Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,394)

Search Parameters:
Keywords = B2 precipitates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5020 KiB  
Review
Research Progress on Tribological Properties of High-Entropy Alloys
by Shuai Zhang, Zhaofeng Wang, Wenqing Lin and Haoyu Guo
Lubricants 2025, 13(8), 342; https://doi.org/10.3390/lubricants13080342 - 1 Aug 2025
Viewed by 203
Abstract
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail [...] Read more.
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail effect. This paper systematically reviews the research progress on the friction and wear properties of high-entropy alloys. The mechanisms of metal elements such as Al, Ti, Cu and Nb through solid solution strengthening, second-phase precipitation and oxide film formation were analyzed emphatically. And non-metallic elements such as C, Si, and B form and strengthen the regulation laws of their tribological properties. The influence of working conditions, such as high temperature, ocean, and hydrogen peroxide on the friction and wear behavior of high-entropy alloys by altering the wear mechanism, was discussed. The influence of test conditions such as load, sliding velocity and friction pair matching on its friction coefficient and wear rate was expounded. It is pointed out that high-entropy alloys have significant application potential in key friction components, providing reference and guidance for the further development and application of high-entropy alloys. Full article
(This article belongs to the Special Issue Tribological Performance of High-Entropy Alloys)
Show Figures

Figure 1

20 pages, 678 KiB  
Review
Cryoproteins in Non-HCV-Related Autoimmune Disorders: A Serious Cold-Induced Problem
by Krizia Pocino, Annunziata Stefanile, Patrizia Natali, Cecilia Napodano, Valerio Basile, Gabriele Ciasca, Mariapaola Marino and Umberto Basile
Diagnostics 2025, 15(15), 1933; https://doi.org/10.3390/diagnostics15151933 - 31 Jul 2025
Viewed by 167
Abstract
The precipitation of cryoglobulins, serum immunoglobulins, below 37 °C defines the clinical cryoglobulinemic syndrome, a systemic vasculitis usually characterized by purpura, weakness, and arthralgia. In most cases, this condition is associated with chronic infection by the hepatitis C virus (HCV) and can evolve [...] Read more.
The precipitation of cryoglobulins, serum immunoglobulins, below 37 °C defines the clinical cryoglobulinemic syndrome, a systemic vasculitis usually characterized by purpura, weakness, and arthralgia. In most cases, this condition is associated with chronic infection by the hepatitis C virus (HCV) and can evolve into B-cell dysregulation and malignancies. The current literature on non-HCV-associated cryoglobulinemia is very limited, and little is known about the immunological and serological profile of affected patients. The cryoglobulinemic syndrome not associated with HCV infection is often found concomitantly with other infections, autoimmune diseases, and B-cell lymphoproliferative disorders. The cryoprecipitation of fibrinogen has been described as a rare disorder, perhaps underestimated and not fully understood, causing thrombotic occlusion and ischemia in different rheumatic disorders. Cold temperature plays a pathogenetic role in autoimmune hemolytic anemias, in which the presence of cold agglutinins produced by B cells at the lymphoplasmacytic cell stage may promote agglutination of red blood cells in the coldest parts of the circulation, even at mild room temperatures, undergoing hemolysis. Laboratory methods for the detection and quantification of cryoproteins are downright critical, and their concurrent detection is pivotal for the diagnosis. In this review, we summarize the clinical involvement of cryoglobulins, cryofibrinogen, and cold agglutinins in non-HCV autoimmune diseases, underlining the crucial steps of the most employed analytic methods. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Laboratory Immunology)
19 pages, 4196 KiB  
Article
Corridors of Suitable Distribution of Betula platyphylla Sukaczev Forest in China Under Climate Warming
by Bingying Xie, Huayong Zhang, Xiande Ji, Bingjian Zhao, Yanan Wei, Yijie Peng and Zhao Liu
Sustainability 2025, 17(15), 6937; https://doi.org/10.3390/su17156937 - 30 Jul 2025
Viewed by 179
Abstract
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze [...] Read more.
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze the suitable distribution and driving variables of B. platyphylla forest in China and its four ecoregions. The minimum cumulative resistance (MCR) model was applied to construct corridors nationwide. Results show that B. platyphylla forest in China is currently mainly distributed in the four ecoregions; specifically, in Gansu and Shaanxi Province in Northwest China, Heilongjiang Province in Northeast China, Sichuan Province in Southwest China, and Hebei Province and Inner Mongolia Autonomous Region in North China. Precipitation and temperature are the main factors affecting suitable distribution. With global warming, the suitable areas in China including the North, Northwest China ecoregions are projected to expand, while Northeast and Southwest China ecoregions will decline. Based on the suitable areas, we considered 45 corridors in China, spanning the four ecoregions. Our results help understand dynamic changes in the distribution of B. platyphylla forest in China under global warming, providing scientific guidance for montane forests’ sustainable development. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

