Cryoproteins in Non-HCV-Related Autoimmune Disorders: A Serious Cold-Induced Problem
Abstract
1. Cryoglobulins and Autoimmunity
2. Cryofibrinogen
3. Cold Agglutinins
4. Cryoproteins Assessment
5. Conclusive Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Wintrobe, M.M.; Buell, M.V. Hyperproteinemia Associated with Multiple Myeloma, Bull. Johns Hopkins Hosp. Mult. MYELOMA JAMA Intern. Med. 1933, 52, 156–165. [Google Scholar]
- Lerner, A.B.; Watson, C.J. Studies of cryoglobulins; unusual purpura associated with the presence of a high concentration of cryoglobulin (cold precipitable serum globulin). Am. J. Med. Sci. 1947, 214, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, M.; Franklin, E.C. Cryoglobulinemia—A study of twenty-nine patients. I. IgG and IgM cryoglobulins and factors affecting cryoprecipitability. Am. J. Med. 1966, 40, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Basile, U.; Gulli, F.; Gragnani, L.; Pocino, K.; Napodano, C.; Miele, L.; Santini, S.A.; Marino, M.; Zignego, A.L.; Rapaccini, G.L. Different biochemical patterns in type II and type III mixed cryoglobulinemia in HCV positive patients. Dig. Liver Dis. 2018, 50, 938–943. [Google Scholar] [CrossRef]
- Napodano, C.; Gulli, F.; Rapaccini, G.L.; Marino, M.; Basile, U. Cryoglobulins: Identification, classification, and novel biomarkers of mysterious proteins. Adv. Clin. Chem. 2021, 104, 299–340. [Google Scholar] [CrossRef]
- Stone, M.J. Waldenström’s macroglobulinemia: Hyperviscosity syndrome and cryoglobulinemia. Clin. Lymphoma Myeloma 2009, 9, 97–99. [Google Scholar] [CrossRef]
- Damoiseaux, J. The diagnosis and classification of the cryoglobulinemic syndrome. Autoimmun. Rev. 2014, 13, 359–362. [Google Scholar] [CrossRef]
- Sansonno, D.; Tucci, F.A.; Ghebrehiwet, B.; Lauletta, G.; Peerschke, E.I.; Conteduca, V.; Russi, S.; Gatti, P.; Sansonno, L.; Dammacco, F. Role of the receptor for the globular domain of C1q protein in the pathogenesis of hepatitis C virus-related cryoglobulin vascular damage. J. Immunol. 2009, 183, 6013–6020. [Google Scholar] [CrossRef]
- Brouet, J.C.; Clauvel, J.P.; Danon, F.; Klein, M.; Seligmann, M. Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am. J. Med. 1974, 57, 775–788. [Google Scholar] [CrossRef]
- Basile, U.; Gulli, F.; Torti, E.; De Matthaeis, N.; Colacicco, L.; Cattani, P.; Rapaccini, G.L. Anti-nuclear antibody detection in cryoprecipitates: Distinctive patterns in hepatitis C virus-infected patients. Dig. Liver Dis. 2015, 47, 50–56. [Google Scholar] [CrossRef]
- Basile, U.; Napodano, C.; Marino, M.; Gulli, F.; Colantuono, S.; Casato, M.; Pocino, K.; Basile, V.; Todi, L.; Rapaccini, G.L.; et al. Cryoglobulins: Putative effectors of adaptive immune response. Clin. Exp. Rheumatol. 2021, 39 (Suppl. 129), 171–179. [Google Scholar] [CrossRef] [PubMed]
- Gulli, F.; Basile, U.; Gragnani, L.; Fognani, E.; Napodano, C.; Colacicco, L.; Miele, L.; De Matthaeis, N.; Cattani, P.; Zignego, A.L.; et al. Autoimmunity and lymphoproliferation markers in naïve HCV-RNA positive patients without clinical evidences of autoimmune/lymphoproliferative disorders. Dig. Liver Dis. 2016, 48, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, D.; Sellam, J.; Ghillani-Dalbin, P.; Crecel, R.; Piette, J.-C.; Cacoub, P. Increased risks of lymphoma and death among patients with non-hepatitis C virus-related mixed cryoglobulinemia. Arch. Intern. Med. 2006, 166, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Jeyapraniya, A.; De Silva, S. Autoimmune Hepatitis in a Patient with Cryoglobulinemic Vasculitis: A Rare Association. Cureus 2023, 15, e45905. [Google Scholar] [CrossRef]
- Muratori, L.; Lohse, A.W.; Lenzi, M. Diagnosis and management of autoimmune hepatitis. BMJ 2023, 380, e070201. [Google Scholar] [CrossRef]
