Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (572)

Search Parameters:
Keywords = ATTA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4856 KiB  
Article
In Vitro and In Vivo Evaluation of Alectinib-Loaded Dendrimer Nanoparticles as a Drug Delivery System for Non-Small Cell Lung Carcinoma
by Mahmood R. Atta, Israa Al-Ani, Ibrahim Aldeeb, Khaldun M. AlAzzam, Tha’er Ata, Mohammad A. Almullah, Enas Daoud and Feras Al-Hajji
Pharmaceutics 2025, 17(8), 974; https://doi.org/10.3390/pharmaceutics17080974 - 28 Jul 2025
Viewed by 243
Abstract
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy [...] Read more.
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy by formulating a G4-NH2-PAMAM dendrimer complex. Methods: The complex was prepared using the organic solvent evaporation method and characterized by DSC, FTIR, dynamic light scattering (DLS), and zeta potential measurements. A validated high-performance liquid chromatography (HPLC) method quantified the Alectinib. In vitro drug release studies compared free Alectinib with the G4-NH2-PAMAM dendrimer complex. Cytotoxicity against NSCLC cell line A549 was assessed using MTT assays, clonogenic assay, and scratch-wound assay. Xenograft effect was investigated in the H460 lung cell line. Pharmacokinetic parameters were evaluated in rats using LC–MS/MS. Results: Alectinib exhibited an encapsulation efficiency of 59 ± 5%. In vitro release studies demonstrated sustained drug release at pH 6.8 and faster degradation at pH 2.5. Anticancer activity in vitro showed comparable efficacy to free Alectinib, with 98% migration inhibition. In vivo tumor suppression studies revealed near-complete tumor regression (~100%) after 17 days of treatment, compared to 75% with free Alectinib. Pharmacokinetic analysis indicated enhanced absorption (shorter Tmax), prolonged systemic circulation (longer half-life), and higher bioavailability (increased AUC) for the dendrimer-complexed drug. Conclusions: These findings suggest that the G4-NH2-PAMAM dendrimer system significantly improves Alectinib’s pharmacokinetics and therapeutic potential, making it a promising approach for NSCLC treatment. Full article
Show Figures

Graphical abstract

18 pages, 5168 KiB  
Article
Arabidopsis Antiporter Genes as Targets of NO Signalling: Phylogenetic, Structural, and Expression Analysis
by Rabia Amir, Zuhra Qayyum, Sajeel Hussain, Byung-Wook Yun, Adil Hussain and Bong-Gyu Mun
Int. J. Mol. Sci. 2025, 26(15), 7195; https://doi.org/10.3390/ijms26157195 - 25 Jul 2025
Viewed by 162
Abstract
Nitric oxide is a gaseous signalling molecule produced by plants. Slight changes in endogenous NO levels have significant biochemical and physiological consequences. We investigated the structural and functional properties of NO-responsive antiporter genes in Arabidopsis thaliana. Phylogenetic analysis of 50 antiporter genes [...] Read more.
Nitric oxide is a gaseous signalling molecule produced by plants. Slight changes in endogenous NO levels have significant biochemical and physiological consequences. We investigated the structural and functional properties of NO-responsive antiporter genes in Arabidopsis thaliana. Phylogenetic analysis of 50 antiporter genes classified them into four subgroups based on the presence of NHX and CPA domains and the evolutionary similarity of the protein sequences. Antiporters were found scattered across the five chromosomes with unique physico-chemical properties and subcellular localisation in the plasma membrane, nucleus, chloroplasts, and vacuole. Furthermore, we performed QPCR analysis of eight different antiporter genes after infiltrating the plants with 1 mM CySNO (S-nitroso-L-cysteine), a nitric oxide donor, in WT and the loss-of-function atgsnor1-3 (disruptive S-nitrosoglutathione reductase 1 activity) plants. The AT1G79400 (CHX2), AT2G38170 (RCI4), and AT5G17400 (ER-ANT1) showed a significant increase in their expression in response to CySNO infiltration. However, their expression in atgsnor1-3 plants was found to be lower than in the WT plants, indicating a significant redundancy in the response of these genes to 1 mM levels of CySNO and physiological levels of SNOs in atgsnor1-3. On the other hand, a significant reduction in the expression of AT1G16380 (CHX1), AT2G47600 (MHX1), AT3G13320 (CAX2), and AT5G11800 (KEA6) was observed in WT plants after CySNO infiltration as well as in the leaves of atgsnor1-3 plants. Our study identified three NO-responsive antiporter genes in Arabidopsis, indicating their roles in stress responsiveness and ion homeostasis that could be used for further validation of their roles in NO signalling in plants. Full article
(This article belongs to the Special Issue Nitric Oxide Signalling in Plants)
Show Figures

