lower limit number of fuel cells | ||
Nominal capacity of the batteries | Upper limit number of fuel cells | ||
Lower limit number of electrolyzers | |||
Upper limit number of electrolyzers | |||
Batteries’ minimum permissible energy | |||
Maximal capacity of the batteries | |||
Lower limit of battery capacity |
Appendix A
Component Systems | Parameters | Specifications |
---|---|---|
PV | Nominal PV power Pr-PV | 120 W |
PV cost CPv | USD 216 | |
Surface area A | 1.07 m2 | |
PV efficiency ηPV | 12% | |
PV lifetime | 20 years | |
Wind Turbine | Nominal WT power Pr-Wt | 1 kW |
Vcut-in | 3 m/s | |
Vcut-out | 20 m/s | |
Vr | 9 m/s | |
CWind | USD 1804 | |
Maintenance cost CMntWind | USD 100 | |
WT lifetime | 20 years | |
FC | Nominal FC power | 3 kW |
FC efficiency (ηFC) | 50% | |
FC lifetime | 5 years | |
FC cost (CFC) | USD 20,000 | |
Replacement cost (CMnt-FC) | USD 1400 | |
Battery | Energy capacity (Eb,u) | 1000 Wh |
Maximum discharge power (b,max) | 1000 W | |
Maximum charge power (Pb,min) | 1000 | |
Maximum SoCb | 0.9 | |
Minimum SoCb | 0.24 | |
Capital cost (CCb) | USD 2000 | |
Equivalent full cycles (Ncycles,b) | 471 | |
Maintenance cost (Com,) | 5% CCb USD/year | |
Electrolyzer | Nominal electrolyzer power | 3 kW |
Electrolyzer efficiency (hEle) | 74% | |
Electrolyzer lifetime | 5 years | |
Electrolyzer cost (CEle) | USD 20,000 | |
Replacement cost (CMnt-Ele) | USD 1400 | |
H2Tank | Reservoir tanks cost (CHT) | USD 2000 |
Nominal capacity of THE hydrogen tank | 0.3 kW | |
Converter | Power converter | 3 kW |
Inverter efficiency (η conv/inv) | 95% | |
Converter/inverter lifetime | 10 years | |
Converter/inverter cost | USD 1583 | |
Other parameters | Interest rate of project i | 5% |
Lifespan of the project n | 20 years |
Parameter | Symbol | Value |
---|---|---|
Number of smell molecules | N | 50 |
Number of the decision variables | D | 4 |
Temperature | T | 3 |
Mass | M | 2.4 |
Boltzmann’s constant | K | 1.38 × 10−23 |
Maximum iteration | itr | 100 |
References
- De Vito, S.; Del Giudice, A.; Di Francia, G. Electric transmission and distribution network air pollution. Sensors 2024, 24, 587. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.A.; Armghan, H.; Ali, N.; Yousef, A.; Abdalla, Y.S.; Boudabbous, A.R.; Mehdi, H.; Armghan, A. Hybrid control of the DC microgrid using deep neural networks and global terminal sliding mode control with the exponential reaching law. Sensors 2023, 23, 9342. [Google Scholar] [CrossRef]
- Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Role of optimization techniques in microgrid energy management systems—A review. Energy Strategy Rev. 2022, 43, 100899. [Google Scholar] [CrossRef]
- Lo, W.-L.; Chung, H.S.-H.; Hsung, R.T.-C.; Fu, H.; Shen, T.-W. PV panel model parameter estimation by using particle swarm optimization and artificial neural network. Sensors 2024, 24, 3006. [Google Scholar] [CrossRef] [PubMed]
- Biliyok, A.S.; Tijani, S.A. Improved smell agent optimization sizing technique algorithm for a grid-independent hybrid renewable energy system. In Renewable Energy-Recent Advances; IntechOpen: London, UK, 2022. [Google Scholar]