- Trejo, O.; Ramos-Casals, M.; García-Carrasco, M.; Yagüe, J.; Jiménez, S.; De La Red, G.; Cervera, R.M.; Font, J.M.; Ingelmo, M.M. Cryoglobulinemia: Study of Etiologic Factors and Clinical and Immunologic Features in 443 Patients from a Single Center. Medicine 2001, 80, 252–262. [Google Scholar] [CrossRef]
- Juran, B.D.; Atkinson, E.J.; Schlicht, E.M.; Fridley, B.L.; Lazaridis, K.N. Primary Biliary Cirrhosis Is Associated with a Genetic Variant in the 3′ Flanking Region of the CTLA4 Gene. Gastroenterology 2008, 135, 1200–1206. [Google Scholar] [CrossRef]
- Biecker, E.; Stieger, M.; Zimmermann, A.; Reichen, J. Autoimmune hepatitis, cryoglobulinaemia and untreated coeliac disease: A case report. Eur. J. Gastroenterol. Hepatol. 2003, 15, 423–427. [Google Scholar] [CrossRef]
- Evans, J.T.; Shepard, M.M.; Oates, J.C.; Self, S.E.; Reuben, A. Rituximab-responsive Cryoglobulinemic Glomerulonephritis in a Patient with Autoimmune Hepatitis. J. Clin. Gastroenterol. 2008, 42, 862–863. [Google Scholar] [CrossRef]
- Marino, M.; Bartoccioni, E.; Alboini, P.E.; Evoli, A. Rituximab in myasthenia gravis: A “to be or not to be” inhibitor of T cell function. Ann. N. Y. Acad. Sci. 2018, 1413, 41–48. [Google Scholar] [CrossRef]
- Brito-Zerón, P.; Retamozo, S.; Ramos-Casals, M. Sjögren syndrome. Med. Clin. 2023, 160, 163–171. [Google Scholar] [CrossRef]
- Argyropoulou, O.D.; Pezoulas, V.; Chatzis, L.; Critselis, E.; Gandolfo, S.; Ferro, F.; Quartuccio, L.; Donati, V.; Treppo, E.; Bassoli, C.; et al. Cryoglobulinemic vasculitis in primary Sjögren’s Syndrome: Clinical presentation, association with lymphoma and comparison with Hepatitis C-related disease. Semin. Arthritis Rheum. 2020, 50, 846–853. [Google Scholar] [CrossRef]
- Argyropoulou, O.D.; Tzioufas, A.G. Common and rare forms of vasculitis associated with Sjögren’s syndrome. Curr. Opin. Rheumatol. 2020, 32, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Mavragani, C.P. Mechanisms and New Strategies for Primary Sjögren’s Syndrome. Annu. Rev. Med. 2017, 68, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Roccatello, D.; Saadoun, D.; Ramos-Casals, M.; Tzioufas, A.G.; Fervenza, F.C.; Cacoub, P.; Zignego, A.L.; Ferri, C. Cryoglobulinaemia. Nat. Rev. Dis. Primers 2018, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Charles, E.D.; Brunetti, C.; Marukian, S.; Ritola, K.D.; Talal, A.H.; Marks, K.; Jacobson, I.M.; Rice, C.M.; Dustin, L.B. Clonal B cells in patients with hepatitis C virus-associated mixed cryoglobulinemia contain an expanded anergic CD21low B-cell subset. Blood 2011, 117, 5425–5437. [Google Scholar] [CrossRef]
- De Vita, S.; Quartuccio, L.; Salvin, S.; Corazza, L.; Zabotti, A.; Fabris, M. Cryoglobulinaemia related to Sjogren’s syndrome or HCV infection: Differences based on the pattern of bone marrow involvement, lymphoma evolution and laboratory tests after parotidectomy. Rheumatology 2012, 51, 627–633. [Google Scholar] [CrossRef]
- Kyriakidis, N.C.; Kapsogeorgou, E.K.; Tzioufas, A.G. A comprehensive review of autoantibodies in primary Sjögren’s syndrome: Clinical phenotypes and regulatory mechanisms. J. Autoimmun. 2014, 51, 67–74. [Google Scholar] [CrossRef]
- Manoussakis, M.N.; Spachidou, M.P.; Maratheftis, C.I. Salivary epithelial cells from Sjogren’s syndrome patients are highly sensitive to anoikis induced by TLR-3 ligation. J. Autoimmun. 2010, 35, 212–218. [Google Scholar] [CrossRef]
- Alevizos, I.; Alexander, S.; Turner, R.J.; Illei, G.G. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjögren’s syndrome. Arthritis Rheum. 2011, 63, 535–544. [Google Scholar] [CrossRef]
- Spatola, L.; Generali, E.; Angelini, C.; Badalamenti, S.; Selmi, C. HCV-negative mixed cryoglobulinemia and kidney involvement: In-depth review on physiopathological and histological bases. Clin. Exp. Med. 2018, 18, 465–471. [Google Scholar] [CrossRef]
