Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa
Abstract
1. Introduction
- Test and validate the potential of the random forest algorithm to develop raster products of soil organic carbon in large areas;
- Evaluate the use of Google Earth Engine Cloud platform to facilitate the model processing and share the script code as open source for the scientific and common-user community;
- Generate new digital information for these countries, where the data availability is scarce, contributing to land and resource management.
2. Materials and Methods
2.1. Soil Sampling Data
2.2. Study Areas
2.3. Input Variables
2.3.1. Topographical Variables
2.3.2. Climate Variables and Others
2.3.3. Spectral Indexes
2.4. Model Configuration
3. Results
3.1. Statistical Analysis of SOC
3.2. Spatial Model Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | Soil organic carbon |
RF | Random forest |
DSM | Digital soil mapping |
GEE | Google Earth Engine |
CV | Coefficient of variation |
STD | Standard deviation |
NDMI | Normalized Difference Moisture Index |
GNDVI | Green Normalized Difference Vegetation Index |
BI | Brightness Index |
SOCI | Soil Organic Carbon Index |
NBR | Normalized Burn Ratio |
MSI | Moisture Stress Index |
SIPI | Structure Insensitive Pigment Index |
DEM | Digital elevation model |
QRF | Quantile regression forest |
ANN | Artificial neural network |
SVM | Support vector machine |
RMSE | Root mean square error |
MAE | Mean absolute error |
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Aji, M.B.W.; Ghozali, A. Environmental carrying capacity based on ecosystem services of Penajam Paser Utara Regency. IOP Conf. Ser. Earth Environ. Sci. 2020, 447, 012062. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Villat, J.; Nicholas, K.A. Quantifying soil carbon sequestration from regenerative agricultural practices in crops and vineyards. Front. Sustain. Food Syst. 2024, 7, 1234108. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; Van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 2016, 26, 219–241. [Google Scholar] [CrossRef]
- IPBES. Thematic Assessment Report on the Underlying Causes of Biodiversity Loss and the Determinants of Transformative Change and Options for Achieving the 2050 Vision for Biodiversity of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; O’Brien, K., Garibaldi, L., Agrawal, A., Eds.; IPBES Secretariat: Bonn, Germany, 2024. [Google Scholar] [CrossRef]
- Awala, S.K.; Hove, K.; Wanga, M.A.; Valombola, J.S.; Mwandemele, O.D. Rainfall Trend and Variability in Semi-Arid Northern Namibia: Implications for Smallholder Agricultural Production. Welwitschai Int. J. Agric. Sci. 2019, 1, 1–25. [Google Scholar]
- Shikangalah, R. The 2019 drought in Namibia: An overview. J. Namib. Stud. 2020, 27, 37–58. [Google Scholar]
- Keja-Kaereho, C.; Tjizu, B.R. Climate Change and Global Warming in Namibia: Environmental Disasters vs. Human Life and the Economy. Manag. Econ. Res. J. 2019, 5, 11. [Google Scholar] [CrossRef]
- Meyer, R.; Wright, C.; Rother, H. Assessment of SADC Countries & rsquo; National Adaptation Planning Health Impacts Inclusion: A Thorough Review. Ann. Glob. Health 2024, 90, 57. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Jarvis, A.; Robertson, T.; Mendelsohn, M. Atlas of Namibia-Its Land, Water and Life; Namibia Nature Foundation: Windhoek, Namibia, 2022. [Google Scholar]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Dewitte, O.; Hallett, S.; Jones, R.; Kilasara, M.; Le Roux, P.; Micheli, E.; et al. Soil Atlas of Africa, EUR 25534 EN; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Adeniyi, O.D.; Bature, H.; Mearker, M. A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas. Land 2024, 13, 379. [Google Scholar] [CrossRef]
- Velázquez, F.J.B.; Shahabi, M.; Rezaei, H.; González-Peñaloza, F.; Shahbazi, F.; Anaya-Romero, M. The possibility of spatial mapping of SOC content in olive groves under integrated production using easy-to-obtain ancillary data in a Mediterranean area. Open Res. Eur. 2024, 2, 110. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef]