- Shaier, A.A.; Elymany, M.M.; Enany, M.A.; Elsonbaty, N.A. Multi-objective optimization and algorithmic evaluation for EMS in a HRES integrating PV, wind, and backup storage. Sci. Rep. 2025, 15, 1147. [Google Scholar] [CrossRef]
- Talebi, H.; Nikoukar, J.; Gandomkar, M. Optimal Sizing and Techno-economic Analysis of Combined Solar Wind Power System, Fuel Cell and Tidal Turbines Using Meta-heuristic Algorithms: A Case Study of Lavan Island. Int. J. Comput. Intell. Syst. 2025, 18, 15. [Google Scholar] [CrossRef]
- Mas’ud, A.A.; Salawudeen, A.T.; Umar, A.A.; Aziz, A.S.; Shaaban, Y.A.; Muhammad-Sukki, F.; Musa, U.A. Quasi oppositional smell agent optimization and its levy flight variant: A PV/Wind/battery system optimization application. Appl. Soft Comput. 2023, 147, 110813. [Google Scholar] [CrossRef]
- Bhadoria, A.; Marwaha, S. Optimal Generation Scheduling Considering Amalgamating Solar PV and Electric vehicle Power Generation Using Hybrid SMA-SOA Optimizer. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Salawudeen, A.T.; Moritz, M.; Jahn, I.; Johnson, O.; Monti, A. Enhanced Chameleon Swarm Algorithms for Nested Identical Control of Load Frequency in Autonomous Microgrid. IEEE Access 2024, 12, 42544–42571. [Google Scholar] [CrossRef]
- Drici, M.; Houabes, M.; Salawudeen, A.T.; Bahri, M. Optimum design of an off-grid PV/WT/FC/battery based microgrid for sustainable and cost-effective energy optimization. Stud. Eng. Exact Sci. 2024, 5, e5438. [Google Scholar] [CrossRef]
- Wang, S.; Hussien, A.G.; Kumar, S.; AlShourbaji, I.; Hashim, F.A. A modified smell agent optimization for global optimization and industrial engineering design problems. J. Comput. Des. Eng. 2023, 10, 2147–2176. [Google Scholar] [CrossRef]
- Jahannoosh, M.; Nowdeh, S.A.; Naderipour, A.; Kamyab, H.; Davoudkhani, I.F.; Klemeš, J.J. New hybrid meta-heuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability. J. Clean. Prod. 2021, 278, 123406. [Google Scholar] [CrossRef]
- Khan, A.; Javaid, N. Optimal sizing of a stand-alone photovoltaic, wind turbine and fuel cell systems. Comput. Electr. Eng. 2020, 85, 106682. [Google Scholar] [CrossRef]
- Mohammed, S.; Sha’aban, Y.A.; Umoh, I.J.; Salawudeen, A.T.; Shamsah, S.M.I. A hybrid smell agent symbiosis organism search algorithm for optimal control of microgrid operations. PLoS ONE 2023, 18, e0286695. [Google Scholar] [CrossRef]
- Thango, B.A.; Obokoh, L. Techno-Economic Analysis of Hybrid Renewable Energy Systems for Power Interruptions: A Systematic Review. Eng 2024, 5, 2108–2156. [Google Scholar] [CrossRef]
- Gómez, J.C.L.; Alquicira, J.A.; De León Aldaco, S.E.; Vargas, O.S.; Díaz, K.Y.G. Empowering Remote Living: Optimizing Hybrid Renewable Energy Systems in Mexico. Eng 2024, 5, 1382–1398. [Google Scholar] [CrossRef]
- Muhammad, M.; Usman, J.; Mustapha, I.; Bakura, M.; Salawudeen, A. An independent framework for off-grid hybrid renewable energy design using Optimal Foraging Algorithm (OFA). Arid Zone J. Eng. Technol. Environ. 2022, 18, 197–208. [Google Scholar]
