Impact of Climate Change on Wheat Production in Algeria and Optimization of Irrigation Scheduling for Drought Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. SWAP Model
2.3. Model Calibration and Validation
2.4. Precipitation Scenario Analysis
2.5. Irrigation Strategy Evaluation
2.5.1. Soil Moisture Deficit Index (SMDI)
2.5.2. Crop Water Stress Index (CWSI)
2.6. Irrigation Water Productivity (IWP)
3. Results
3.1. Model Validation
3.2. Climate Impact on Wheat Yield
3.3. SMDI and EFA Drought Period Analysis
3.4. SMDI-Based Irrigation Strategy
3.5. CWSI-Based Irrigation Strategy
3.6. Evaluation of SMDI and CWSI
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voučko, B.; Bartkiene, E.; Rakszegi, M.; Rocha, J.M.F. Wheat: From nutrition to cultivation and technology. Front. Nutr. 2025, 12, 1563397. [Google Scholar] [CrossRef] [PubMed]
- Padhy, A.K.; Kaur, P.; Singh, S.; Kashyap, L.; Sharma, A. Colored wheat and derived products: Key to global nutritional security. Crit. Rev. Food Sci. Nutr. 2024, 64, 1894–1910. [Google Scholar] [CrossRef] [PubMed]
- Osei-Kusi, F.; Wu, C.S.; Akiti, S.O. Assessing the impacts of crop production on climate change: An in-depth analysis of long-term determinants and policy implications. Environ. Monit. Assess. 2024, 196, 479. [Google Scholar] [CrossRef]
- Shajitha, P.; Nisha, R.; Sivasamy, M.; Jayaprakash, P.; Vikas, V.; Gajalakshmi, K.; Mallick, N.; Babu, P.; Yadav, R.; Vijaishree, S. Integrating solid stem and multiple disease resistance for developing climate-resilient wheat (Triticum aestivum L.). Cereal Res. Commun. 2024, 1–13. [Google Scholar] [CrossRef]
- Wolfe, D.W.; DeGaetano, A.T.; Peck, G.M.; Carey, M.; Ziska, L.H.; Lea-Cox, J.; Kemanian, A.R.; Hoffmann, M.P.; Hollinger, D.Y. Unique challenges and opportunities for northeastern US crop production in a changing climate. Clim. Change 2018, 146, 231–245. [Google Scholar] [CrossRef]
- Sheehan, H.; Bentley, A. Changing times: Opportunities for altering winter wheat phenology. Plants People Planet 2021, 3, 113–123. [Google Scholar] [CrossRef]
- Baghdad, C. The Algerian agricultural sector between the question of food security and its implication in economic diversification strategy. World Food Policy 2022, 8, 263–275. [Google Scholar] [CrossRef]
- Lampietti, J.A.; Michaels, S.; Magnan, N.; McCalla, A.F.; Saade, M.; Khouri, N. A strategic framework for improving food security in Arab countries. Food Secur. 2011, 3, 7–22. [Google Scholar] [CrossRef]
- Nacef, M.; Keddaoui, A. Food security threats in Algeria and mechanisms to avoid them. Al-Riyada for Bus. Economics 2024, 10, 308–328. [Google Scholar]
- Sims, B.; Kienzle, J. Making mechanization accessible to smallholder farmers in sub-Saharan Africa. Environments 2016, 3, 11. [Google Scholar] [CrossRef]
- Baumüller, H.; Fatunbi, A.; von Braun, J. Innovations for Sustainable Food Systems in Africa. 2025. Available online: https://research4agrinnovation.org/publication/pari2014-2024/ (accessed on 18 April 2025).
- Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed]
- Kherbache, N. Water policy in Algeria: Limits of supply model and perspectives of water demand management (WDM). Desalination Water Treat. 2020, 180, 141–155. [Google Scholar] [CrossRef]
- Mokhtari, S.; Benmehaia, A.M.; Nourani, A.; Hadjeb, A. Future water requirements of the wheat crop in Northern Algeria under climate change scenarios. Reg. Environ. Change 2025, 25, 51. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Abd Rahman, M.K.I.; Otuoze, A.O.; Onotu, P.; Ramli, M.S.A. A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Alvino, A.; Marino, S. Remote sensing for irrigation of horticultural crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef]
- Kourat, T.; Smadhi, D.; Madani, A. Modeling the impact of future climate change impacts on rainfed durum wheat production in Algeria. Climate 2022, 10, 50. [Google Scholar] [CrossRef]
- Chourghal, N.; Lhomme, J.P.; Huard, F.; Aidaoui, A. Climate change in Algeria and its impact on durum wheat. Reg. Environ. Change 2016, 16, 1623–1634. [Google Scholar] [CrossRef]
- Touchan, R.; Kherchouche, D.; Oudjehih, B.; Touchan, H.; Slimani, S.; Meko, D.M. Dendroclimatology and wheat production in Algeria. J. Arid Environ. 2016, 124, 102–110. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.; Song, X. Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments. Comput. Electron. Agric. 2015, 116, 125–136. [Google Scholar] [CrossRef]
- Lee, T.; Jang, W.S.; Chun, B.; Ahmad, M.J.; Jung, Y.; Kim, J.; Shin, Y. Development of irrigation schedule and management model for sustaining optimal crop production under agricultural drought. Paddy Water Environ. 2023, 21, 31–45. [Google Scholar] [CrossRef]
- Kroes, J.; Wesseling, J.; Van Dam, J. Integrated modelling of the soil–water–atmosphere–plant system using the model SWAP 2· 0 an overview of theory and an application. Hydrol. Process. 2000, 14, 1993–2002. [Google Scholar] [CrossRef]
- Abhishek, A.; Das, N.N.; Ines, A.V.; Andreadis, K.M.; Jayasinghe, S.; Granger, S.; Ellenburg, W.L.; Dutta, R.; Quyen, N.H.; Markert, A.M. Evaluating the impacts of drought on rice productivity over Cambodia in the Lower Mekong Basin. J. Hydrol. 2021, 599, 126291. [Google Scholar] [CrossRef]
- Copley, M.; Wiedemann, S. Corrigendum to: Environmental impacts of the Australian poultry industry. 1. Chicken meat production. Anim. Prod. Sci. 2023, 63, 522. [Google Scholar] [CrossRef]
- Smith, R.; Baillie, J.; McCarthy, A.; Raine, S.; Baillie, C. Review of precision irrigation technologies and their application. Natl. Cent. Eng. Agric. Publ. 2010, 1003017/1. USQ, Toowoomba. [Google Scholar]
- Heinen, M.; Mulder, M.; van Dam, J.; Bartholomeus, R.; van Lier, Q.d.J.; de Wit, J.; de Wit, A.; Hack-ten Broeke, M. SWAP 50 years: Advances in modelling soil-water-atmosphere-plant interactions. Agric. Water Manag. 2024, 298, 108883. [Google Scholar] [CrossRef]
- Bachir, H.; Semar, A.; Mazari, A. Statistical and geostatistical analysis related to geographical parameters for spatial and temporal representation of rainfall in semi-arid environments: The case of Algeria. Arab. J. Geosci. 2016, 9, 486. [Google Scholar] [CrossRef]
- Nelson, H.D. Algeria, a Country Study; [Department of Defense], Department of the Army: Washington, DC, USA, 1979; Volume 44.
- Climatestotravel. Climate in Algeria. Available online: https://www.climatestotravel.com/climate/algeria (accessed on 27 February 2025).
- Zhang, Y.; Schaap, M.G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef]
- Rubio, C.M. Applicability of site-specific pedotransfer functions and rosetta model for the estimation of dynamic soil hydraulic properties under different vegetation covers. J. Soils Sediments 2008, 8, 137–145. [Google Scholar] [CrossRef]
- van Dam, J.C.; Groenendijk, P.; Hendriks, R.F.; Kroes, J.G. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J. 2008, 7, 640–653. [Google Scholar] [CrossRef]
- Feddes, R. 4.3 Simulation of Field Water Use and Crop Yield. 1978. Available online: https://edepot.wur.nl/172222 (accessed on 18 April 2025).