- Retamozo, S.; Acar-Denizli, N.; Horváth, I.F.; Ng, W.-F.; Rasmussen, A.; Dong, X.; Li, X.; Baldini, C.; Olsson, P.; Priori, R.; et al. Influence of the age at diagnosis in the disease expression of primary Sjögren syndrome. Analysis of 12,753 patients from the Sjögren Big Data Consortium. Clin. Exp. Rheumatol. 2021, 39, 166–174. [Google Scholar] [CrossRef]
- Theander, E.; Jonsson, R.; Sjöström, B.; Brokstad, K.; Olsson, P.; Henriksson, G. Prediction of Sjögren’s Syndrome Years Before Diagnosis and Identification of Patients with Early Onset and Severe Disease Course by Autoantibody Profiling. Arthritis Rheumatol. 2015, 67, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Karimifar, M.; Pourajam, S.; Tahmasebi, A.; Mottaghi, P. Serum cryoglobulins and disease activity in systematic lupus erythematosus. J. Res. Med. Sci. 2013, 18, 234–238. [Google Scholar] [PubMed]
- Su, C.-F.; Chen, H.-H.; Yeh, J.-C.; Chen, S.-C.; Liu, C.-C.; Tzen, C.-Y. Ultrastructural “fingerprint” in cryoprecipitates and glomerular deposits: A clinicopathologic analysis of fingerprint deposits. Nephron 2002, 90, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Winfield, J.B.; Koffler, D.; Kunkel, H.G. Specific concentration of polynucleotide immune complexes in the cryoprecipitates of patients with systemic lupus erythematosus. J. Clin. Investig. 1975, 56, 563–570. [Google Scholar] [CrossRef]
- Gripenberg, M.; Teppo, A.M.; Kurki, P.; Gripenberg, G.; Helve, T. Autoantibody Activity of Cryoglobulins and Sera in Systemic Lupus Erythematosus: Association of IgM Class Rheumatoid Factors with Raynaud’s Syndrome. Scand. J. Rheumatol. 1988, 17, 249–254. [Google Scholar] [CrossRef]
- Adu, D.; Williams, D.G. Complement activating cryoglobulins in the nephritis of systemic lupus erythematosus. Clin. Exp. Immunol. 1984, 55, 495–501. [Google Scholar]
- Zvaifler, N.J.; Bluestein, H.G. Lymphocytotoxic antibody activity in cryoprecipitates from serum of patients with SLE. Arthritis Rheum. 1976, 19, 844–850. [Google Scholar] [CrossRef]
- Buskila, D.; Langevitz, P.; Lee, P. The Frequency of Cryoglobulinaemia in Systemic Sclerosis (Scleroderma). Rheumatology 1990, 29, 234. [Google Scholar] [CrossRef]
- Husson, J.M.; Druet, P.; Contet, A.; Fiessinger, J.N.; Camilleri, J.P. Systemic sclerosis and cryoglobulinemia. Clin. Immunol. Immunopathol. 1976, 6, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, F.; Galli, M.; Serino, G.; Monti, G.; Meroni, P.L.; Granatieri, C.; Zanussi, C. Secondary and Essential Cryoglobulinemias. Acta Haematol. 1983, 70, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Valentini, G.; Cozzi, F.; Sebastiani, M.; Michelassi, C.; La Montagna, G.; Bullo, A.; Cazzato, M.; Tirri, E.; Storino, F.; et al. Systemic sclerosis: Demographic, clinical, and serologic features and survival in 1012 Italian patients. Medicine 2002, 81, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Reveille, J.D.; Solomon, D.H. American College of Rheumatology Ad Hoc Committee of Immunologic Testing Guidelines. Evidence-based guidelines for the use of immunologic tests: Anticentromere, Scl-70, and nucleolar antibodies. Arthritis Rheum. 2003, 49, 399–412. [Google Scholar] [CrossRef]
- Hamaguchi, Y.; Kodera, M.; Matsushita, T.; Hasegawa, M.; Inaba, Y.; Usuda, T.; Kuwana, M.; Takehara, K.; Fujimoto, M. Clinical and immunologic predictors of scleroderma renal crisis in Japanese systemic sclerosis patients with anti-RNA polymerase III autoantibodies. Arthritis Rheumatol. 2015, 67, 1045–1052. [Google Scholar] [CrossRef]
- Shah, A.A.; Rosen, A.; Hummers, L.; Wigley, F.; Casciola-Rosen, L. Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase I/III antibodies. Arthritis Rheum. 2010, 62, 2787–2795. [Google Scholar] [CrossRef]
- Deguchi, A.; Yamaoka, T.; Komurasaki, Y.; Hayashi, M.; Kiyohara, E.; Murota, H.; Katayama, I. Anti-RNA polymerase III antibody positive limited cutaneous systemic sclerosis with cryoglobulin-induced digital gangrene. Clin. Exp. Dermatol. 2017, 42, 200–201. [Google Scholar] [CrossRef]