16 pages, 3171 KiB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 261
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

16 pages, 4204 KiB  
Article
Assessment of the Source and Dynamics of Water Inrush Based on Hydrochemical Mixing Model in Zhaxikang Mining Area, Tibet, China
by Hongyu Gu, Yujie Liu, Huizhong Liu, Xinyu Cen, Jinxian Zhong, Dewei Wang and Lei Yi
Water 2025, 17(15), 2201; https://doi.org/10.3390/w17152201 - 23 Jul 2025
Viewed by 243
Abstract
Water source identification and dynamic assessment are critical for mining safety, particularly in mines governed by complex geological structures. The hydrochemical mixing model demonstrates a natural advantage for early warning of water intrusion compared to geophysical monitoring techniques. This study discusses core issues [...] Read more.
Water source identification and dynamic assessment are critical for mining safety, particularly in mines governed by complex geological structures. The hydrochemical mixing model demonstrates a natural advantage for early warning of water intrusion compared to geophysical monitoring techniques. This study discusses core issues related to the mixing model, including the conceptual framework, selection of end-members, and choice of tracers, and formulates principles for general applicability. In this study, three sources were identified using the conceptual model and hydrochemical analysis: water in F7 (main fault), shallow fracture water, and river water. A correlation analysis and variability analysis were applied to determine the tracers, and the 18O, D, Cl, B, and Li were determined. The end-members of the three sources are time-dependent in July and September, especially the shallow fracture water’s end-members. The dynamics of the mixing ratios of the three sources suggest that river water contributes only to the inrush (1–4%), with this being especially low in September, as the increasing hydraulic gradient from south to north prevents recharge. The water in F7 accounts for at least 70% of the inrush water. Shallow fracture water accounts for the rest and increases slightly in September as the precipitation increases in mining-disturbed areas. Finally, this work makes the later water control work more targeted. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 2607 KiB  
Article
One-Pot Synthesis of Phenylboronic Acid-Based Microgels for Tunable Gate of Glucose-Responsive Insulin Release at Physiological pH
by Prashun G. Roy, Jiangtao Zhang, Koushik Bhattacharya, Probal Banerjee, Jing Shen and Shuiqin Zhou
Molecules 2025, 30(15), 3059; https://doi.org/10.3390/molecules30153059 - 22 Jul 2025
Viewed by 292
Abstract
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple [...] Read more.
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple one-pot precipitation copolymerization of 4-vinylphenylboronic acid (VPBA), 2-(dimethylamino) ethyl acrylate (DMAEA), and oligo(ethylene glycol) methyl ether methacrylate (Mw = 300, MEO5MA), for gated glucose-responsive insulin release within the physiologically desirable glucose level range. The composition of the p(VPBA-DMAEA-MEO5MA) copolymer microgels were analyzed using NMR and FTIR spectra. The cis-diols of glucose can reversibly bind with the −B(OH)2 groups of the VPBA component in the microgels, resulting in the formation of negatively charged boronate esters that induce the volume phase transition of the microgels. The DMAEA component is incorporated to reduce the pKa of VPBA, thus improving the glucose sensitivity of the microgels at physiological pH. The neutral hydrophilic MEO5MA component is used to tune the onset of the glucose responsiveness of the microgels to the physiologically desirable levels. The more the MEO5MA component copolymerized in the microgels, the greater the glucose concentration required to initiate the swelling of the microgels to trigger the release of insulin. When the onset of the glucose response was tuned to 4−5 mM, the copolymer microgels retained insulin effectively in the hypo-/normo-glycemic range but also released insulin efficiently in response to the elevation of glucose levels in the hyperglycemic range, which is essential for diabetes management. The copolymer microgels display no cytotoxicity in vitro. Full article
Show Figures

