Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection and Pre-Processing
3.2. Variable Calculations
3.3. Land Cover Classification
3.4. Statistical Analysis
4. Results
4.1. Land Cover Classification Accuracy Assessment
4.2. Temporal and Spatial Analysis of LST and Land Cover
4.2.1. Area Change Analysis
- (a)
- Transformation of bare soil areas
- (b)
- Transformation of built-up areas
- (c)
- Transformation of vegetation areas
4.2.2. Land Surface Temperature (LST) Variations
4.3. Analysis of Land Cover and LST Relationship Through Maps (2000–2023)
4.4. Analysis of LST, NDVI, and NDBI Relationships Through Statistical Tests
4.4.1. Pearson Correlation Analysis Between LST, NDVI, and NDBI
4.4.2. Multiple Linear Regression Analysis
5. Discussion
Limitations and Future Implications
6. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farhi, A. Biskra: De l’oasis à la ville saharienne (Note). Méditerranée 2002, 99, 77–82. [Google Scholar] [CrossRef]
- Bouzir, T.A.K.; Berkouk, D.; Zemmouri, N. Evaluation and Analysis of the Algerian Oases Soundscape: Case of El Kantara and Sidi Okba. Acoust. Aust. 2020, 48, 131–140. [Google Scholar] [CrossRef]
- Santoro, A. Traditional oases in Northern Africa as multifunctional agroforestry systems: A systematic literature review of the provided Ecosystem Services and of the main vulnerabilities. Agrofor. Syst. 2023, 97, 81–96. [Google Scholar] [CrossRef]
- Berkouk, D.; Bouzir, T.A.K.; Maffei, L.; Masullo, M. Examining the associations between oases soundscape components and walking speed: Correlation or causation? Sustainability 2020, 12, 4619. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Lei, J.; Zhu, L. Urban expansion of oasis cities between 1990 and 2007 in Xinjiang, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 253–262. [Google Scholar] [CrossRef]
- Fargette, M.; Loireau, M.; Sghaier, M.; Raouani, N.; Libourel, T. The Future of Oases in North Africa Through the Prism of a Systemic Approach: Towards Which Type of Viability and Coviability? In Coviability of Social and Ecological Systems: Reconnecting Mankind to the Biosphere in an Era of Global Change; Barrière, O., Behnassi, M., David, G., Douzal, V., Fargette, M., Libourel, T., Loireau, M., Pascal, L., Prost, C., Ravena-Cañete, V., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 19–59. ISBN 978-3-319-78110-5. [Google Scholar]
- Bouzir, T.A.K. Oasis View from the Sky: Exploration Through Satellite Maps, 1st ed.; Sajed House for Publishing and Distribution: Biskra, Algeria, 2024; ISBN 9789969509755. [Google Scholar]
- Leal Filho, W.; Stojanov, R.; Matsoukas, C.; Ingrosso, R.; Franke, J.A.; Pausata, F.S.; Grassi, T.; Landa, J.; Harrouni, C. An assessment of climate change impacts on oases in northern Africa. Ecol. Indic. 2024, 166, 112287. [Google Scholar] [CrossRef]
- Ali, A.M.; Salem, H.M. Salinity-induced desertification in oasis ecosystems: Challenges and future directions. Environ. Monit. Assess. 2024, 196, 696. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, G.; Li, Z.; Zhang, X.; Gao, L.; Elbeltagi, A.; Shaer, H.E.; Duan, W.; Wassif, O.M.A.; Li, Y.; et al. The Crisis in Oases: Research on Ecological Security and Sustainable Development in Arid Regions. Annu. Rev. Environ. Resour. 2024, 49, 1–20. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, S.C.; Silva, R.; Rocha, A. Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios. Clim. Chang. 2022, 174, 28. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Zdruli, P.; Christiansen, S.; Caon, L.; Abdel Monem, M.; Fetsi, T. An overview of land degradation and sustainable land management in the near East and North Africa. Sustain. Agric. Res. 2022, 11, 11–24. [Google Scholar] [CrossRef]