- Ali, S.; Hayat, K.; Hussain, I.; Khan, A.; Kim, D. Optimization of Distributed Energy Resources Operation in Green Buildings Environment. Sensors 2024, 24, 4742. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, H.; Wang, Z.; Jermsittiparsert, K.; Yousefi, N. Optimal designing and synthesis of a hybrid PV/fuel cell/wind system using meta-heuristics. Energy Rep. 2020, 6, 1353–1362. [Google Scholar] [CrossRef]
- Xing, X.; Jia, L. Energy management in microgrid and multi-microgrid. IET Renew. Power Gener. 2024, 18, 3480–3508. [Google Scholar] [CrossRef]
- Chalal, L.; Saadane, A.; Rachid, A. Unified environment for real time control of hybrid energy system using digital twin and IoT approach. Sensors 2023, 23, 5646. [Google Scholar] [CrossRef]
- Alhumade, H.; Rezk, H.; Louzazni, M.; Moujdin, I.A.; Al-Shahrani, S. Advanced energy management strategy of photovoltaic/PEMFC/lithium-ion batteries/supercapacitors hybrid renewable power system using white shark optimizer. Sensors 2023, 23, 1534. [Google Scholar] [CrossRef] [PubMed]
- Megaptche, C.A.M.; Kim, H.; Musau, P.M.; Waita, S.; Aduda, B. Techno-economic comparative analysis of two hybrid renewable energy systems for powering a simulated house, including a hydrogen vehicle load at jeju island. Energies 2023, 16, 7836. [Google Scholar] [CrossRef]
- Abdelwahab, S.A.M.; El-Rifaie, A.M.; Hegazy, H.Y.; Tolba, M.A.; Mohamed, W.I.; Mohamed, M. Optimal control and optimization of grid-connected PV and wind turbine hybrid systems using electric eel foraging optimization algorithms. Sensors 2024, 24, 2354. [Google Scholar] [CrossRef]
- Rullo, P.; Braccia, L.; Luppi, P.; Zumoffen, D.; Feroldi, D. Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems. Renew. Energy 2019, 140, 436–451. [Google Scholar] [CrossRef]
- Maleki, A. Modeling and optimum design of an off-grid PV/WT/FC/diesel hybrid system considering different fuel prices. Int. J. Low-Carbon Technol. 2018, 13, 140–147. [Google Scholar] [CrossRef]
- Salawudeen, A.T.; Mu’azu, M.B.; Yusuf, A.; Adedokun, A.E. A Novel Smell Agent Optimization (SAO): An extensive CEC study and engineering application. Knowl.-Based Syst. 2021, 232, 107486. [Google Scholar] [CrossRef]
- Amoussou, I. The optimal design of a hybrid solar PV/wind/hydrogen/lithium battery for the replacement of a heavy fuel oil thermal power plant. Sustainability 2023, 15, 11510. [Google Scholar] [CrossRef]
- Douak, M.; Settou, N. Techno-economical optimization of pv/wind/fuel cell hybrid system in adrar region (algeria). Int. J. Sustain. Dev. Plan. 2021, 16, 175–180. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
Metrics | Scenario 1 (All Components) | Scenario 2 (No Hydrogen) | Scenario 3 (No Battery) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SAO | mSAO | HBA | SAO | mSAO | HBA | SAO | mSAO | HBA | ||
NPV | 8 | 5 | 8 | 13 | 5 | 6 | 20 | 5 | 6 | |
NWT | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | |
NBat | 7 | 2 | 3 | 2 | 2 | 2 | -- | -- | -- | |