Figure 1

19 pages, 13952 KiB  
Article
Antioxidant and Anti-Inflammatory Effects of Crude Gastrodia elata Polysaccharides in UVB-Induced Acute Skin Damage
by Jiajia Liu, Xiaoqi Yang, Xing Huang, Yuan Luo, Qilin Zhang, Feng Wang, Yicen Lin and Lianbing Lin
Antioxidants 2025, 14(7), 894; https://doi.org/10.3390/antiox14070894 - 21 Jul 2025
Viewed by 507
Abstract
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol [...] Read more.
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol precipitation. It is a homogeneous polysaccharide with a weight-average molecular weight of 808.863 kDa, comprising Ara, Glc, Fru, and GalA. Histopathological analysis revealed that topical application of GP on the dorsal skin of mice effectively restored normal physiological structure, suppressing epidermal hyperplasia and collagen degradation. Biochemical assays showed that GP significantly reduced the activities of MPO and MDA following UVB exposure while restoring the enzymatic activities of SOD and GSH, thereby mitigating oxidative stress. Moreover, GP treatment markedly upregulated the anti-inflammatory cytokines TGF-β and IL-10 and downregulated the pro-inflammatory mediators IL-6, IL-1β, and TNF-α, suggesting robust anti-inflammatory effects. Transcriptomics revealed dual-phase mechanisms: Early repair (day 5) involved GP-mediated suppression of hyper inflammation and accelerated necrotic tissue clearance via pathway network modulation. Late phase (day 18) featured enhanced anti-inflammatory, antioxidant, and tissue regeneration processes through energy-sufficient, low-inflammatory pathway networks. Through a synergistic response involving antioxidation, anti-inflammation, promotion of collagen synthesis, and acceleration of skin barrier repair, GP achieves comprehensive repair of UVB-induced acute skin damage. Our findings not only establish GP as a potent natural alternative to synthetic photoprotective agents but also reveal novel pathway network interactions governing polysaccharide-mediated skin regeneration. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 9827 KiB  
Article
High-Temperature Mechanical and Wear Behavior of Hypoeutectic Al–Si–(Cu)–Mg Alloys with Hardening Mechanisms Dictated by Varying Cu:Mg Ratios
by Jaehui Bang, Yeontae Kim and Eunkyung Lee
Appl. Sci. 2025, 15(14), 8047; https://doi.org/10.3390/app15148047 - 19 Jul 2025
Viewed by 324
Abstract
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat [...] Read more.
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat treatment. Alloys A and B, with identical Si contents but differing Cu and Mg levels, were subjected to multiscale microstructural characterization and mechanical and wear testing at 25 °C, 150 °C, and 250 °C. Alloy A (Cu-rich) exhibited refined α-Al(FeMn)Si phases and homogeneously dissolved Cu in the Al matrix, promoting lattice contraction and dislocation pinning. In contrast, Alloy B (Mg-rich) retained coarse Mg2Si and residual β-AlFeSi phases, which induced local stress concentrations and thermal instability. Under tribological testing, Alloy A showed slightly higher friction coefficients (0.38–0.43) but up to 26.4% lower wear rates across all temperatures. At 250 °C, Alloy B exhibited a 25.2% increase in the wear rate, accompanied by surface degradation such as delamination and spalling due to β-AlFeSi fragmentation and matrix softening. These results confirm that the Cu:Mg ratio critically influences the dominant hardening mechanism—the solid solution vs. precipitation—and determines the high-temperature performance. Alloy A maintained up to 14.1% higher tensile strength and 22.3% higher hardness, exhibiting greater shear resistance and interfacial stability. This work provides a compositionally guided framework for designing thermally durable Al–Si-based alloys with improved wear resistance under elevated temperature conditions. Full article
(This article belongs to the Special Issue Characterization and Mechanical Properties of Alloys)
Show Figures