- Boualem, R.; Rabah, K. The foggara in the Arab world. Geogr. Tech. 2012, 1, 1–7. [Google Scholar]
- Abdel Galil, I.; Ali, A. Vulnerability of Oases in Hyper-Arid Areas in The Arabian Peninsula and Northern Africa to Climate Change. J. Desert Environ. Agric. 2022, 2, 1–11. [Google Scholar] [CrossRef]
- Bouzir, T.A.K.; Djihed, B.; Theodore, S.E.; Dietrich, S.; Nader, A. Soundscapes in Arab cities: A systematic review and research agenda. Sound Vib. 2023, 58, 046723. [Google Scholar] [CrossRef]
- Lavie, E.; Marshall, A. (Eds.) Oases and Globalization: Ruptures and Continuities; Springer Geography; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Dechaicha, A.; Daikh, A.; Alkama, D. Monitoring and landscape quantification of uncontrolled urbanisation in oasis regions: The case of adrar city in Algeria. J. Contemp. Urban Aff. 2021, 5, 209–219. [Google Scholar] [CrossRef]
- Bouzir, T.A.K.; Berkouk, D.; Boucherit, S.; Khelil, S.; Matallah, M.E.; Zemmouri, N. Evaluation of soundscape variations through the open public spaces in saharan cities: A case of Biskra, Algeria. Environ. Res. Eng. Manag. 2022, 78, 39–51. [Google Scholar] [CrossRef]
- Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the links between LULC changes and SUHI in cities: Insights from two-decadal studies (2001–2020). Remote Sens. 2021, 13, 3654. [Google Scholar] [CrossRef]
- Al-Rowali, M.; Belaid, M.A.; Nadir Musa, N.M. Investigation of the impact of urbanization on land use categories in Al-Ahsa Oasis using RS and GIS techniques. Arab. Gulf J. Sci. Res. 2004, 22, 86–95. [Google Scholar]
- Gong, B.; Liu, Z. Assessing impacts of land use policies on environmental sustainability of oasis landscapes with scenario analysis: The case of northern China. Landsc. Ecol. 2021, 36, 1913–1932. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Cao, M.; Liu, H. Spatiotemporal Change of Eco-Environmental Quality in the Oasis City and Its Correlation with Urbanization Based on RSEI: A Case Study of Urumqi, China. Sustainability 2022, 14, 9227. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Altan, O.; Wu, S.; Li, Y. Isolating the direct and indirect impacts of urbanization on vegetation carbon sequestration capacity in a large oasis city: Evidence from Urumqi, China. Geo-Spat. Inf. Sci. 2023, 26, 379–391. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Kung, H.; Johnson, V.C.; Maimaitiyiming, M.; Zhou, M.; Wang, J. Dynamics of land surface temperature (LST) in response to land use and land cover (LULC) changes in the Weigan and Kuqa river oasis, Xinjiang, China. Arab. J. Geosci. 2016, 9, 499. [Google Scholar] [CrossRef]
- Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Al-Shaibah, B.; Nath, B.; Kafy, A.-A.; Hu, G.; Al-Aizari, A. Remote sensing-based urban sprawl modeling using multilayer perceptron neural network Markov chain in Baghdad, Iraq. Remote Sens. 2021, 13, 4034. [Google Scholar] [CrossRef]
- Hassaballa, A.; Salih, A. A Spatio-Temporal Analysis of Heat Island Intensity Influenced by the Substantial Urban Growth between 1990 and 2020: A Case Study of Al-Ahsa Oasis, Eastern Saudi Arabia. Appl. Sci. 2023, 13, 2755. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Ding, J.; Xie, X. Analysis of spatial–temporal evolution trends and influential factors of desert-oasis thermal environment in typical arid zone: The case of Turpan–Hami region. Ecol. Indic. 2023, 154, 110747. [Google Scholar] [CrossRef]
- Navalgund, R.R.; Jayaraman, V.; Roy, P.S. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Zhu, L.; Suomalainen, J.; Liu, J.; Hyyppä, J.; Kaartinen, H.; Haggren, H. A review: Remote sensing sensors. Multi-Purp. Appl. Geospat. Data 2018, 19, 19–42. [Google Scholar]