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Kroes, J.; Van Dam, J.; Bartholomeus, R.; Groenendijk, P.; Heinen, M.; Hendriks, R.; Mulder, H.; Supit, I.; Van Walsum, P. SWAP version 4; Wageningen Environmental Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Zhao, Y.; Mao, X.; Shukla, M.K.; Li, S. Modeling soil water–heat dynamic changes in seed-maize fields under film mulching and deficit irrigation conditions. Water 2020, 12, 1330. [Google Scholar] [CrossRef]
- Noory, H.; Van Der Zee, S.; Liaghat, A.-M.; Parsinejad, M.; Van Dam, J. Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran. Agric. Water Manag. 2011, 98, 1062–1070. [Google Scholar] [CrossRef]
- Kephe, P.N.; Ayisi, K.K.; Petja, B.M. Challenges and opportunities in crop simulation modelling under seasonal and projected climate change scenarios for crop production in South Africa. Agric. Food Secur. 2021, 10, 10. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, C.; Jing, S. Simulation and optimization of irrigation schedule for summer maize based on SWAP model in saline region. Int. J. Agric. Biol. Eng. 2020, 13, 117–122. [Google Scholar] [CrossRef]
- van Lier, Q.d.J.; Wendroth, O.; van Dam, J.C. Prediction of winter wheat yield with the SWAP model using pedotransfer functions: An evaluation of sensitivity, parameterization and prediction accuracy. Agric. Water Manag. 2015, 154, 29–42. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4060–4071. [Google Scholar] [CrossRef]
- Daggupati, P.; Pai, N.; Ale, S.; Douglas-Mankin, K.R.; Zeckoski, R.W.; Jeong, J.; Parajuli, P.B.; Saraswat, D.; Youssef, M.A. A recommended calibration and validation strategy for hydrologic and water quality models. Trans. ASABE 2015, 58, 1705–1719. [Google Scholar] [CrossRef]
- Hunt, L.; Boote, K. Data for model operation, calibration, and evaluation. In Understanding Options for Agricultural Production; Springer: Berlin/Heidelberg, Germany, 1998; pp. 9–39. [Google Scholar] [CrossRef]
- PS, M.G. Performance evaluation of best feature subsets for crop yield prediction using machine learning algorithms. Appl. Artif. Intell. 2019, 33, 621–642. [Google Scholar] [CrossRef]
- Ulfa, F.; Orton, T.G.; Dang, Y.P.; Menzies, N.W. Developing and testing remote-sensing indices to represent within-field variation of wheat yields: Assessment of the variation explained by simple models. Agronomy 2022, 12, 384. [Google Scholar] [CrossRef]
- Boons-Prins, E.; De Koning, G.; Van Diepen, C. Crop-Specific Simulation Parameters for Yield Forecasting Across the European Community; CABO: Wageningen, Netherlands, 1993. [Google Scholar]
- Huang, X.; Liao, W.; Lei, X.; Jia, Y.; Wang, Y.; Wang, X.; Jiang, Y.; Wang, H. Parameter optimization of distributed hydrological model with a modified dynamically dimensioned search algorithm. Environ. Model. Softw. 2014, 52, 98–110. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Xue, J.; Ren, L. Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China. Agric. Water Manag. 2016, 178, 350–365. [Google Scholar] [CrossRef]
- Shafiei, M.; Ghahraman, B.; Saghafian, B.; Davary, K.; Pande, S.; Vazifedoust, M. Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region. Agric. Water Manag. 2014, 146, 324–334. [Google Scholar] [CrossRef]
- Nasta, P.; Romano, N. Use of a flux-based field capacity criterion to identify effective hydraulic parameters of layered soil profiles subjected to synthetic drainage experiments. Water Resour. Res. 2016, 52, 566–584. [Google Scholar] [CrossRef]