- Mitran, T.; Suresh, J.; Sujatha, G.; Sreenivas, K.; Karak, S.; Kumar, R.; Chauhan, P.; Meena, R.S. Digital Soil Mapping: A Tool for Sustainable Soil Management. In Climate Change and Soil-Water-Plant Nexus; Rahman, M.M., Biswas, J.C., Meena, R.S., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Lima, A.A.J.; Lopes, J.C.; Lopes, R.P.; De Figueiredo, T.; Vidal-Vázquez, E.; Hernández, Z. Soil Organic Carbon Assessment Using Remote-Sensing Data and Machine Learning: A Systematic Literature review. Remote Sens. 2025, 17, 882. [Google Scholar] [CrossRef]
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of Remote Sensing in Agriculture—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; Van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2018, 147, 267–282. [Google Scholar] [CrossRef]
- Castaldi, F.; Casa, R.; Castrignanò, A.; Pascucci, S.; Palombo, A.; Pignatti, S. Estimation of soil properties at the field scale from satellite data: A comparison between spatial and non-spatial techniques. Eur. J. Soil Sci. 2014, 65, 842–851. [Google Scholar] [CrossRef]
- Li, S.; Rossel Ra, V.; Webster, R. The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon. Eur. J. Soil Sci. 2021, 73, e13202. [Google Scholar] [CrossRef]
- Grunwald, S.; Thompson, J.A.; Boettinger, J.L. Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Sci. Soc. Am. J. 2011, 75, 1201–1213. [Google Scholar] [CrossRef]
- Nenkam, A.M.; Wadoux, A.M.; Minasny, B.; Silatsa, F.B.; Yemefack, M.; Ugbaje, S.U.; Akpa, S.; Van Zijl, G.; Bouasria, A.; Bouslihim, Y.; et al. Applications and challenges of digital soil mapping in Africa. Geoderma 2024, 449, 117007. [Google Scholar] [CrossRef]
- Pouladi, N.; Gholizadeh, A.; Khosravi, V.; Borůvka, L. Digital mapping of soil organic carbon using remote sensing data: A systematic review. Catena 2023, 232, 107409. [Google Scholar] [CrossRef]
- Cord, A.F.; Brauman, K.A.; Chaplin-Kramer, R.; Huth, A.; Ziv, G.; Seppelt, R. Priorities to advance monitoring of ecosystem services using Earth observation. Trends Ecol. Evol. 2017, 32, 416–428. [Google Scholar] [PubMed]
- Ramirez-Reyes, C.; Brauman, K.A.; Chaplin-Kramer, R.; Galford, G.L.; Adamo, S.B.; Anderson, C.B.; Anderson, C.; Allington, G.R.; Bagstad, K.J.; Coe, M.T.; et al. Reimagining the potential of Earth observations for ecosystem service assessments. Sci. Total Environ. 2019, 665, 1053–1063. [Google Scholar] [CrossRef]
- Radočaj, D.; Gašparović, M.; Jurišić, M. Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review. Agriculture 2024, 14, 1005. [Google Scholar] [CrossRef]
- Venter, Z.S.; Hawkins, H.; Cramer, M.D.; Mills, A.J. Mapping soil organic carbon stocks and trends with satellite-driven high-resolution maps over South Africa. Sci. Total Environ. 2021, 771, 145384. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Fajraoui, N.; Don, A.; Liebisch, F. Satellite-based soil organic carbon mapping on European soils using available datasets and support sampling. Sci. Remote Sens. 2024, 9, 100118. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Batjes, N.H.; Ribeiro, E.; van Oostrum, A.; Leenaars, J.G.B.; Hengl, T.; de Jesus, J.M. WoSIS: Providing standardised soil profile data for the world. Earth Syst. Sci. Data 2020, 12, 299–320. [Google Scholar] [CrossRef]
- Leenaars, J.G.B.; Claessens, L.; Heuvelink, G.B.M.; Hengl, T.; Gonzalez, M.R.; van Bussel, L.G.J. Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa. Geoderma 2014, 324, 18–33. [Google Scholar] [CrossRef]
- Batjes, N.H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Van Engelen, V.W.P.; Dijkshoorn, J.A. Global and National Soils and Terrain Databases (SOTER): Procedures Manual (Versión 2.0); ISRIC—World Soil Information: Wageningen, The Netherlands, 2013; Available online: https://www.isric.org/sites/default/files/isric_report_2013_04.pdf (accessed on 15 June 2025).