Figure 1

15 pages, 4848 KiB  
Communication
Practical Performance Assessment of Water Vapor Monitoring Using BDS PPP-B2b Service
by Linghao Zhou, Enhong Zhang, Hong Liang, Zuquan Hu, Meifang Qu, Xinxin Li and Yunchang Cao
Appl. Sci. 2025, 15(14), 8033; https://doi.org/10.3390/app15148033 - 18 Jul 2025
Viewed by 210
Abstract
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service [...] Read more.
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service is illustrated through a continuously operated water vapor monitoring system in Wuhan, China, with a 25-day experiment in 2025. Original observations from the Global Positioning System (GPS) and BDS are collected and processed in the near real-time (NRT) mode using ephemeris from the PPP-B2b service. Precipitable water vapor PWV monitored with B2b ephemeris are evaluated with radiosonde and ERA5 reanalysis, respectively. Taking PWV from radiosonde observations as the reference, RMS of PWV based on B2b ephemeris varies from 3.71 to 4.66 mm for different satellite combinations. While those values are with a range from 3.95 to 4.55 mm when compared with ERA5 reanalysis. These values are similar to those processed with the real-time ephemeris from the China Academy of Science (CAS). In general, this study demonstrates that the practical accuracy of water vapor monitored based on the BDS PPP-B2b service can meet the basic demand for operational meteorology for the first time. This will provide a scientific reference for its wide promotion to meteorological applications in the near future. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 2035 KiB  
Article
Optimizing Sunflower Cultivar Selection Under Climate Variability: Evidence from Coupled Meteorological-Growth Modeling in Arid Northwest China
by Jianguo Mu, Jianqin Wang, Ruiying Ma, Zengshuai Lv, Hongye Dong, Yantao Liu, Wei Duan, Shengli Liu, Peng Wang and Xuekun Zhang
Agronomy 2025, 15(7), 1724; https://doi.org/10.3390/agronomy15071724 - 17 Jul 2025
Viewed by 296
Abstract
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield [...] Read more.
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield and quality traits among sunflower cultivars with varying maturation periods. The main findings were: (1) Early-maturing cultivar B1 (RH3146) exhibited superior adaptation at low-temperature station A1, achieving 12% higher plant height and an 18% yield increase compared to regional averages. (2) At thermally variable station A2 (daily average temperature fluctuation ± 8 °C, precipitation CV = 25%), the late-maturing cultivar B3 showed enhanced stress resilience, achieving 35.6% grain crude fat content (15% greater than mid-maturing B2) along with 8–10% increases in seed setting rate and 100-grain weight. These improvements were potentially due to optimized photoassimilated allocation and activation of stress-responsive genes. (3) At station A3, characterized by high thermal-humidity variability (CV > 15%) during grain filling, B3 experienced a 15-day delay in maturation and a 3% reduction in ripeness. Two principal mitigation strategies are recommended: preferential selection of early-to-mid maturing cultivars in regions with thermal-humidity CV > 10%, improving yield stability by 23%, and optimization of sowing schedules based on accumulated temperature-precipitation modeling, reducing meteorological losses by 15%. These evidence-based recommendations provide critical insights for climate-resilient cultivar selection and precision agricultural management in meteorologically vulnerable agroecosystems. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 3057 KiB  
Article
Phylogenetic Diversity and Symbiotic Effectiveness of Bradyrhizobium Strains Nodulating Glycine max in Côte d’Ivoire
by Marie Ange Akaffou, Romain Kouakou Fossou, Anicet Ediman Théodore Ebou, Zaka Ghislaine Claude Kouadjo-Zézé, Chiguié Estelle Raïssa-Emma Amon, Clémence Chaintreuil, Saliou Fall and Adolphe Zézé
Agronomy 2025, 15(7), 1720; https://doi.org/10.3390/agronomy15071720 - 17 Jul 2025
Viewed by 576
Abstract
Soybean (Glycine max) is a protein-rich legume crop that plays an important role in achieving food security. The aim of this study was to isolate soybean-nodulating rhizobia from Côte d’Ivoire soils and evaluate their potential as efficient strains in order to [...] Read more.
Soybean (Glycine max) is a protein-rich legume crop that plays an important role in achieving food security. The aim of this study was to isolate soybean-nodulating rhizobia from Côte d’Ivoire soils and evaluate their potential as efficient strains in order to develop local bioinoculants. For this objective, 38 composite soil samples were collected from Côte d’Ivoire’s five major climatic zones. These soils were used as substrate to trap the nodulating rhizobia using the promiscuous soybean variety R2-231. A total of 110 bacterial strains were isolated and subsequently identified. The analysis of ITS (rDNA16S-23S), glnII and recA sequences revealed a relatively low genetic diversity of these native rhizobia. Moreover, the ITS phylogeny showed that these were scattered into two Bradyrhizobium clades dominated by the B. elkanii supergroup, with ca. 75% of all isolates. Concatenated glnII-recA sequence phylogeny confirmed that the isolates belong in the majority to ‘B. brasilense’, together with B. vignae and some putative genospecies of Bradyrhizobium that needs further elucidation. The core gene phylogeny was found to be incongruent with nodC and nifH phylogenies, probably due to lateral gene transfer influence on the symbiotic genes. The diversity and composition of the Bradyrhizobium species varied significantly among different sampling sites, and the key explanatory variables identified were carbon (C), magnesium (Mg), nitrogen (N), pH, and annual precipitation. Based on both shoot biomass and leaf relative chlorophyll content, three isolates consistently showed a higher symbiotic effectiveness than the exotic inoculant strain Bradyrhizobium IRAT-FA3, demonstrating their potential to serve as indigenous elite strains as bioinoculants. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