Figure 1

22 pages, 17694 KiB  
Article
Studies on Host–Parasite Relationship Between Soybean Plants and Aphelenchoides besseyi
by Neveen Atta Elhamouly, Nehal Atta, Shiming Liu and Deliang Peng
Life 2025, 15(7), 1154; https://doi.org/10.3390/life15071154 - 21 Jul 2025
Viewed by 342
Abstract
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the [...] Read more.
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the open field. The present investigation successfully shed light on some significant new points, including the following: (1) A. besseyi was confirmed inside all soybean tissues—including roots, stems, leaves, and seeds—indicating its endoparasitic nature and its strong ability to reach the upper foliar system where it causes green stem and foliar retention syndrome (GSFR) symptoms; (2) inoculated plants exhibited reduced vegetative growth parameters, as non-inoculated control soybean plants showed higher values of plant height (PH), fresh root weight (FRW), and fresh shoot weight (FSW) compared to inoculated plants; (3) Yudou 29 was identified as highly resistant to A. besseyi, as results from the resistance screening assay among different Chinese soybean cultivars confirmed its strong resistance under natural field infestation conditions; and (4) soybean seeds may act as inoculum sources of A. besseyi, highlighting the need to develop more effective control measures to prevent or limit nematode dissemination through seed transmission. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 614 KiB  
Article
Diet Therapy Improves Body Composition, Blood Pressure and Glycemic Status in Individuals Living with Type 2 Diabetes: A Prospective Cohort Study
by Collins Afriyie Appiah, Harriet Wugah, Janet Adede Carboo, Mary Amoako, Michael Akenteng Wiafe and Frank Ekow Atta Hayford
Obesities 2025, 5(3), 56; https://doi.org/10.3390/obesities5030056 - 17 Jul 2025
Viewed by 328
Abstract
Westernization of traditional diets has been implicated in the rising burden of overweight/obesity and type 2 diabetes, especially in developing countries. In recent times, diet therapy is increasingly being recognized as an essential component of diabetes care. This study assessed the effect of [...] Read more.
Westernization of traditional diets has been implicated in the rising burden of overweight/obesity and type 2 diabetes, especially in developing countries. In recent times, diet therapy is increasingly being recognized as an essential component of diabetes care. This study assessed the effect of diet therapy on body composition, antioxidant nutrient intake, and glycemic status in individuals living with type 2 diabetes (ILWT2D). In this prospective observational cohort study, 45 ILWT2D who were receiving diet therapy (personalized dietary counseling) in addition to standard medical treatment (intervention group) were compared with 45 ILWT2D receiving only standard medical treatment (comparator group). Antioxidant micronutrient intake was assessed using a 24-h dietary recall. Body composition indices, including body mass index (BMI), percentage body fat (%BF), and visceral fat (VF), were assessed. Participants’ fasting blood glucose (FBG), glycated hemoglobin (HbA1C) levels, and blood pressure (BP) were measured. All measurements were performed before and after a three-month period. There were significant improvements in BMI (27.8 ± 6.0 kg/m2 vs. 26.9 ± 5.5 kg/m2, p = 0.003), %BF (37.8 ± 11.9% vs. 35.5 ± 10.5%, p < 0.001), visceral fat (9.8 ± 3.4 vs. 9.1 ± 3.2, p < 0.001), systolic BP (136.9 ± 19.9 mmHg vs. 124.6 ± 13.0 mmHg, p < 0.001), FBG (8.8 ± 2.8 mmol/L vs. 6.7 ± 1.5 mmol/L, p < 0.001), and HbA1c (7.3 ± 1.0% vs. 6.4 ± 0.8%, p < 0.001) in the intervention group from baseline to endline, but not in the comparator group. In contrast, %BF increased within the comparator group (39.9 ± 7.8 vs. 40.7 ± 7.4; p = 0.029). Vitamin A intake increased significantly (227.5 ± 184.3 µg vs. 318.8 ± 274.7 µg, p = 0.038) within the intervention group but not in the comparator group (174.9 ± 154.3 µg, 193.7 ± 101.4 µg, p = 0.54). There were no significant changes in zinc, copper, selenium, and vitamin C intakes (p > 0.05) in the intervention group from the baseline to endline, unlike those in the comparator group who showed a significant increase in the intake of these nutrients. There was a significant increase in vitamin A intake among the ILWT2D who received dietary counseling as an intervention compared to those who did not. Additionally, the ILWT2D who received dietary counseling had significant improvements in their body composition (BMI, body fat, and visceral fat) and systolic blood pressure, compared to those who did not. The ILWT2D who received the intervention had significantly better glycemic control (FBG and HbA1c) than their counterparts who did not. Thus, this study suggests the potential of diet therapy as a viable non-pharmacological treatment approach for individuals living with type 2 diabetes. Full article
Show Figures