- Jin, J.; Ding, Y.; Sun, B.; Li, S.; Guo, Z.; Zhu, L. Simulating the exploration of the optimal irrigation of spring wheat in drought areas based on SWAP model. Irrig. Drain. 2024; early view. [Google Scholar] [CrossRef]
- Vazifedoust, M.; Van Dam, J.; Feddes, R.A.; Feizi, M. Increasing water productivity of irrigated crops under limited water supply at field scale. Agric. Water Manag. 2008, 95, 89–102. [Google Scholar] [CrossRef]
- Verma, A.; Gupta, S.; Isaac, R. Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modeling with SWAP. Agric. Water Manag. 2012, 115, 186–193. [Google Scholar] [CrossRef]
- Li, P.; Ren, L. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. J. Hydrol. 2019, 574, 497–516. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Sun, C.; Pereira, L.S.; Ramos, T.B.; Huang, Q.; Hao, Y. Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin. Agric. Water Manag. 2013, 125, 46–60. [Google Scholar] [CrossRef]
- Van Campenhout, J.; Houbrechts, G.; Peeters, A.; Petit, F. Return period of characteristic discharges from the comparison between partial duration and annual series, application to the Walloon Rivers (Belgium). Water 2020, 12, 792. [Google Scholar] [CrossRef]
- Zhang, Q. Analysis of coupling degree between crop water requirement of aerobic rice and rainfall in Beijing areas. T CSAE 2007, 23, 51–56. [Google Scholar]
- Zhao, Y.; Xiao, D.; Qi, Y.; Bai, H. Crop yield and water consumption of different cropping patterns under different precipitation years in North China Plain. Nongye Gongcheng Xuebao 2018, 34, 108–116. [Google Scholar] [CrossRef]
- Chow, V. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Zhang, B.; Feng, G.; Read, J.J.; Kong, X.; Ouyang, Y.; Adeli, A.; Jenkins, J.N. Simulating soybean productivity under rainfed conditions for major soil types using APEX model in East Central Mississippi. Agric. Water Manag. 2016, 177, 379–391. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Watson, A.; Miller, J.; Künne, A.; Kralisch, S. Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa. Sci. Total Environ. 2022, 812, 152464. [Google Scholar] [CrossRef]
- Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [Google Scholar] [CrossRef]
- Ma, Z.-C.; Sun, P.; Zhang, Q.; Hu, Y.-Q.; Jiang, W. Characterization and evaluation of MODIS-derived crop water stress index (CWSI) for monitoring drought from 2001 to 2017 over Inner Mongolia. Sustainability 2021, 13, 916. [Google Scholar] [CrossRef]
- Kamali, B.; Abbaspour, K.; Lehmann, A.; Wehrli, B.; Yang, H. Identification of spatiotemporal patterns of biophysical droughts in semi-arid region–a case study of the Karkheh river basin in Iran. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 5187–5217. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Fu, G.; Yan, H.; Zhao, P.; Ma, M. A modified soil water deficit index (MSWDI) for agricultural drought monitoring: Case study of Songnen Plain, China. Agric. Water Manag. 2017, 194, 125–138. [Google Scholar] [CrossRef]
- Yirdaw, S.Z.; Snelgrove, K.R.; Agboma, C.O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J. Hydrol. 2008, 356, 84–92. [Google Scholar] [CrossRef]
- Kamber, G.; McDonald, C.; Price, G. Drying Out: Investigating the Economic Effects of Drought in New Zealand; Reserve Bank of New Zealand Wellington: Wellington, New Zealand, 2013.
- Houcine, A.; Bargaoui, Z. Comparison of rainfall based SPI drought indices with SMDI and ETDI indices derived from a soil water budget model. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; p. 2666. [Google Scholar]