- Nijbroek, R.; Piikki, K.; Söderström, M.; Kempen, B.; Turner, K.; Hengari, S.; Mutua, J. Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia. Sustainability 2018, 10, 1610. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Bravo-García, J.; Camarillo-Naranjo, J.; Blanco-Velázquez, F.J.; González-Peñaloza, F.; Anaya-Romero, M. Mapping the potential habitat suitability and opportunities of bush encroacher species in Southern Africa: A case study of the SteamBioAfrica project. Front. Biogeogr. 2024, 17, e136222. [Google Scholar] [CrossRef]
- Mitran, T.; Suresh, J.; Sujatha, G.; Kandrika, S.; Karak, S.; Kumar, R.; Chauhan, P.; Meena, R. Digital soil mapping of soil properties using Sentinel-2 and topographic variables. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Miller, M.A.E.; Shepherd, K.D.; Kisitu, B.; Collinson, J. iSDAsoil: The first continent-scale soil property map at 30 m resolution provides a soil information revolution for Africa. PLoS Biol. 2021, 19, e3001441. [Google Scholar] [CrossRef]
- Duarte, E.; Zagal, E.; Barrera, J.A.; Dube, F.; Casco, F.; Hernández, A.J. Digital mapping of soil organic carbon stocks in the forest lands of Dominican Republic. Eur. J. Remote Sens. 2022, 55, 213–231. [Google Scholar] [CrossRef]
- Farr, T.G.; Hensley, S.; Rodriguez, E.; Martin, J.; Kobrick, M. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Wang, S. MODIS Downward Shortwave Radiation: User Guide for MCD18A1 V6.1.; NASA MODIS Land Science Team Documentation. 2022. Available online: https://lpdaac.usgs.gov/documents/1658/MCD18_User_Guide_V62.pdf (accessed on 15 June 2025).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Alzahrani, A.A. Predicting Market Risk Using Machine Learning: A Comparative Analysis of SVM, Random Forest, and Gradient Boosting Algorithms. Go Far AI. 2022. Available online: https://www.gofar.ai/p/predicting-market-risk-using-machine (accessed on 25 June 2025).
- Wadoux, A.M.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; De Jesus, J.M.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Beucher, A.; Møller, A.; Greve, M. Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma 2017, 352, 351–359. [Google Scholar] [CrossRef]
- Wang, H.; Yin, Y.; Cai, T.; Tian, X.; Chen, Z.; He, K.; Wang, Z.; Gong, H.; Miao, Q.; Wang, Y.; et al. Global patterns of soil organic carbon dynamics in the 20–100 cm soil profile for different ecosystems: A global meta-analysis. Earth Syst. Sci. Data Discuss. 2024. in review. [Google Scholar] [CrossRef]
- Saeed, S.; Sun, Y.; Beckline, M.; Chen, L.; Lai, Z.; Mannan, A.; Ahmad, A.; Shah, S.; Amir, M.; Ullah, T.; et al. Altitudinal gradients and forest edge effect on soil organic carbon in Chinese fir (Cunninghamia lanceolata): A study from southeastern China. Appl. Ecol. Environ. Res. 2019, 17, 745–757. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Development of a remote sensing-based rice yield forecasting model. Span. J. Agric. Res. 2016, 14, e0907. [Google Scholar] [CrossRef]
- Padarian, J.; McBratney, A.B.; Minasny, B. Game theory interpretation of digital soil mapping convolutional neural networks. Soil 2020, 6, 389–397. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Slotow, R.; Mafongoya, P.; Lottering, R.; Naicker, R.; Matongera, T.N.; Mngadi, M. Mapping sub-surface distribution of soil organic carbon stocks in South Africa’s arid and semi-arid landscapes: Implications for land management and climate change mitigation. Geoderma Reg. 2024, 37, e00817. [Google Scholar] [CrossRef]