- Almeida, C.R.D.; Teodoro, A.C.; Gonçalves, A. Study of the urban heat island (UHI) using remote sensing data/techniques: A systematic review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Nega, W.; Balew, A. The relationship between land use land cover and land surface temperature using remote sensing: Systematic reviews of studies globally over the past 5 years. Env. Sci Pollut. Res 2022, 29, 42493–42508. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef]
- Ban, Y. Multitemporal Remote Sensing: Current Status, Trends and Challenges. In Multitemporal Remote Sensing; Ban, Y., Ed.; Remote Sensing and Digital Image Processing; Springer International Publishing: Cham, Switzerland, 2016; Volume 20, pp. 1–18. ISBN 978-3-319-47035-1. [Google Scholar]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, Z.; Liu, L.; Zhan, W.; He, T.; Shen, H.; Zhao, J.; Liu, Y.; Zhang, H.; Liu, Z.; et al. Remote Sensing Time Series Analysis: A Review of Data and Applications. J. Remote Sens. 2024, 4, 285. [Google Scholar] [CrossRef]
- Aggarwal, S.; Misra, M. Comparison of NDVI, NDBI as indicators of surface heat island effects for Bangalore and New Delhi: Case Study. In Proceedings of the Remote Sensing Technologies and Applications in Urban Environments III; SPIE: Bellingham, WA, USA, 2018; Volume 10793, pp. 178–186. [Google Scholar]
- Malik, M.S.; Shukla, J.P.; Mishra, S. Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian J. Geo-Mar. Sci. 2019, 48, 25–31. [Google Scholar]
- Kaur, R.; Pandey, P. A review on spectral indices for built-up area extraction using remote sensing technology. Arab. J. Geosci. 2022, 15, 391. [Google Scholar] [CrossRef]
- Keerthi Naidu, B.N.; Chundeli, F.A. Assessing LULC changes and LST through NDVI and NDBI spatial indicators: A case of Bengaluru, India. GeoJournal 2023, 88, 4335–4350. [Google Scholar] [CrossRef]
- Bechtel, B.; Langkamp, T.; Böhner, J.; Daneke, C.; Oßenbrügge, J.; Schempp, S. Classification and modelling of urban micro-climates using multisensoral and multitemporal remote sensing data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 463–468. [Google Scholar] [CrossRef]
- Singh, R.B.; Grover, A. Remote sensing of urban microclimate with special reference to urban heat island using Landsat thermal data. Geogr. Pol. 2014, 87, 555–568. [Google Scholar] [CrossRef]
- Schaefer, M.; Salari, H.E.; Köckler, H.; Thinh, N.X. Assessing local heat stress and air quality with the use of remote sensing and pedestrian perception in urban microclimate simulations. Sci. Total Environ. 2021, 794, 148709. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.P.; Quattrochi, D.A.; Luvall, J.C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 1997, 18, 287–304. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; et al. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef]
- Andrew, M.E.; Wulder, M.A.; Nelson, T.A. Potential contributions of remote sensing to ecosystem service assessments. Prog. Phys. Geogr. Earth Environ. 2014, 38, 328–353. [Google Scholar] [CrossRef]
- De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Lausch, A.; Bastian, O.; Klotz, S.; Leitão, P.J.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 2018, 9, 1799–1809. [Google Scholar] [CrossRef]
- Soubry, I.; Doan, T.; Chu, T.; Guo, X. A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures. Remote Sens. 2021, 13, 3262. [Google Scholar] [CrossRef]
- Bruelheide, H.; Jandt, U.; Gries, D.; Thomas, F.M.; Foetzki, A.; Buerkert, A.; Wang, G.; Zhang, X.; Runge, M. Vegetation changes in a river oasis on the southern rim of the Taklamakan Desert in China between 1956 and 2000. Phytocoenologia 2003, 33, 801–818. [Google Scholar]
- Mohammed, J. Rapid urban growth in the city of Duhok, Iraqi Kurdistan Region: An integrated approach of GIS, remote sensing and Shannon entropy application. Int. J. Geomat. Geosci. 2013, 4, 325. [Google Scholar]