- Yao, N.; Li, Y.; Liu, Q.; Zhang, S.; Chen, X.; Ji, Y.; Liu, F.; Pulatov, A.; Feng, P. Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes. Agric. Water Manag. 2022, 266, 107566. [Google Scholar] [CrossRef]
- Crescimanno, G.; Morga, F.; Ventrella, D. Application of the SWAP model to predict impact of climate change on soil water balance in a Sicilian vineyard. Ital. J. Agron. 2012, 7, e17. [Google Scholar] [CrossRef]
- Bonfante, A.; Alfieri, S.; Albrizio, R.; Basile, A.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Langella, G.; Manna, P.; Monaco, E. Evaluation of the effects of future climate change on grape quality through a physically based model application: A case study for the Aglianico grapevine in Campania region, Italy. Agric. Syst. 2017, 152, 100–109. [Google Scholar] [CrossRef]
- Attia, A.; Rajan, N.; Xue, Q.; Nair, S.; Ibrahim, A.; Hays, D. Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains. Agric. Water Manag. 2016, 165, 50–60. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Wang, E.; Chen, S.; Shao, L. Quantifying the impact of irrigation on groundwater reserve and crop production–a case study in the North China Plain. Eur. J. Agron. 2015, 70, 48–56. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Chen, Y.; Sui, P.; Pacenka, S.; Steenhuis, T.S.; Siddique, K.H. Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system—A 16-year field study in North China Plain. Field Crops Res. 2022, 275, 108364. [Google Scholar] [CrossRef]
- Kumar, P.; Sarangi, A.; Singh, D.; Parihar, S.; Sahoo, R. Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agric. Water Manag. 2015, 148, 72–83. [Google Scholar] [CrossRef]
- Wang, B.; van Dam, J.; Yang, X.; Ritsema, C.; Du, T.; Kang, S. Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain. Agric. Water Manag. 2023, 280, 108229. [Google Scholar] [CrossRef]
- Babaei, M.; Biglouei, M.; Pirmoradian, N.; Mohammadi, A. Optimizing agricultural water use through simulation of soil water content and water uptake under soil moisture and irrigation water salinity stresses: Case study of corn roots using SWAP model. Environ. Resour. Res. 2021, 9, 99–106. [Google Scholar] [CrossRef]
- Habibi, B.; Meddi, M. Meteorological drought hazard analysis of wheat production in the semi-arid basin of Cheliff–Zahrez Nord, Algeria. Arab. J. Geosci. 2021, 14, 1045. [Google Scholar] [CrossRef]
- Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Djemai, M. The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophys. 2020, 68, 1443–1460. [Google Scholar] [CrossRef]
- Berhail, S.; Tourki, M.; Merrouche, I.; Bendekiche, H. Geo-statistical assessment of meteorological drought in the context of climate change: Case of the Macta basin (Northwest of Algeria). Model. Earth Syst. Environ. 2021, 8, 81–101. [Google Scholar] [CrossRef]
- Tadesse, W.; Bishaw, Z.; Assefa, S. Wheat production and breeding in Sub-Saharan Africa: Challenges and opportunities in the face of climate change. Int. J. Clim. Change Strateg. Manag. 2019, 11, 696–715. [Google Scholar] [CrossRef]
- Bouregaa, T.; Chetioui, C. Assessment of climate change impact on wheat water demand and yield in Setif, Algeria. Water Conserv. Sci. Eng. 2025, 10, 1. [Google Scholar] [CrossRef]
- Bruand, A.; Tessier, D. Water retention properties of the clay in soils developed on clayey sediments: Significance of parent material and soil history. Eur. J. Soil Sci. 2000, 51, 679–688. [Google Scholar] [CrossRef]