- Giuggioli, D.; Manfredi, A.; Colaci, M.; Manzini, C.U.; Antonelli, A.; Ferri, C. Systemic sclerosis and cryoglobulinemia: Our experience with overlapping syndrome of scleroderma and severe cryoglobulinemic vasculitis and review of the literature. Autoimmun. Rev. 2013, 12, 1058–1063. [Google Scholar] [CrossRef]
- Quéméneur, T.; Mouthon, L.; Cacoub, P.; Meyer, O.; Michon-Pasturel, U.; Vanhille, P.; Hatron, P.-Y.; Guillevin, L.; Hachulla, E. Systemic vasculitis during the course of systemic sclerosis: Report of 12 cases and review of the literature. Medicine 2013, 92, 1–9. [Google Scholar] [CrossRef]
- Oddis, C.V.; Eisenbeis, C.H.; Reidbord, H.E.; Steen, V.D.; Medsger, T.A. Vasculitis in systemic sclerosis: Association with Sjögren’s syndrome and the CREST syndrome variant. J. Rheumatol. 1987, 14, 942–948. [Google Scholar]
- Salliot, C.; Mouthon, L.; Ardizzone, M.; Sibilia, J.; Guillevin, L.; Gottenberg, J.-E.; Mariette, X. Sjogren’s syndrome is associated with and not secondary to systemic sclerosis. Rheumatology 2007, 46, 321–326. [Google Scholar] [CrossRef]
- Vollertsen, R.S.; Conn, D.L. Vasculitis associated with rheumatoid arthritis. Rheum. Dis. Clin. N. Am. 1990, 16, 445–461. [Google Scholar] [CrossRef]
- Suszek, D.; Majdan, M. Cryoglobulins and cryoglobulinemic vasculitis. Wiad. Lek. 2018, 71, 59–63. [Google Scholar]
- Erhardt, C.C.; Mumford, P.; Maini, R.N. Differences in immunochemical characteristics of cryoglobulins in rheumatoid arthritis and systemic lupus erythematosus and their complement binding properties. Ann. Rheum. Dis. 1984, 43, 451–456. [Google Scholar] [CrossRef]
- Korst, D.R.; Kratochvil, C.H. Cryofibrinogen in a case of lung neoplasm associated with thrombophlebitis migrans. Blood 1955, 10, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Stathakis, N.E.; Karamanolis, D.; Koukoulis, G.; Tsianos, E. Characterization of cryofibrinogen isolated from patients plasma. Haemostasis 1981, 10, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, D.; Elalamy, I.; Ghillani-Dalbin, P.; Sene, D.; Delluc, A.; Cacoub, P. Cryofibrinogenemia: New insights into clinical and pathogenic features. Am. J. Med. 2009, 122, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.B.; Arkin, C. Cryofibrinogenemia: Incidence, clinical correlations, and a review of the literature. Am. J. Clin. Pathol. 1972, 58, 524–530. [Google Scholar] [CrossRef]
- Stathakis, N.E.; Mosesson, M.W. Interactions among heparin, cold-insoluble globulin, and fibrinogen in formation of the heparin-precipitable fraction of plasma. J. Clin. Investig. 1977, 60, 855–865. [Google Scholar] [CrossRef]
- Heinrich, R.A.; Vonder Heide, E.C.; Climie, A.R. Cryofibrinogen: Formation and inhibition in heparinized plasma. Am. J. Physiol. 1963, 204, 419–422. [Google Scholar] [CrossRef]
- Michaud, M.; Pourrat, J. Cryofibrinogenemia. J. Clin. Rheumatol. 2013, 19, 142–148. [Google Scholar] [CrossRef]
- Zlotnick, A.; Shahin, W.; Rachmilewitz, E.A. Studies in cryofibrinogenemia. Acta Haematol. 1969, 42, 8–17. [Google Scholar] [CrossRef]
- Santiago, M.B.; Melo, B.S. Cryofibrinogenemia: What Rheumatologists Should Know. Curr. Rheumatol. Rev. 2022, 18, 186–194. [Google Scholar] [CrossRef]
- Sarda-Kolopp, M.N.; Miossec, P. Cryofibrinogen—Characteristics and Association with Cryoglobulin: A Retrospective Study Out of a Series of 1,712 Samples over 7 Years. Thromb. Haemost. 2023, 123, 669–678. [Google Scholar] [CrossRef]