- El-Zeiny, A.M.; Effat, H.A. Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sens. Appl. Soc. Environ. 2017, 8, 266–277. [Google Scholar] [CrossRef]
- Lamqadem, A.A.; Saber, H.; Pradhan, B. Quantitative assessment of desertification in an arid oasis using remote sensing data and spectral index techniques. Remote Sens. 2018, 10, 1862. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Sinha, P. Mapping and modelling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques. Remote Sens. 2014, 6, 1137–1157. [Google Scholar] [CrossRef]
- Bie, Q.; Xie, Y.; Wang, X.; Wei, B.; He, L.; Duan, H.; Wang, J. Understanding the attributes of the dual oasis effect in an arid region using remote sensing and observational data. Ecosyst. Health Sustain. 2020, 6, 1696153. [Google Scholar] [CrossRef]
- Xiang, Y.; Meng, J. Research into ecological suitability zoning and expansion patterns in agricultural oases based on the landscape process: A case study in the middle reaches of the Heihe River. Environ. Earth Sci. 2016, 75, 1355. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, B.H.; Sreekantha, S. Spatial metrics based landscape structure and dynamics assessment for an emerging Indian megalopolis. Int. J. Adv. Res. Artif. Intell. 2012, 1, 1. [Google Scholar] [CrossRef]
- Yu, J.; Peng, S.; Zhang, W.; Kang, S. Index for the consistent measurement of spatial heterogeneity for large-scale land cover datasets. ISPRS Int. J. Geo-Inf. 2020, 9, 483. [Google Scholar] [CrossRef]
- Myint, S.W.; Wentz, E.A.; Brazel, A.J.; Quattrochi, D.A. The impact of distinct anthropogenic and vegetation features on urban warming. Landsc. Ecol. 2013, 28, 959–978. [Google Scholar] [CrossRef]
- Vahidi, S.; Hatamzadeh, V.; Nouri, P.; Far, A.A. Monitoring land cover changes in Tehran city over 5 years (2018 to 2022) using remote sensing based spatial information. Asian J. Environ. Ecol. 2023, 20, 24–35. [Google Scholar] [CrossRef]
- Chen, L.; Li, M.; Huang, F.; Xu, S. Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Volume 2, pp. 840–845. [Google Scholar]
- Sresto, M.A.; Siddika, S.; Fattah, M.A.; Morshed, S.R.; Morshed, M.M. A GIS and remote sensing approach for measuring summer-winter variation of land use and land cover indices and surface temperature in Dhaka district, Bangladesh. Heliyon 2022, 8, e10309. [Google Scholar] [CrossRef]
- Alademomi, A.S.; Okolie, C.J.; Daramola, O.E.; Akinnusi, S.A.; Adediran, E.; Olanrewaju, H.O.; Alabi, A.O.; Salami, T.J.; Odumosu, J. The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Appl. Geomat. 2022, 14, 299–314. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F.; Mauriello, C.; Miraglia, V. A GIS-Based Framework to Analyze the Behavior of Urban Greenery During Heatwaves Using Satellite Data. ISPRS Int. J. Geo-Inf. 2024, 13, 377. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Howitt, D.; Cramer, D. First Steps in Research and Statistics: A Practical Workbook for Psychology Students; Routledge: Oxfordshire, UK, 2003. [Google Scholar]
- Al-Ahmadi, F.S.; Al-Hames, A.S. Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid areas, Kingdom of Saudi Arabia. Earth Sci. 2009, 20, 167–191. [Google Scholar] [CrossRef]
- Yousefi, S.; Khatami, R.; Mountrakis, G.; Mirzaee, S.; Pourghasemi, H.R.; Tazeh, M. Accuracy assessment of land cover/land use classifiers in dry and humid areas of Iran. Environ. Monit. Assess. 2015, 187, 641. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.R.; Lulla, K. Introductory digital image processing: A remote sensing perspective. Geocarto Int. 1987, 2, 65–65. [Google Scholar] [CrossRef]
- City Fact. Available online: https://www.city-facts.com (accessed on 29 May 2025).