27 pages, 4124 KiB  
Article
Evaluating Binary Molybdenum Alloys as Strong and Ductile High-Temperature Materials
by Cheng Fu, Jiayi Yan, Jiang Yu, Yuhong Ren and Sha Li
Materials 2025, 18(14), 3329; https://doi.org/10.3390/ma18143329 - 15 Jul 2025
Viewed by 243
Abstract
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is [...] Read more.
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is to explore opportunities of discovering useful alloys from the usually less investigated binary Mo-X systems (X = alloying element). With computational thermodynamics (CALPHAD), first-principles calculation, and mechanistic modeling combined, in this work a large number of Mo-X binary systems are investigated in terms of thermodynamic features and mechanical properties (yield strength, ductility, ductile-brittle transition temperature, creep resistance, and stress-strain relationship). The applicability of the alloy systems as solution-strengthened or precipitation-strengthened alloys is investigated. Starting from 92 Mo-X systems, a down-selection process is implemented, the results of which include three candidate systems for precipitation strengthening (Mo-B, Mo-C, Mo-Si) and one system (Mo-Re) for solid-solution strengthened alloy. In a composition optimization of Mo alloys to reach the properties of Ni-base superalloys, improving ductility is of top priority, for which Re plays a unique role. The presented workflow is also applicable to other bcc refractory alloy systems. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

17 pages, 3544 KiB  
Article
Assembly and Analysis of the Mitochondrial Genome of Hippophae rhamnoides subsp. sinensis, an Important Ecological and Economic Forest Tree Species in China
by Jie Li, Song-Song Lu, Yang Bi, Yu-Mei Jiang, Li-Dan Feng and Jing He
Plants 2025, 14(14), 2170; https://doi.org/10.3390/plants14142170 - 14 Jul 2025
Viewed by 322
Abstract
Hippophae rhamnoides subsp. sinensis is extensively found in China, where the annual precipitation ranges from 400 to 800 mm. It is the most dominant species in natural sea buckthorn forests and the primary cultivar for artificial ecological plantations. Additionally, it exhibits significant nutritional [...] Read more.
Hippophae rhamnoides subsp. sinensis is extensively found in China, where the annual precipitation ranges from 400 to 800 mm. It is the most dominant species in natural sea buckthorn forests and the primary cultivar for artificial ecological plantations. Additionally, it exhibits significant nutritional and medicinal value, making it a renowned eco-economic tree species. Despite extensive research into its ecological functions and health benefits, the mitochondrial genome of this widespread species has not yet been published, and knowledge of the mitochondrial genome is crucial for understanding plant environmental adaptation, evolution, and maternal inheritance. Therefore, the complete mitochondrial genome was successfully assembled by aligning third-generation sequencing data to the reference genome sequence using the Illumina NovaSeq 6000 platform and Nanopore Prometh ION technologies. Additionally, the gene structure, composition, repeat sequences, codon usage bias, homologous fragments, and phylogeny-related indicators were also analyzed. The results showed that the length of the mitochondrial genome is 454,489 bp, containing 30 tRNA genes, three rRNA genes, 40 PCGs, and two pseudogenes. A total of 411 C-to-U RNA editing sites were identified in 33 protein-coding genes (PCGs), with higher frequencies observed in ccmFn, ccmB, nad5, ccmC, nad2, and nad7 genes. Moreover, 31 chloroplast-derived fragments were detected, accounting for 11.86% of the mitochondrial genome length. The ccmB, nad4L, and nad7 genes related to energy metabolism exhibited positive selection pressure. The mitochondrial genome sequence similarity between H. rhamnoides subsp. sinensis and H. tibetana or H. salicifolia was 99.34% and 99.40%, respectively. Fifteen shared gene clusters were identified between H. rhamnoides subsp. sinensis and H. tibetana. Phylogenetically, the Rosales order showed close relationships with Fagales, Fabales, Malpighiales, and Celastrales. These findings provide fundamental data for exploring the widespread distribution of H. rhamnoides subsp. sinensis and offer theoretical support for understanding the evolutionary mechanisms within the Hippophae genus and the selection of molecular breeding targets. Full article
(This article belongs to the Special Issue Molecular Biology and Bioinformatics of Forest Trees—2nd Edition)
Show Figures