- Blain, H.; Cacoub, P.; Musset, L.; Costedoat-Chalumeau, N.; Silberstein, C.; Chosidow, O.; Godeau, P.; Frances, C.; Piette, J.C. Cryofibrinogenaemia: A study of 49 patients. Clin. Exp. Immunol. 2000, 120, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Belizna, C.C.; Tron, F.; Joly, P.; Godin, M.; Hamidou, M.; Lévesque, H. Outcome of essential cryofibrinogenaemia in a series of 61 patients. Rheumatology 2008, 47, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Yokoyama, T.; Toyokawa, Y.; Yasuda, J.; Kingetsu, I.; Kurosaka, D.; Yamada, A. Cryofibrinogenemia Associated with Sjoegren’s Syndrome: A case of Successful Treatment with High-dose Corticosteroid. Intern. Med. 2007, 46, 1039–1042. [Google Scholar] [CrossRef]
- Vitali, C.; Bombardieri, S.; Moutsopoulos, H.M.; Balestrieri, G.; Bencivelli, W.; Bernstein, R.M.; Bjerrum, K.B.; Braga, S.; Coll, J.; De Vita, S.; et al. Preliminary criteria for the classification of Sjögren’s syndrome. Results of a prospective concerted action supported by the European Community. Arthritis Rheum. 1993, 36, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.C.; Prendiville, J.S.; Pardy, B.J.; Cream, J.J. Cryofibrinogenaemia and acute gangrene in systemic sclerosis. Postgrad. Med. J. 1986, 62, 935–936. [Google Scholar] [CrossRef]
- De Almeida Chaves, S.; Puissant, B.; Porel, T.; Bories, E.; Adoue, D.; Alric, L.; Astudillo, L.; Huart, A.; Lairez, O.; Michaud, M.; et al. Clinical impact and prognosis of cryoglobulinemia and cryofibrinogenemia in systemic sclerosis. Autoimmun. Rev. 2022, 21, 103133. [Google Scholar] [CrossRef]
- Hosoi, K.; Makino, S.; Yamano, Y.; Sasaki, M.; Takeuchi, T.; Sakane, S.; Ohsawa, N. Cryofibrinogenemia with polyarthralgia, Raynaud’s phenomenon and acral ulcer in a patient with Graves’ disease treated with methimazole. Intern. Med. 1997, 36, 439–442. [Google Scholar] [CrossRef]
- Paradis, C.; Cadieux-Dion, M.; Meloche, C.; Gravel, M.; Paradis, J.; Des Roches, A.; Leclerc, G.; Cossette, P.; Begin, P. TREX-1-Related Disease Associated with the Presence of Cryofibrinogenemia. J. Clin. Immunol. 2019, 39, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Grieves, J.L.; Fye, J.M.; Harvey, S.; Grayson, J.M.; Hollis, T.; Perrino, F.W. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc. Natl. Acad. Sci. USA 2015, 112, 5117–5122. [Google Scholar] [CrossRef] [PubMed]
- Fye, J.M.; Orebaugh, C.D.; Coffin, S.R.; Hollis, T.; Perrino, F.W. Dominant mutation of the TREX1 exonuclease gene in lupus and Aicardi-Goutieres syndrome. J. Biol. Chem. 2011, 286, 32373–32382. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.S.; Wu, G.C.; Zhang, Q.; Zhang, T.P.; Leng, R.X.; Pan, H.F.; Ye, D.Q. TREX1 As a Potential Therapeutic Target for Autoimmune and Inflammatory Diseases. Curr. Pharm. Des. 2019, 25, 3239–3247. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, N.; Du, H.; Kou, M.; Lin, L.; Huang, M.; Zhang, S.; Xu, S.; Li, D.; Chen, Q. Celastrol ameliorates autoimmune disorders in Trex1-deficient mice. Biochem. Pharmacol. 2020, 178, 114090. [Google Scholar] [CrossRef]
- Lee-Kirsch, M.A.; Chowdhury, D.; Harvey, S.; Gong, M.; Senenko, L.; Engel, K.; Pfeiffer, C.; Hollis, T.; Gahr, M.; Perrino, F.W.; et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. 2007, 85, 531–537. [Google Scholar] [CrossRef]
- de Vries, P.S.; Chasman, D.I.; Sabater-Lleal, M.; Chen, M.-H.; Huffman, J.E.; Steri, M.; Tang, W.; Teumer, A.; Marioni, R.E.; Grossmann, V.; et al. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. Hum. Mol. Genet. 2016, 25, 358–370. [Google Scholar] [CrossRef]
- Chou, H.-F.; Wu, Y.-H.; Ho, C.-S.; Kao, Y.-H. Clinical study of children with cryofibrinogenemia: A retrospective study from a single center. Pediatr. Rheumatol. 2018, 16, 31. [Google Scholar] [CrossRef]
- Genta, M.S.; Genta, R.M.; Gabay, C. Systemic rheumatoid vasculitis: A review. Semin. Arthritis Rheum. 2006, 36, 88–98. [Google Scholar] [CrossRef]
- Soyfoo, M.S.; Couturier, B.; Cogan, E. Cryofibrinogenaemia with vasculitis: A new overlap syndrome causing severe leg ulcers and digital necrosis in rheumatoid arthritis? Rheumatology 2010, 49, 2455–2457. [Google Scholar] [CrossRef]