- Laoubi, K.; Yamao, M. The challenge of agriculture in Algeria: Are policies effective. Bull. Agric. Fish. Econ. 2012, 12, 65–73. [Google Scholar]
- Bouguedoura, N.; Bennaceur, M.; Babahani, S.; Benziouche, S.E. Date Palm Status and Perspective in Algeria. In Date Palm Genetic Resources and Utilization; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 125–168. ISBN 978-94-017-9693-4. [Google Scholar]
- Belghemmaz, S.; Fenni, M.; Chomontowski, C.; Louadj, Y.; Afrasinei, M.G.; Degui, N. Typology characterisation and monitoring of arid soils in an agroecosystem environment: Case of Ziban oasis, Algeria. J. Water Land Dev. 2024, 61, 213–226. [Google Scholar] [CrossRef]
- Guedria, A.; Driss, H.; Kharrat, F. Nefta, la ville et l’oasis de la continuité à la rupture. In Proceedings of the Actes du Colloque International Les Oasis Dans la Mondialisation: Ruptures et Continuités, Paris, France, 16–17 December 2013; p. 159. [Google Scholar]
- Abdulac, S. Ghadames, Libya. A traditional earthen settlement, resilient to crises and environmental challenges. In Proceedings of the HERITAGE 2022-International Conference on Vernacular Heritage: Culture, People and Sustainability; Editorial Universitat Politècnica de València, València, Spain, 15–17 September 2022; pp. 1015–1022. [Google Scholar]
- Abo-Ragab, S.E. Sustainable agriculture development of Siwa Oasis, Western Desert, Egypt. Minufiya J. Agric. Res. 2014, 39, 1–14. [Google Scholar]
- Hamamouche, M.F.; Kuper, M.; Amichi, H.; Lejars, C.; Ghodbani, T. New reading of Saharan agricultural transformation: Continuities of ancient oases and their extensions (Algeria). World Dev. 2018, 107, 210–223. [Google Scholar] [CrossRef]
- Ait-El-Mokhtar, M.; Boutasknit, A.; Ben-Laouane, R.; Anli, M.; El Amerany, F.; Toubali, S.; Lahbouki, S.; Wahbi, S.; Meddich, A. Vulnerability of oasis agriculture to climate change in Morocco. In Research Anthology on Environmental and Societal Impacts of Climate Change; IGI Global: Hershey, PA, USA, 2022; pp. 1195–1219. [Google Scholar]
- Mrabet, R. Advanced and emerging agricultural innovations for securing food, climate and ecosystems in Moroccan oasis. J. OASIS Agric. Sustain. Dev. 2022, 4, 6–15. [Google Scholar] [CrossRef]
- Abul-Soad, A.A.; Mohamed, N.H.; Salomón-Torres, R.; Al-Khayri, J.M. Cultivation of Date Palm for Enhanced Resilience to Climate Change. In Cultivation for Climate Change Resilience; CRC Press: Boca Raton, FL, USA, 2023; Volume 2, pp. 138–169. [Google Scholar]
- Dhawi, F.; Aleidan, M.M. Oasis agriculture revitalization and carbon sequestration for climate-resilient communities. Front. Agron. 2024, 6, 1386671. [Google Scholar] [CrossRef]
Feature | Description and Relevance to this Study |
---|---|
Climatic Context | All selected oases lie in arid or semi-arid regions within the Sahara Desert, offering a coherent climatic setting to assess LST and land cover dynamics under extreme conditions. |
Ecological and Agricultural Importance | Each oasis is historically and ecologically significant, especially in terms of palm-based agriculture and localized biodiversity, making them critical for analyzing vegetation–temperature interactions. |
Land Use Variation and Urban Pressure | These oases represent different stages of urban growth and agricultural expansion, providing the diversity necessary for assessing land cover–LST relationships using NDVI and NDBI. |
Environmental Vulnerability | All oases are increasingly threatened by rising temperatures, desertification, and water scarcity, positioning them as priority zones for climate resilience analysis. |