Region | Sample Size | Sampling Method | Mainly Data Sources |
---|---|---|---|
Otjozondjupa | 229 | Stratified sampling | Land Degradation Neutrality (LDN) program SteamBioAfrica soil sampling analysis |
Chobe | 226 | Random sampling | Africa Soil Profiles Database (AfSP) |
Omusati | 110 | Stratified sampling | Land Degradation Neutrality (LDN) program |
KwaZulu-Natal | 114 | Random sampling | Africa Soil Profiles Database (AfSP) Soil and Terrain Database (SOTER) |
Region | Annual Precipitation Range | Annual Temperature Range | Predominant Soils | Predominant Texture Class | Bioclimatic Classification |
---|---|---|---|---|---|
Otjozondjupa | 300–500 mm | 20–28 °C | Arenosols and Cambisols | Sandy and clay–loam soils | BWh-BSh |
Chobe | +800 mm | 19–27 °C | Regosols and Leptosols | Loamy soils | BSh influenced by Cwb |
Omusati | 100–300 mm | 22–30 °C | Regosols, Leptosols, and Fluvisols | Sandy | BSh |
KwaZulu-Natal | +1000 mm | 16–24 °C | Nitisols, Luvisols, and Ferralsols | Sandy clay loam | Cfb, Cfa, Cwb, and Cwa |
Index | Abbreviation | Description | Details |
---|---|---|---|
Elevation | MDE | Topography–Morphometry | Terrain analysis |
Topography Wetness Index | TWI | ||
Slope | SLP | ||
Aspect | ASP |
Variable | Dataset | Description |
---|---|---|
Temperature | MOD11A2.061 Terra Land Surface Temperature and Emissivity | Dataset providing 8-day global 1 km resolution land surface temperature and emissivity. Better correlations with soil organic carbon than those observed in previous studies. |
Annual mean precipitation | Climate Hazards Group InfraRed Precipitation (CHIRPS) | Quasi-global rainfall dataset with 0.05° resolution, integrating satellite imagery with in situ station data for trend analysis and seasonal drought monitoring. |
Relative humidity (RH) | GFS: Global Forecast System 384-Hour Predicted Atmosphere | Weather forecast model dataset produced by NCEP, with a specific variable “relative_humidity_2m_above_ground” used for analysis. |
Surface radiance (DSR) | MCD18A1 Version 6.1 | MODIS Terra and Aqua combined downward shortwave radiation (DSR)-gridded Level 3 product, providing daily estimates of DSR at 1 km resolution. |
Net Primary Production (NPP) | MOD17A3HGF V6.1 | Dataset providing annual gross and net primary productivity (GPP and NPP) at 500 m resolution, derived from 8-day net photosynthesis (PSN) products. |
Actual Evapotranspiration and Interception (ETIa) | FAO 2018. WaPOR Database Methodology | The actual evapotranspiration and interception (ETIa) (dekadal, in mm/day) is the sum of the soil evaporation (E), canopy transpiration (T), and evaporation from rainfall intercepted by leaves (I). |
Index | Abbreviation | Description | Details and Formulation for Sentinel-2 |
---|---|---|---|
Band 8 | B8 | Near-infrared band of Sentinel-2 | Original Sentinel-2 Band |
Band 11 | B11 | Shortwave infrared band of Sentinel-2 | Original Sentinel-2 Band |
Normalized Difference Vegetation Index | NDVI | Measures vegetation health by comparing the near-infrared to red light | (B8 − B4)/(B8 + B4) |
Enhanced Vegetation Index | EVI | Optimized vegetation index considering the atmosphere and background noise | 2.5 * (B8 − B4)/(B8 + C1 * B4 − C2 * B2 + L) |