- Watts, R.A.; Mooney, J.; Lane, S.E.; Scott, D.G.I. Rheumatoid vasculitis: Becoming extinct? Rheumatology 2004, 43, 920–923. [Google Scholar] [CrossRef]
- Beightler, E.; Diven, D.G.; Sanchez, R.L.; Solomon, A.R. Thrombotic vasculopathy associated with cryofibrinogenemia. J. Am. Acad. Dermatol. 1991, 24, 342–345. [Google Scholar] [CrossRef]
- Gabbard, A.P.; Booth, G.S. Cold Agglutinin Disease. Clin. Hematol. Int. 2020, 2, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Loriamini, M.; Cserti-Gazdewich, C.; Branch, D.R. Autoimmune Hemolytic Anemias: Classifications, Pathophysiology, Diagnoses and Management. Int. J. Mol. Sci. 2024, 25, 4296. [Google Scholar] [CrossRef] [PubMed]
- Tranekær, S.; Hansen, D.L.; Frederiksen, H. Epidemiology of Secondary Warm Autoimmune Haemolytic Anaemia-A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 1244. [Google Scholar] [CrossRef] [PubMed]
- Swiecicki, P.L.; Hegerova, L.T.; Gertz, M.A. Cold agglutinin disease. Blood 2013, 122, 1114–1121. [Google Scholar] [CrossRef]
- Berentsen, S.; Ulvestad, E.; Langholm, R.; Beiske, K.; Hjorth-Hansen, H.; Ghanima, W.; Sørbø, J.H.; Tjønnfjord, G.E. Primary chronic cold agglutinin disease: A population based clinical study of 86 patients. Haematologica 2006, 91, 460–466. [Google Scholar]
- Randen, U.; Trøen, G.; Tierens, A.; Steen, C.; Warsame, A.; Beiske, K.; Tjønnfjord, G.E.; Berentsen, S.; Delabie, J. Primary cold agglutinin-associated lymphoproliferative disease: A B-cell lymphoma of the bone marrow distinct from lymphoplasmacytic lymphoma. Haematologica 2014, 99, 497–504. [Google Scholar] [CrossRef]
- Berentsen, S. New Insights in the Pathogenesis and Therapy of Cold Agglutinin-Mediated Autoimmune Hemolytic Anemia. Front. Immunol. 2020, 11, 590. [Google Scholar] [CrossRef]
- Broome, C.M. Complement-directed therapy for cold agglutinin disease: Sutimlimab. Expert. Rev. Hematol. 2023, 16, 479–494. [Google Scholar] [CrossRef]
- Kirschfink, M.; Knoblauch, K.; Roelcke, D. Activation of Complement by Cold Agglutinins. Transfus. Med. Hemother. 1994, 21, 405–409. [Google Scholar] [CrossRef]
- Sousa Nunes, B.; Gouveia, C.; Kjollerstrom, P.; Farela Neves, J. Cold Agglutinin Syndrome and Hemophagocytic Lymphohistiocytosis: An Unusual Combination Caused by Epstein-Barr Virus Infection. Cureus 2024, 16, e52179. [Google Scholar] [CrossRef] [PubMed]
- Sniecinski, I.; Margolin, K.; Shulman, I.; Oien, L.; Meyer, E.; Branch, D.R. High-titer, high-thermal-amplitude cold autoagglutinin not associated with hemolytic anemia. Vox Sang 1988, 55, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Imoto, H.; Yoshioka, S.; Nakagawa, D.; Hasegawa, K.; Kuroda, H.; Hasuike, T.; Doi, A.; Kusumoto, T.; Ishikawa, T. Cold agglutinin anti-I antibodies in two patients with COVID-19. J. Clin. Lab. Anal. 2022, 36, e24629. [Google Scholar] [CrossRef] [PubMed]
- Berentsen, S.; Röth, A.; Randen, U.; Jilma, B.; Tjønnfjord, G.E. Cold agglutinin disease: Current challenges and future prospects. JBM 2019, 10, 93–103. [Google Scholar] [CrossRef]
- Jacobs, J.W.; Figueroa Villalba, C.A.; Booth, G.S.; Woo, J.S.; Stephens, L.D.; Adkins, B.D. Clinical and epidemiological features of paroxysmal cold hemoglobinuria: A systematic review. Blood Adv. 2023, 7, 2520–2527. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- Jäger, U.; Barcellini, W.; Broome, C.M.; Gertz, M.A.; Hill, A.; Hill, Q.A.; Jilma, B.; Kuter, D.J.; Michel, M.; Montillo, M.; et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020, 41, 100648. [Google Scholar] [CrossRef]
- Yamashita, T.; Ishida, M.; Moro, H.; Yumoto, H.; Uchibayashi, S.; Yoshii, M.; Nakanishi, R.; Okuno, H.; Yoshida, T.; Okuno, T.; et al. Primary bone marrow diffuse large B-cell lymphoma accompanying cold agglutinin disease: A case report with review of the literature. Oncol. Lett. 2014, 7, 79–81. [Google Scholar] [CrossRef]