Satellite Data Availability | Consistent availability of cloud-free Landsat imagery across all sites ensures robust, standardized long-term analysis (2000–2023). |
Topographic Consistency | All oases are located in relatively flat landscapes (with minimal elevation variation), reducing the impact of topography on LST measurements. |
Oasis | Year | Landsat Sensor | Spatial Resolution (m) | Bands Used | Cloud Cover (%) | Acquisition Date |
---|---|---|---|---|---|---|
Tolga (Algeria) (34.7225° N, 5.3783° E) | 2000 | Landsat 7 ETM+ | 30 (Reflective), 60 (Thermal) | Band 6 (Thermal), Band 3 (Red), Band 4 (NIR) | 0.00 | 4 July 2000 |
2023 | Landsat 8 OLI/TIRS | 30 (Reflective), 100 (Thermal) | Band 10 (Thermal), Band 5 (NIR), Band 4 (Red) | 0.00 | 12 July 2023 | |
Siwa (Egypt) (29.2032° N, 25.5196° E) | 2000 | Landsat 7 ETM+ | 30 (Reflective), 60 (Thermal) | Band 6 (Thermal), Band 3 (Red), Band 4 (NIR) | 0.00 | 18 July 2000 |
2023 | Landsat 9 OLI/TIRS | 30 (Reflective), 100 (Thermal) | Band 10 (Thermal), Band 5 (NIR), Band 4 (Red) | 0.00 | 18 July 2023 | |
Nefta (Tunisia) (33.8736° N, 7.8780° E) | 2000 | Landsat 7 ETM+ | 30 (Reflective), 60 (Thermal) | Band 6 (Thermal), Band 3 (Red), Band 4 (NIR) | 0.00 | 22 July 2000 |
2023 | Landsat 9 OLI/TIRS | 30 (Reflective), 100 (Thermal) | Band 10 (Thermal), Band 5 (NIR), Band 4 (Red) | 0.00 | 2023 July 22 | |
Ghadames (Libya) (30.1333° N, 9.5000° E) | 2000 | Landsat 7 ETM+ | 30 (Reflective), 60 (Thermal) | Band 6 (Thermal), Band 3 (Red), Band 4 (NIR) | 0.00 | 15 July 2000 |
2023 | Landsat 8 OLI/TIRS | 30 (Reflective), 100 (Thermal) | Band 10 (Thermal), Band 5 (NIR), Band 4 (Red) | 0.00 | 16 July 2023 |
Step | Description | Formula/Details |
---|---|---|
1. Radiance Calculation | DN values from the thermal band were converted to radiance using metadata parameters. | Lλ = ML · Qcal + AL [39] ML: Radiance Mult Band, AL: Radiance Add Band, Qcal: DN values. |
2. (BT) | Radiance was converted to brightness temperature (Kelvin). | BT = K2/ln ((K1/Lλ) + 1) [39] K1, K2: Thermal constants (from metadata) |
3. Proportion of Vegetation (Pv) | Proportion of vegetation was derived from NDVI. | Pv = ((NDVI − NDVImin)/(NDVImax − NDVImin))2 [66] |
4. Emissivity (ϵ) | Emissivity was computed based on Pv to account for surface properties. | Landsat 7: Ev = 0.004⋅Pv + 0.986 Landsat 8, 9: Ev = 0.00149⋅Pv + 0.98481 (updated equation) [67] |
5. LST Calculation | LST was calculated from BT and emissivity. | LST = BT/(1 + (λBT/ρ) ln(ϵ)) [61,63] λ: Thermal band wavelength, ρ = 1.438⋅10−2 |
6. NDVI Calculation | NDVI was computed to assess vegetation density using the Red and NIR bands. | NDVI = (NIR − Red)/(NIR + Red) [66] Landsat 7: NIR (Band 4), Red (Band 3); Landsat 8/9: NIR (Band 5), Red (Band 4). |
7. NDBI Calculation | NDBI was computed to identify built-up areas using the SWIR and NIR bands. | NDBI = (SWIR − NIR)/(SWIR + NIR) [38] Landsat 7: SWIR (Band 5), NIR (Band 4); Landsat 8/9: SWIR (Band 6), NIR (Band 5). |
8. Land Cover Classification | Supervised classification (Maximum Likelihood) [68] was employed to classify land cover types: urban, vegetation, and bare soil. |
Class | Description |
---|---|
Built-up (Urban) | Residential areas, settlements, industrial zones, commercial areas, and roads. |
Bare Land (Bare Soil) | Open spaces, barren soil, abandoned lands, and uncultivated areas. |
Vegetation | Palm groves, crop fields, cultivated lands, fruit orchards, gardens, vegetative areas. |
