Continuous Production and Catalysis Optimization of Chemical Industry Processes

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Chemical Processes and Systems".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 6623

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry and Organic Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Interests: catalytic processes; biomass valorization; biorefining; adsorption processes; organic chemical processes; process optimization; material design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the growing emphasis on enhancing the sustainability and efficiency of industrial plants, catalytic process integration and optimization are attracting additional interest across the chemical engineering community. Some of the hallmarks of process integration and optimization include a holistic perspective in design and the enhancement of catalytic material and the optimization of existing processes into modern design approaches. These techniques can be applied to individual unit operations, multiple units, a whole industrial facility, or even a cluster of industrial plants.

This Special Issue, entitled “Continuous Production and Catalysis Optimization of Chemical Industry Processes”, aims to cover recent advances in the development and application of catalytic process integration and optimization. Topics include, but are not limited to, methods and/or applications in the following areas:

  • Systematic approaches to industrial catalytic processes;
  • Optimization of catalytic materials;
  • Optimization of unit and total processes;
  • Mitigation of environmental impact;
  • Continuous production studies of emerging processes (e.g., biomass valorization, and biorefining);
  • Integration of renewable energy in catalytic processes;
  • Processes design from laboratory to industrial scale;
  • Implementation of new catalytic and adsorption processes into industrial practice.

Prof. Dr. Izabela Czekaj
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • catalytic processes optimization
  • biomass valorization
  • organic technology processes
  • continuous chemical processes
  • biorefining
  • process design
  • adsorption processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 15119 KiB  
Article
Construction of Honeycomb-like ZnO/g-C3N5 Heterojunction for MB Photocatalytic Degradation
by Sitong Liu, Shicheng Liu, Letao Li, Letong Yang, Xiaodong Wu, Zhichun Si, Rui Ran and Hui Wu
Processes 2025, 13(1), 253; https://doi.org/10.3390/pr13010253 - 16 Jan 2025
Viewed by 868
Abstract
In this study, a combination of calcination and hydrothermal methods was employed to synthesize a honeycomb-like ZnO/g-C3N5 (ZCN) heterojunction in situ. The ZCN heterojunction photocatalyst exhibits remarkable photocatalytic degradation performance, achieving a 97% methyl blue (MB) degradation rate with the [...] Read more.
In this study, a combination of calcination and hydrothermal methods was employed to synthesize a honeycomb-like ZnO/g-C3N5 (ZCN) heterojunction in situ. The ZCN heterojunction photocatalyst exhibits remarkable photocatalytic degradation performance, achieving a 97% methyl blue (MB) degradation rate with the rate constant of 0.0433 min−1 (almost twice that of ZnO). Optical performance tests reveal that the ZCN heterojunction broadens the absorption edge to 710 nm and enhances the charge carrier separation. The presence of abundant oxygen vacancies, as revealed by X-ray photoelectron spectroscopy analysis, effectively suppresses the recombination of photogenerated electron–hole pairs. Furthermore, density functional theory simulations indicate that the combination of ZnO and g-C3N5 creates an internal electric field due to their differing work functions. This leads to the formation of a Z-scheme heterojunction that effectively suppresses charge carrier recombination and preserves the strong redox capabilities of ZnO and g-C3N5. Finally, electron spin resonance results indicate that O2 and OH are the primary active radicals involved in the degradation process. This study introduces a potential approach for the development of highly efficient Z-scheme photocatalysts for water treatment applications. Full article
Show Figures

Figure 1

14 pages, 3441 KiB  
Article
Metal-Exchanged Phosphomolybdic Acid Salts-Catalyzed Esterification of Levulinic Acid
by Márcio José da Silva, Alana Alves Rodrigues and Wilton Keisuke Taba
Processes 2024, 12(11), 2574; https://doi.org/10.3390/pr12112574 - 17 Nov 2024
Cited by 1 | Viewed by 801
Abstract
We examined the effectiveness of metal-exchanged phosphomolybdic acid salts in converting levulinic acid, derived from biomass, into valuable products (alkyl levulinate). We prepared salts of phosphomolybdic acid using different metals (Fe3+, Al3+, Zn2+, Cu2+, Mn [...] Read more.
We examined the effectiveness of metal-exchanged phosphomolybdic acid salts in converting levulinic acid, derived from biomass, into valuable products (alkyl levulinate). We prepared salts of phosphomolybdic acid using different metals (Fe3+, Al3+, Zn2+, Cu2+, Mn2+, Ni2+, and Co2+). The influence of metal cations on the conversion and selectivity of the reactions was assessed. We found that the salts prepared with iron and aluminum phosphomolybdate were the most effective catalysts for the esterification of levulinic acid with methanol, with the conversion and selectivity tending towards 100% after 6 h of reaction at a temperature of 323 K. The effect of catalyst loading and its recovery and reuse was evaluated; the results from the reaction using aluminum phosphomolybdate remained similar for four cycles of use. The influence of temperature on conversion and selectivity was investigated between 298 and 353 K. The reactivity of different alcohols with a carbon chain size of C1-C4 was assessed and conversions above 65% were obtained for all alcohols tested under the conditions evaluated, except for tert-butyl alcohol. These catalysts are a promising alternative to the traditional soluble and corrosive Brønsted acid catalysts. The superior performance of these catalysts was ascribed to the higher pH decline triggered by the hydrolysis of these metal cations. Full article
Show Figures