Normalized Burn Ratio | NBR | Identifies burned areas and monitors post-fire recovery | (B8 − B11)/(B8 + B11) |
Atmospherically Resistant Vegetation Index | ARVI | Adjusted NDVI to reduce atmospheric effects | (B8 − (2 * B4 − B2))/(B8 + (2 * B4 − B2)) |
Structure Insensitive Pigment Index | SIPI | Estimates carotenoid content in vegetation, providing information on plant structure and health | (B8 − B2)/(B8 − B4) |
Red-Green Ratio | RGR | Distinguishes between different types of vegetation and their phenological state | B4/B3 |
Green Leaf Index | GLI | Measures the greenness of vegetation and is useful for estimating green biomass | (2 * B3 − B4 − B2)/(2 * B3 + B4 + B2) |
Moisture Stress Index | MSI | Evaluates soil moisture and water stress in vegetation | B11/B8 |
Soil Organic Carbon Index | SOCI | Estimates soil organic carbon content through spectral measurements | B2/(B4 * B3) |
Brightness Index | BI | Evaluates the brightness or luminosity of the land surface using near-infrared and red reflectance | sqrt((B4 * B4) + (B3 * B3))/2 |
Soil-Adjusted Vegetation Index | SAVI | Adjusted NDVI to account for background soil and reduce soil interference in vegetation measurement | (B8 − B4 * 1.5)/(B8 + B4 + 0.5) |
Green Chlorophyll Index | GCI | Estimates chlorophyll content in plants, focusing on green reflectance | B3/B4 |
Normalized Difference Moisture Index | NDMI | Measures moisture content in vegetation | (B8 − B11)/(B8 + B11) |
Normalized Burn Ratio 2 | NBR2 | Improved index for detecting and analyzing burned areas and their regeneration | (B11 − B12)/(B11 + B12) |
Green Normalized Difference Vegetation Index | GNDVI | Focuses on green reflectance to assess vegetation density | (B8 − B3)/(B8 + B3) |
AOI | N | Min | Max | Mean | CV | STD |
---|---|---|---|---|---|---|
Otjozondjupa | 229 | 0.7 | 14 | 4.16 | 0.63 | 2.64 |
Chobe | 226 | 1 | 38 | 4.47 | 0.91 | 4.06 |
Omusati | 110 | 0.68 | 10.55 | 2.54 | 0.68 | 1.73 |
Kwazulu-Natal | 114 | 1 | 42 | 9.58 | 0.88 | 8.41 |
Total | 683 | 0.68 | 42 | 4.91 | 1.02 | 4.99 |
Region | Config | R2 | RMSE | MAE |
---|---|---|---|---|
Otjozondjupa | A | 0.78 | 1.37 | 0.9 |
B | 0.77 | 1.18 | 0.82 | |
C | 0.73 | 1.36 | 0.93 | |
Omusati | A | 0.74 | 1.31 | 0.86 |
B | 0.64 | 1.20 | 0.79 | |
C | 0.67 | 1.32 | 0.87 | |
Chobe | A | 0.71 | 2.18 | 1.54 |
B | 0.62 | 2.93 | 1.69 | |
C | 0.7 | 2.25 | 1.61 | |
KwaZulu-Natal | A | 0.72 | 6.1 | 4.68 |
B | 0.71 | 6.2 | 4.89 | |
C | 0.65 | 6.72 | 5.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo-García, J.; Camarillo-Naranjo, J.M.; Blanco-Velázquez, F.J.; Anaya-Romero, M. Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa. Land 2025, 14, 1436. https://doi.org/10.3390/land14071436
Bravo-García J, Camarillo-Naranjo JM, Blanco-Velázquez FJ, Anaya-Romero M. Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa. Land. 2025; 14(7):1436. https://doi.org/10.3390/land14071436
Chicago/Turabian StyleBravo-García, Javier, Juan Mariano Camarillo-Naranjo, Francisco José Blanco-Velázquez, and María Anaya-Romero. 2025. "Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa" Land 14, no. 7: 1436. https://doi.org/10.3390/land14071436
APA StyleBravo-García, J., Camarillo-Naranjo, J. M., Blanco-Velázquez, F. J., & Anaya-Romero, M. (2025). Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa. Land, 14(7), 1436. https://doi.org/10.3390/land14071436