- Mallareddy, M.; Thirumalaikumar, R.; Balasubramanian, P.; Naseeruddin, R.; Nithya, N.; Mariadoss, A.; Eazhilkrishna, N.; Choudhary, A.K.; Deiveegan, M.; Subramanian, E. Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies. Water 2023, 15, 1802. [Google Scholar] [CrossRef]
- Doeffinger, T.; Hall, J.W. Water stress and productivity: An empirical analysis of trends and drivers. Water Resour. Res. 2020, 56, e2019WR025925. [Google Scholar] [CrossRef]
- Ali, M.; Talukder, M. Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; He, H.; Wu, Z.; Lu, G.; Liao, T. Agricultural Drought Monitoring Using an Enhanced Soil Water Deficit Index Derived from Remote Sensing and Model Data Merging. Remote Sens. 2024, 16, 2156. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Fraga, H.; van Ieperen, W.; Trindade, H.; Santos, J.A. Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Clim. Change 2019, 154, 159–178. [Google Scholar] [CrossRef]
- Molden, D. Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Routledge: London, UK, 2013. [Google Scholar]
- Bazza, M.; Kay, M.; Knutson, C. Drought Characteristics and Management in North Africa and the Near East; FAO Water Reports; FAO: Rome, Italy, 2018. [Google Scholar]
- Ndayiragije, J.M.; Li, F. Effectiveness of drought indices in the assessment of different types of droughts, managing and mitigating their effects. Climate 2022, 10, 125. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Chen, Y.; Xu, Y.; Li, R.; Zhao, L.; Fu, Q. Multiobjective optimization of daily scale irrigation schedules for rice in irrigation districts considering joint uncertainties in water supply and demand. Comput. Electron. Agric. 2025, 231, 110054. [Google Scholar] [CrossRef]
Soil Texture | Rosetta Output | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Layers (cm) | Sand (%) | Silt (%) | Clay (%) | Bulk Density (g cm−3) | Theta_r θr (cm3/cm3) | Theta_s θs (cm3/cm3) | Alpha α (cm−1) | n | Ksat (cm/day) | Lamda λ |
0–20 | 22.40 | 38.53 | 39.07 | 1.37 | 0.091 | 0.462 | 0.012 | 1.412 | 11.399 | 0.5 |
20–40 | 22.31 | 38.75 | 38.94 | 1.42 | 0.089 | 0.448 | 0.012 | 1.407 | 8.554 | 0.5 |
40–60 | 20.64 | 40.41 | 38.95 | 1.47 | 0.088 | 0.436 | 0.012 | 1.402 | 6.371 | 0.5 |
Average | 21.78 | 39.23 | 38.99 | 1.42 | 0.089 | 0.449 | 0.012 | 1.407 | 8.775 | 0.5 |
Model Parameters | Description/Unit | Default Values | Calibrated Values |
---|---|---|---|
SWCF | Crop height (cm) | 100 | 85 |
TSUMEA | Temperature sum from emergence to anthesis (°C) | 1255.0 | 1350 |
TSUMAM | Temperature sum from anthesis to maturity (°C) | 909.0 | 1010 |
DTSM | Daily maximum accumulated temperature (°C) | 30.0 | 30.0 |
KDIF | Extinction coefficient for diffuse visible light | 0.60 | 0.60 |
KDIR | Extinction coefficient for direct visible light | 0.75 | 0.75 |
EFF | Light use efficiency of a single leaf (kg/ha/hr/[Jm2s]) | 0.45 | 0.47 |
CVL | Efficiency of conversion into leaves (kg/kg) | 0.685 | 0.580 |
CVO | Efficiency of conversion into storage organs (kg/kg) | 0.709 | 0.729 |
CVR | Efficiency of conversion into roots (kg/kg) | 0.694 | 0.674 |
CVS | Efficiency of conversion into stems (kg/kg) | 0.662 | 0.632 |
DVSEND | Development stage at harvest | 2.00 | 2.02 |
COFAB | Precipitation interception coefficient | 0.25 | 0.25 |
Year | Rainfall (mm) | EFA % | EFA Classification | Number of Dry Days (SMDI) | Period of Drought (SMDI) | Observed Rainfed Crop Yield (kg ha−1) |
---|---|---|---|---|---|---|
2014 | 484 | 44 | Normal | 49 | 18 April–5 June | 1800 |
2015 | 456 | 52 | Normal | 42 | 18 April–29 May | 2000 |
2016 | 338 | 68 | Normal | 91 | 26 November–5 March and 15 May–4 June | 2500 |