Oasis | 2000 | 2023 | 2000 | 2023 |
---|---|---|---|---|
Overall Accuracy (%) | Kappa Coefficient | |||
Tolga | 0.91 | 0.94 | 0.86 | 0.90 |
Nefta | 0.95 | 0.95 | 0.91 | 0.92 |
Ghadames | 0.93 | 0.95 | 0.85 | 0.90 |
Siwa | 0.95 | 0.91 | 0.93 | 0.87 |
Oasis | Year | LST-NDVI Correlation (r) | Sig. (2-tailed) | LST-NDBI Correlation (r) | Sig. (2-tailed) |
---|---|---|---|---|---|
Tolga | 2000 | −0.931 ** | 0.000 | 0.850 ** | 0.000 |
2023 | −0.838 ** | 0.000 | 0.858 ** | 0.000 | |
Ghadames | 2000 | −0.385 ** | 0.000 | 0.409 ** | 0.000 |
2023 | −0.132 ** | 0.000 | 0.193 ** | 0.000 | |
Nefta | 2000 | −0.896 ** | 0.000 | 0.911 ** | 0.000 |
2023 | −0.900 ** | 0.000 | 0.915 ** | 0.000 | |
Siwa | 2000 | −0.359 ** | 0.000 | 0.348 ** | 0.000 |
2023 | −0.290 ** | 0.000 | 0.288 ** | 0.000 |
Oasis | Year | R | R2 | Adjusted R2 | F-Value | Sig | NDVI Coefficient (B) | NDVI Sig | NDBI Coefficient (B) | NDBI Sig |
---|---|---|---|---|---|---|---|---|---|---|
Tolga | 2023 | 0.86 | 0.74 | 0.74 | 2861.34 | 0.00 | −7.67 | 0.00 | 15.34 | 0.00 |
2000 | 0.93 | 0.87 | 0.87 | 6514.50 | 0.00 | −23.32 | 0.00 | 2.06 | 0.00 | |
Ghadames | 2023 | 0.21 | 0.04 | 0.04 | 40.76 | 0.00 | 5.02 | 0.00 | 0.83 | 0.23 |
2000 | 0.44 | 0.19 | 0.19 | 211.08 | 0.00 | −4.37 | 0.00 | 7.92 | 0.00 | |
Nefta | 2023 | 0.92 | 0.84 | 0.84 | 5085.92 | 0.00 | 2.16 | 0.08 | 21.06 | 0.00 |
2000 | 0.91 | 0.83 | 0.83 | 4839.49 | 0.00 | 2.57 | 0.00 | 14.80 | 0.00 | |
Siwa | 2023 | 0.85 | 0.72 | 0.72 | 2517.63 | 0.00 | 20.66 | 0.00 | 43.04 | 0.00 |
2000 | 0.36 | 0.13 | 0.13 | 144.49 | 0.00 | −1.58 | 0.00 | −11.16 | 0.00 |
Criterion (2000–2023) | Tolga | Nefta | Ghadames | Siwa |
---|---|---|---|---|
Population change (%) | +43.50 | +8.60 | +27.40 | +60.60 |
Built-up area change (%) | +29.07 | +19.12 | +48.46 | +136.01 |
Vegetation cover change (%) | −0.26 | +3.6 | +82.00 | +27.17 |
Bare-soil change (%) | −23.87 | −6.51 | −24.44 | −48.10 |
Mean LST rise (°C) | +0.24 | +12.4 | +4.22 | +0.65 |
Representative Vegetation Patterns | Dense palm | Dense palms and agricultural crops | Isolated palms with scattered agricultural plots | Palms combined with olives and vegetable crops |
Oasis | LST Moyenne Tissu Traditionnel (°C) | LST Moyenne Extension Moderne (°C) | ΔLST (°C) | ||||
---|---|---|---|---|---|---|---|
Min | Max | moyenne | Min | Max | moyenne | ||
Tolga | 33.63 | 43.27 | 38.80 | 36.28 | 46.55 | 41.30 | 2.5 |
Nefta | 42.06 | 47.85 | 45.07 | 46.60 | 49.61 | 47.12 | 2.05 |
Ghadames | 42.21 | 45.69 | 43.55 | 43.66 | 47.02 | 45.25 | 1.7 |
Siwa | / | / | / | / | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzir, T.A.K.; Berkouk, D.; Ounis, S.; Melik, S.; Rusli, N.; Gomaa, M.M. Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023. Urban Sci. 2025, 9, 282. https://doi.org/10.3390/urbansci9070282
Bouzir TAK, Berkouk D, Ounis S, Melik S, Rusli N, Gomaa MM. Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023. Urban Science. 2025; 9(7):282. https://doi.org/10.3390/urbansci9070282
Chicago/Turabian StyleBouzir, Tallal Abdel Karim, Djihed Berkouk, Safieddine Ounis, Sami Melik, Noradila Rusli, and Mohammed M. Gomaa. 2025. "Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023" Urban Science 9, no. 7: 282. https://doi.org/10.3390/urbansci9070282
APA StyleBouzir, T. A. K., Berkouk, D., Ounis, S., Melik, S., Rusli, N., & Gomaa, M. M. (2025). Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023. Urban Science, 9(7), 282. https://doi.org/10.3390/urbansci9070282