- Sefland, Ø.; Randen, U.; Berentsen, S. Development of Multiple Myeloma of the IgA Type in a Patient with Cold Agglutinin Disease: Transformation or Coincidence? Case Rep. Hematol. 2019, 2019, 1610632. [Google Scholar] [CrossRef]
- Chadebech, P.; Michel, M.; Janvier, D.; Yamada, K.; Copie-Bergman, C.; Bodivit, G.; Bensussan, A.; Fournie, J.-J.; Godeau, B.; Bierling, P.; et al. IgA-mediated human autoimmune hemolytic anemia as a result of hemagglutination in the spleen, but independent of complement activation and FcαRI. Blood 2010, 116, 4141–4147. [Google Scholar] [CrossRef]
- Gehrs, B.C.; Friedberg, R.C. Autoimmune hemolytic anemia. Am. J. Hematol. 2002, 69, 258–271. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, S.; Anusim, N.; Gupta, S.; Gupta, S.; Huben, M.; Howard, G.; Jaiyesimi, I. Coronavirus Disease 2019 and Cold Agglutinin Syndrome: An Interesting Case. Eur. J. Case Rep. Intern. Med. 2021, 8, 2387. [Google Scholar] [CrossRef]
- Berentsen, S.; Tjønnfjord, G.E. Diagnosis and treatment of cold agglutinin mediated autoimmune hemolytic anemia. Blood Rev. 2012, 26, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Varela, J.C.; Tomlinson, S. Complement: An overview for the clinician. Hematol. Oncol. Clin. N. Am. 2015, 29, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Merrill, S.A.; Brodsky, R.A. Complement-driven anemia: More than just paroxysmal nocturnal hemoglobinuria. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 371–376. [Google Scholar] [CrossRef]
- Berentsen, S. Complement Activation and Inhibition in Autoimmune Hemolytic Anemia: Focus on Cold Agglutinin Disease. Semin. Hematol. 2018, 55, 141–149. [Google Scholar] [CrossRef]
- Hiranuma, N.; Koba, Y.; Kawata, T.; Tamekane, A.; Watanabe, M. Successful Treatment of Warm Autoimmune Hemolytic Anemia with a Positive Donath-Landsteiner Test Using Rituximab. Intern. Med. 2024, 63, 2173–2176. [Google Scholar] [CrossRef]
- Leibrandt, R.; Angelino, K.; Vizel-Schwartz, M.; Shapira, I. Paroxysmal Cold Hemoglobinuria in an Adult with Respiratory Syncytial Virus. Case Rep. Hematol. 2018, 2018, 7586719. [Google Scholar] [CrossRef]
- Kilty, M.; Ipe, T.S. Donath-Landsteiner test. Immunohematology 2019, 35, 3–6. [Google Scholar] [CrossRef]
- Gertz, M.A. Updates on the Diagnosis and Management of Cold Autoimmune Hemolytic Anemia. Hematol. Oncol. Clin. N. Am. 2022, 36, 341–352. [Google Scholar] [CrossRef]
- Barcellini, W.; Fattizzo, B. The Changing Landscape of Autoimmune Hemolytic Anemia. Front. Immunol. 2020, 11, 946. [Google Scholar] [CrossRef]
- Shanbhag, S.; Spivak, J. Paroxysmal cold hemoglobinuria. Hematol. Oncol. Clin. N. Am. 2015, 29, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Blackall, D.; Dolatshahi, L. Autoimmune Hemolytic Anemia in Children: Laboratory Investigation, Disease Associations, and Treatment Strategies. J. Pediatr. Hematol. Oncol. 2022, 44, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Petz, L.D.; Garratty, G. Immune Hemolytic Anemias; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Khwaja, J.; Vos, J.M.I.; Pluimers, T.E.; Japzon, N.; Patel, A.; Salter, S.; Kwakernaak, A.J.; Gupta, R.; Rismani, A.; Kyriakou, C.; et al. Clinical and clonal characteristics of monoclonal immunoglobulin M-associated type I cryoglobulinaemia. Br. J. Haematol. 2024, 204, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, J.; Japzon, N.; Gabriel, M.; Raju, K.; Rajaratnam, V.; Gupta, R.; Rismani, A.; Kyriakou, C.; D’Sa, S. Cold agglutinin disease and cryoglobulinaemia: A frequent coexistence with clinical impact. Br. J. Haematol. 2024, 204, e21–e24. [Google Scholar] [CrossRef]
- Broome, C.M.; Cunningham, J.M.; Mullins, M.; Jiang, X.; Bylsma, L.C.; Fryzek, J.P.; Rosenthal, A. Increased risk of thrombotic events in cold agglutinin disease: A 10-year retrospective analysis. Res. Pract. Thromb. Haemost. 2020, 4, 628–635. [Google Scholar] [CrossRef]