Figure 1

14 pages, 1554 KiB  
Article
Computational Fluid Dynamics, Transport, and Chemical Kinetics-Based Monolith Catalyst Dimensioning Methodology for Cost-Effective Performance
by Jure Voglar, Andraž Pavlišič and Blaž Likozar
Processes 2024, 12(8), 1704; https://doi.org/10.3390/pr12081704 - 14 Aug 2024
Viewed by 1526
Abstract
The newly developed computational fluid dynamics, transport, and chemical kinetics-based monolith catalyst dimensioning methodology consists of the following steps: (i) initial calculations, which generate some of the data, e.g., average inlet fluid velocity used in the (ii) computational fluid dynamics (CFD) modelling, which [...] Read more.
The newly developed computational fluid dynamics, transport, and chemical kinetics-based monolith catalyst dimensioning methodology consists of the following steps: (i) initial calculations, which generate some of the data, e.g., average inlet fluid velocity used in the (ii) computational fluid dynamics (CFD) modelling, which uses the laminar flow interface and the transport of diluted species interface while the user has to provide the kinetics of the reactions; (iii) the model order reduction uses a modified version of the plug flow reactor model and the linear pressure variation model; and (iv) the dimensioning optimization algorithm extracts the optimal monolith catalyst’s channel geometry, which satisfies the user’s performance constraints and reduces material consumption. Therefore, the methodology enables chemical engineers to quickly and efficiently design and dimension monolith catalysts for many different applications in an environmentally friendly way, which enables them to reduce both the material and operating costs while maintaining sufficient catalyst performance and, therefore, achieve its cost-effective performance. Full article
Show Figures

Figure 1

16 pages, 2229 KiB  
Article
Approach to Chemical Process Transition Control via Regulatory Controllers with the Case of a Throughput Fluctuating Ethylene Column
by Dong Huang, Gang Liu, Kezhong Chen, Lizhi Liu and Jinlin Guo
Processes 2024, 12(6), 1105; https://doi.org/10.3390/pr12061105 - 28 May 2024
Viewed by 1016
Abstract
For chemical processes, dynamic optimization is employed for process transition. On the basis of the multilayer control structure, the employment of dynamic optimization is affected by the regulatory control system. To avoid the adjustment of the regulatory control system, set-point optimization is proposed. [...] Read more.
For chemical processes, dynamic optimization is employed for process transition. On the basis of the multilayer control structure, the employment of dynamic optimization is affected by the regulatory control system. To avoid the adjustment of the regulatory control system, set-point optimization is proposed. For comparison, two types of optimization models, namely direct optimization and set-point optimization, are formulated. The superiority of set-point optimization is rigorously proven. By simulating the commercial process of a throughput-fluctuating ethylene column, the integrated absolute error and maximum deviation of product quality are reduced by more than 150% with set-point optimization. The results indicate that the approach to process transition via regulatory controllers not only avoids the insecurity caused by the switching of set-point controllers but also improves the optimization performance. In conclusion, the proposed optimization structure, namely set-point optimization, is operable and stable for commercial chemical process transitions. Full article
Show Figures

Figure 1

14 pages, 3300 KiB  
Article
Cs4PMo11VO40-Catalyzed Glycerol Ketalization to Produce Solketal: An Efficient Bioadditives Synthesis Method
by Márcio José da Silva and Cláudio Júnior Andrade Ribeiro
Processes 2024, 12(5), 854; https://doi.org/10.3390/pr12050854 - 24 Apr 2024
Cited by 2 | Viewed by 1583
Abstract
In this work, a series of vanadium-substituted phosphomolybdic acids were synthesized and tested as the catalysts for the synthesis of solketal, a green fuel bioadditive, from the condensation reaction of glycerol with acetone. The objective was to demonstrate that an easily synthesizable solid [...] Read more.
In this work, a series of vanadium-substituted phosphomolybdic acids were synthesized and tested as the catalysts for the synthesis of solketal, a green fuel bioadditive, from the condensation reaction of glycerol with acetone. The objective was to demonstrate that an easily synthesizable solid catalyst can efficiently promote glycerol condensation with acetone at room temperature. The activity of pristine heteropolyacid (i.e., H3PMo12O40) and its vanadium-substituted cesium salts (Cs3+nPMo12-nVnO40; n = 0–3) was evaluated in condensation reactions carried out at room temperature. Among the catalysts tested, Cs4PMo11VO40 was the most active and selective towards a five-member ring solketal isomer (dioxolane). A high yield of solketal (i.e., 95% conversion and 95% selectivity to solketal) was achieved in glycerol condensation with acetone at room temperature within a short reaction time (2 h). The influence of the main reaction parameters, such as the acetone–glycerol molar ratio, catalyst load, and reaction temperatures, was investigated. The greatest activity of the Cs4PMo11VO40 catalyst was correlated to its greatest acidity. Full article
Show Figures

Figure 1

Back to TopTop