Figure 1

26 pages, 8642 KiB  
Article
Ultra-High Strength and Specific Strength in Ti61Al16Cr10Nb8V5 Multi-Principal Element Alloy: Quasi-Static and Dynamic Deformation and Fracture Mechanisms
by Yang-Yu He, Zhao-Hui Zhang, Yi-Fan Liu, Yi-Chen Cheng, Xiao-Tong Jia, Qiang Wang, Jin-Zhao Zhou and Xing-Wang Cheng
Materials 2025, 18(14), 3245; https://doi.org/10.3390/ma18143245 - 10 Jul 2025
Viewed by 371
Abstract
This study investigates the deformation and fracture mechanisms of a Ti61Al16Cr10Nb8V5 multi-principal element alloy (Ti61V5 alloy) under quasi-static and dynamic compression. The alloy comprises an equiaxed BCC matrix (~35 μm) with uniformly dispersed nano-sized [...] Read more.
This study investigates the deformation and fracture mechanisms of a Ti61Al16Cr10Nb8V5 multi-principal element alloy (Ti61V5 alloy) under quasi-static and dynamic compression. The alloy comprises an equiaxed BCC matrix (~35 μm) with uniformly dispersed nano-sized B2 precipitates and a ~3.5% HCP phase along grain boundaries, exhibiting a density of 4.82 g/cm3, an ultimate tensile strength of 1260 MPa, 12.8% elongation, and a specific strength of 262 MPa·cm3/g. The Ti61V5 alloy exhibits a pronounced strain-rate-strengthening effect, with a strain rate sensitivity coefficient (m) of ~0.0088 at 0.001–10/s. Deformation activates abundant {011} and {112} slip bands in the BCC matrix, whose interactions generate jogs, dislocation dipoles, and loops, evolving into high-density forest dislocations and promoting screw-dominated mixed dislocations. The B2 phase strengthens the alloy via dislocation shearing, forming dislocation arrays, while the HCP phase enhances strength through a dislocation bypass mechanism. At higher strain rates (960–5020/s), m increases to ~0.0985. Besides {011} and {112}, the BCC matrix activates high-index slip planes {123}. Intensified slip band interactions generate dense jogs and forest dislocations, while planar dislocations combined with edge dislocation climb enable obstacle bypassing, increasing the fraction of edge-dominated mixed dislocations. The Ti61V5 alloy shows low sensitivity to adiabatic shear localization. Under forced shear, plastic-flow shear bands form first, followed by recrystallized shear bands formed through a rotational dynamic recrystallization mechanism. Microcracks initiate throughout the shear bands; during inward propagation, they may terminate upon encountering matrix microvoids or deflect and continue when linking with internal microcracks. Full article
(This article belongs to the Special Issue Fatigue, Damage and Fracture of Alloys)
Show Figures

Figure 1

26 pages, 3615 KiB  
Article
Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa
by Javier Bravo-García, Juan Mariano Camarillo-Naranjo, Francisco José Blanco-Velázquez and María Anaya-Romero
Land 2025, 14(7), 1436; https://doi.org/10.3390/land14071436 - 9 Jul 2025
Viewed by 391
Abstract
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented [...] Read more.
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented in the Google Earth Engine (GEE) environment, integrating multi-source datasets including real-time Sentinel-2 imagery, topographic variables, climatic data, and regional soil samples. Three model configurations were evaluated: (A) climatic, topographic, and spectral data; (B) topographic and spectral data; and (C) spectral data only. Model A achieved the highest overall accuracy (R2 up to 0.78), particularly in Otjozondjupa, whereas Model B resulted in the lowest RMSE and MAE. Model C exhibited poorer performance, underscoring the importance of multi-source data integration. SOC variability was primarily influenced by elevation, precipitation, temperature, and Sentinel-2 bands B11 and B8. However, data scarcity and inconsistent sampling, especially in Chobe, reduced model reliability (R2: 0.62). The originality of this study lay in the scalable integration of real-time Sentinel-2 data with regional datasets in an open-access framework. The resulting SOC maps provided actionable insights for land-use planning and climate adaptation in savanna ecosystems. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management)
Show Figures

Figure 1

Back to TopTop