- Solari, D.; Alberio, L.; Ribi, C.; Grandoni, F.; Stalder, G. Autoimmune Hemolytic Anemia and Pulmonary Embolism: An Association to Consider. TH Open 2021, 5, e8–e13. [Google Scholar] [CrossRef]
- Schär, D.T.; Daskalakis, M.; Mansouri, B.; Rovo, A.; Zeerleder, S. Thromboembolic complications in autoimmune hemolytic anemia: Retrospective study. Eur. J. Haematol. 2022, 108, 45–51. [Google Scholar] [CrossRef]
- Natali, P.; Debbia, D.; Cucinelli, M.R.; Trenti, T.; Amati, G.; Spinella, A.; Giuggioli, D.; Mascia, M.T.; Sandri, G. Analysis of cryoproteins with a focus on cryofibrinogen: A study on 103 patients. Clin. Chem. Lab. Med. 2022, 60, 1796–1803. [Google Scholar] [CrossRef]
- Lee, A.Y.; Chataway, T.; Gordon, T.P.; Wang, J.J. Molecular typing of cryoglobulins by mass spectrometry. Ann. Rheum. Dis. 2020, 79, 163–164. [Google Scholar] [CrossRef]
- Napodano, C.; Ciasca, G.; Chiusolo, P.; Pocino, K.; Gragnani, L.; Stefanile, A.; Gulli, F.; Lorini, S.; Minnella, G.; Fosso, F.; et al. Serological and Molecular Characterization of Hepatitis C Virus-Related Cryoglobulinemic Vasculitis in Patients without Cryoprecipitate. IJMS 2023, 24, 11602. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Stone, J.H.; Cid, M.C.; Bosch, X. The cryoglobulinaemias. Lancet 2012, 379, 348–360. [Google Scholar] [CrossRef]
Cryoglobulinemia Type I | |||
Immunoglobulin classes | Associated disorders | Symptoms | Percent of cases |
Monoclonal Ig IgM (mainly) IgG (IgG2 or IgG3) IgA (rarely) | Lymphoproliferative disorders | Vasculitis or distal gangrene/necrosis | 10–15% |
Mixed Cryoglobulinemia Type II | |||
Immunoglobulin classes | Associated disorders | Symptoms | Percent of cases |
One or more monoclonal Ig (RF activity) + polyclonal Ig IgM vs. IgG IgG vs. IgG | Infective disorders (HCV, HBV, HIV), autoimmune disorders, lymphoproliferative disorders, chronic liver diseases | Purpura, arthralgia, Raynaud’s phenomena | 65% |
Mixed Cryoglobulinemia Type III | |||
Immunoglobulin classes | Associated disorders | Symptoms | Percent of cases |
Polyclonal Ig or oligoclonal Ig (RF activity) + polyclonal Ig (microeterogeneous) IgG-IgM IgM-IgG-IgA | Infective disorders (HCV, HBV, HIV), autoimmune disorders, lymphoproliferative disorders | Purpura, arthralgia, Raynaud’s phenomena | 25% |
Cryoglobulins and Induced-Autoimmune Vasculitis | |
Autoimmune Disorders | Reference |
Autoimmune hepatitis | |
Coexistence of celiac disease with autoimmune hepatitis |
|
Sjögren’s disease | |
Systemic lupus erythematous | |
Systemic sclerosis (SSc) | |
Rheumatoid arthritis | |
Cryofibrinogen and Autoimmunity | |
Autoimmune Disorders | Reference |
Sjögren’s syndrome | |
Systemic sclerosis |
|
Graves’ disease |
|
Rheumatoid arthritis (RA) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pocino, K.; Stefanile, A.; Natali, P.; Napodano, C.; Basile, V.; Ciasca, G.; Marino, M.; Basile, U. Cryoproteins in Non-HCV-Related Autoimmune Disorders: A Serious Cold-Induced Problem. Diagnostics 2025, 15, 1933. https://doi.org/10.3390/diagnostics15151933
Pocino K, Stefanile A, Natali P, Napodano C, Basile V, Ciasca G, Marino M, Basile U. Cryoproteins in Non-HCV-Related Autoimmune Disorders: A Serious Cold-Induced Problem. Diagnostics. 2025; 15(15):1933. https://doi.org/10.3390/diagnostics15151933
Chicago/Turabian StylePocino, Krizia, Annunziata Stefanile, Patrizia Natali, Cecilia Napodano, Valerio Basile, Gabriele Ciasca, Mariapaola Marino, and Umberto Basile. 2025. "Cryoproteins in Non-HCV-Related Autoimmune Disorders: A Serious Cold-Induced Problem" Diagnostics 15, no. 15: 1933. https://doi.org/10.3390/diagnostics15151933
APA StylePocino, K., Stefanile, A., Natali, P., Napodano, C., Basile, V., Ciasca, G., Marino, M., & Basile, U. (2025). Cryoproteins in Non-HCV-Related Autoimmune Disorders: A Serious Cold-Induced Problem. Diagnostics, 15(15), 1933. https://doi.org/10.3390/diagnostics15151933