2017 | 470 | 48 | Normal | 84 | 28 February–22 May | 1300 |
2018 | 524 | 20 | Wet | 0 | / | 4400 |
2019 | 412 | 60 | Normal | 49 | 7 March–20 March and 9 May–12 June | 3700 |
2020 | 312 | 76 | Dry | 105 | 27 December–9 January and 31 January–9 April and 8 May–28 May | 1800 |
2021 | 269 | 88 | Dry | 133 | 24 January–5 June | 0 |
2022 | 505 | 28 | Normal | 49 | 10 January–27 February | 3800 |
2023 | 290 | 84 | Dry | 144 | 16 December–23 January and 7 February–22 May | 0 |
2024 | 290 | 80 | Dry | 105 | 17 January–20 February and 6 March–14 May | 1000 |
Irrigation Interval (Days) | Average WP (kg ha−1 mm−1) | Coefficient of Variation (CV %) | 2014 | 2015 | 2016 | 2017 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 13.68 | 57.3 | 17.60 | 14.41 | 6.87 | 29.85 | 6.99 | 7.67 | 9.59 | 9.99 | 7.19 | 26.65 |
7 | 14.97 | 50.7 | 21.91 | 17.18 | 10.17 | 31.77 | 4.38 | 8.49 | 10.30 | 11.33 | 6.77 | 27.39 |
9 | 15.62 | 47.8 | 21.69 | 18.78 | 8.55 | 31.20 | 6.78 | 10.14 | 10.85 | 11.61 | 8.28 | 28.29 |
10 | 15.16 | 51.5 | 24.96 | 16.28 | 8.90 | 31.76 | 5.35 | 9.40 | 10.46 | 6.17 | 9.81 | 28.52 |
Irrigation Interval (Days) | 10% WS | 20% WS | 30% WS | 40% WS | 50% WS | Average WP (kg ha−1 mm−1) |
---|---|---|---|---|---|---|
5 | 19.33 | 18.17 | 17.25 | 14.02 | 12.54 | 16.26 |
7 | 20.22 | 19.58 | 18.61 | 15.66 | 13.96 | 17.61 |
9 | 20.98 | 20.51 | 19.57 | 16.86 | 16.62 | 18.91 |
10 | 21.06 | 19.88 | 19.92 | 16.92 | 16.03 | 18.76 |
Average WP (kg ha−1 mm−1) | 20.40 | 19.53 | 18.84 | 15.86 | 14.79 | 17.88 |
Years | Rainfed Yield (kg ha−1) | 9-Day Irrigation Interval, WS 10% | 9-Day Irrigation Interval, SMDI | ||||||
---|---|---|---|---|---|---|---|---|---|
Number of Dry Days | IWA (mm) | Yield (kg ha−1) | WP (kg ha−1 mm−1) | Number of Dry Days | IWA (mm) | Yield (kg ha−1) | WP (kg ha−1 mm−1) | ||
2014 | 1800 | 46 | 161.7 | 5645 | 23.79 | 49 | 96 | 3882 | 21.69 |
2015 | 2000 | 44 | 167.2 | 5545 | 21.21 | 42 | 90 | 3690 | 18.78 |
2016 | 2500 | 39 | 136.1 | 5243 | 20.15 | 91 | 88 | 3252 | 8.55 |
2017 | 1300 | 53 | 182.9 | 7041 | 31.39 | 84 | 140 | 5668 | 31.20 |
2018 | 4400 | 20 | 55.6 | 5728 | 23.91 | 0 | 0 | / | / |
2019 | 3700 | 42 | 160.6 | 7255 | 22.13 | 49 | 54 | 4066 | 6.78 |
2020 | 1800 | 67 | 179.7 | 5737 | 21.90 | 105 | 144 | 3260 | 10.14 |
2021 | 0 | 81 | 253.6 | 3191 | 12.58 | 133 | 240 | 2605 | 10.85 |
2022 | 3800 | 23 | 103.2 | 5166 | 13.23 | 49 | 72 | 4636 | 11.61 |
2023 | 0 | 75 | 252.3 | 2965 | 11.75 | 144 | 340 | 2816 | 8.28 |
2024 | 1000 | 54 | 215.6 | 7210 | 28.80 | 105 | 180 | 6093 | 28.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouzani, Y.; Hiouani, F.; Ahmad, M.J.; Choi, K.-S. Impact of Climate Change on Wheat Production in Algeria and Optimization of Irrigation Scheduling for Drought Periods. Water 2025, 17, 1658. https://doi.org/10.3390/w17111658
Ouzani Y, Hiouani F, Ahmad MJ, Choi K-S. Impact of Climate Change on Wheat Production in Algeria and Optimization of Irrigation Scheduling for Drought Periods. Water. 2025; 17(11):1658. https://doi.org/10.3390/w17111658
Chicago/Turabian StyleOuzani, Youssouf, Fatima Hiouani, Mirza Junaid Ahmad, and Kyung-Sook Choi. 2025. "Impact of Climate Change on Wheat Production in Algeria and Optimization of Irrigation Scheduling for Drought Periods" Water 17, no. 11: 1658. https://doi.org/10.3390/w17111658
APA StyleOuzani, Y., Hiouani, F., Ahmad, M. J., & Choi, K.-S. (2025). Impact of Climate Change on Wheat Production in Algeria and Optimization of Irrigation Scheduling for Drought Periods. Water, 17(11), 1658. https://doi.org/10.3390/w17111658