NTank | 3 | 2 | 2 | -- | -- | -- | 2 | 2 | 2 | |
NConv | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | |
Total annual cost (USD) | Best | 619,464.60 | 619,464.60 | 622,492.68 | 613,685.57 | 613,685.57 | 614,275.39 | 616,910.51 | 616,910.51 | 617,395.86 |
Avg | 622,376.43 | 620,531.70 | 622,734.79 | 615,217.04 | 614,288.80 | 614,647.84 | 618,031.01 | 617,649.14 | 617,743.82 | |
Std | 3.568 × 10−3 | 1.914 × 10−3 | 6.51 × 10+02 | 1.558 × 10−3 | 1.111 × 10−3 | 4.083 × 10+02 | 1.446 × 10−3 | 1.212 × 10−3 | 4.46 × 10+02 | |
Time (s) | 2.88 | 4.26 | 2.79 | 2.96 | 2.85 | 1.92 | 2.97 | 2.85 | 2.38 |
Configuration | Index | SAO | mSAO | HBA | |
---|---|---|---|---|---|
PV/WT/Battery/Hydrogen | LCOE | Best | 0.1846 | 0.4828 | 0.8740 |
Average | 0.6714 | 0.6986 | 0.8973 | ||
StD | 1.15 × 10−01 | 5.46 × 10−01 | 1.66 × 10−02 | ||
LPSP | Best | 1.69 × 10−02 | 8.48 × 10−03 | 1.91 × 10−02 | |
Average | 2.01 × 10−02 | 1.44 × 10−02 | 2.73 × 10−02 | ||
StD | 2.76 × 10−03 | 7.14 × 10−02 | 3.56 × 10−03 | ||
Excess Energy | Best | 16.1358 | 15.340 | 18.96401 | |
Average | 16.4176 | 17.1639 | 26.4235 | ||
StD | 2.76 × 10+03 | 4.25 × 10−01 | 3.10 × 10+00 | ||
PV/WT/Battery | LCOE | Best | 0.3510 | 0.3583 | 0.6669 |
Average | 0.6868 | 0.7021 | 0.7409 | ||
StD | 7.72 × 10−02 | 1.07 × 10−02 | 7.31 × 10−02 | ||
LPSP | Best | 1.69 × 10−02 | 7.14 × 10−03 | 1.76 × 10−02 | |
Average | 1.74 × 10−02 | 1.22 × 10−02 | 1.93 × 10−02 | ||
StD | 2.55 × 10−03 | 7.75 × 10−02 | 1.89 × 10−03 | ||
Excess | Best | 16.5794 | 17.1407 | 18.0397 | |
Average | 17.0788 | 17.3042 | 19.2992 | ||
StD | 2.73 × 10−01 | 7.74 × 10−02 | 1.75 × 10+00 | ||
PV/WT/Hydrogen | LCOE | Best | 0.3997 | 0.6866 | 0.7241 |
Average | 0.8857 | 0.7176 | 0.9115 | ||
StD | 7.13 × 10−02 | 9.87 × 10−03 | 4.78 × 10−02 | ||
LPSP | Best | 1.68 × 10−02 | 5.68 × 10−03 | 1.81 × 10−02 | |
Average | 17.37 × 10−02 | 1.05 × 10−02 | 1.97 × 10−02 | ||
StD | 2.56 × 10−03 | 7.14 × 10−02 | 2.43 × 10−03 | ||
Excess Energy | Best | 14.120 | 17.141 | 18.729 | |
Average | 17.069 | 17.322 | 19.619 | ||
StD | 6.33 × 10−01 | 5.68 × 10−02 | 1.99 × 10+00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drici, M.; Houabes, M.; Salawudeen, A.T.; Bahri, M. Optimizing Hybrid Renewable Energy Systems for Isolated Applications: A Modified Smell Agent Approach. Eng 2025, 6, 120. https://doi.org/10.3390/eng6060120
Drici M, Houabes M, Salawudeen AT, Bahri M. Optimizing Hybrid Renewable Energy Systems for Isolated Applications: A Modified Smell Agent Approach. Eng. 2025; 6(6):120. https://doi.org/10.3390/eng6060120
Chicago/Turabian StyleDrici, Manal, Mourad Houabes, Ahmed Tijani Salawudeen, and Mebarek Bahri. 2025. "Optimizing Hybrid Renewable Energy Systems for Isolated Applications: A Modified Smell Agent Approach" Eng 6, no. 6: 120. https://doi.org/10.3390/eng6060120
APA StyleDrici, M., Houabes, M., Salawudeen, A. T., & Bahri, M. (2025). Optimizing Hybrid Renewable Energy Systems for Isolated Applications: A Modified Smell Agent Approach. Eng, 6(6), 120. https://doi.org/10.3390/eng6060120