Figure 1

12 pages, 481 KiB  
Review
Potential miRNAs as Diagnostic Biomarkers for Differentiating Disease States in Ulcerative Colitis: A Systematic Review
by Atta Ullah Khan, Pilar Chacon-Millan and Paola Stiuso
Int. J. Mol. Sci. 2025, 26(14), 6822; https://doi.org/10.3390/ijms26146822 - 16 Jul 2025
Viewed by 256
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease that affects the colon, triggering persistent inflammation and ulceration, resulting in a severe impact on patients’ quality of life. Currently, the standard diagnostic methods for UC include invasive procedures such as colonoscopy and the use [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory disease that affects the colon, triggering persistent inflammation and ulceration, resulting in a severe impact on patients’ quality of life. Currently, the standard diagnostic methods for UC include invasive procedures such as colonoscopy and the use of non-specific inflammatory markers like C-reactive protein, which can be inconvenient or painful and lack specificity. This underscores the need for non-invasive and highly specific biomarkers for UC. MicroRNAs (miRNAs) are small non-coding RNAs, typically 22 nucleotides in length, which are well described as gene expression regulators. Several studies have reported their differential expression in various pathological conditions, including UC. Due to their role in gene regulation and stability in biological fluids, miRNAs present a promising opportunity as biomarkers. This systematic review explores the potential use of miRNAs as diagnostic biomarkers to distinguish between active and inactive ulcerative colitis. Following PRISMA guidelines and based on inclusion and exclusion criteria, seven studies, encompassing a total of 514 participants (181 with active UC and 116 with inactive UC), were included. Multiple miRNAs exhibiting differential expression between active and inactive UC were identified. Most notably, miR-21, miR-126, miR-146b-5p, and miR-223 exhibited consistent upregulation in active UC, suggesting their potential as diagnostic biomarkers. Supporting these findings is the fact that these miRNAs are involved in inflammatory pathways, further highlighting their relevance to the pathogenesis of UC. This review emphasizes the need for further validation studies with larger cohorts to confirm the utility of miRNAs as diagnostic tools for UC disease activity differentiation, which could enhance non-invasive disease monitoring and inform therapeutic decision-making. Future research should also evaluate the prognostic potential of these miRNAs for predicting treatment responses and long-term disease outcomes. Full article
Show Figures

Figure 1

27 pages, 5846 KiB  
Article
Agrocybe cylindracea Polysaccharides Ameliorate DSS-Induced Colitis by Restoring Intestinal Barrier Function and Reprogramming Immune Homeostasis via the Gut–Liver Axis
by Aamna Atta, Muhammad Naveed, Mujeeb Ur Rahman, Yamina Alioui, Immad Ansari, Sharafat Ali, Eslam Ghaleb, Nabeel Ahmed Farooqui, Mohammad Abusidu, Yi Xin and Bin Feng
Int. J. Mol. Sci. 2025, 26(14), 6805; https://doi.org/10.3390/ijms26146805 - 16 Jul 2025
Viewed by 398
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease driven by immune dysregulation, microbiota imbalance, and intestinal barrier dysfunction. Despite its global burden, effective therapies remain limited. This study explores the therapeutic potential of Agrocybe cylindracea polysaccharides (ACP) in a dextran sulfate sodium [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease driven by immune dysregulation, microbiota imbalance, and intestinal barrier dysfunction. Despite its global burden, effective therapies remain limited. This study explores the therapeutic potential of Agrocybe cylindracea polysaccharides (ACP) in a dextran sulfate sodium (DSS)-induced murine colitis model. High-performance liquid chromatography (HPLC)-characterized ACP was administered orally to BALB/c mice following colitis induction. ACP treatment significantly reduced Disease Activity Index (DAI) scores, preserved colon length, and restored intestinal barrier integrity by upregulating tight junction proteins. Mechanistically, ACP modulated immune homeostasis, suppressing pro-inflammatory cytokines (IL-17, IL-23, CRP) while enhancing anti-inflammatory mediators (IL-4, TGF-β). Furthermore, ACP inhibited hepatic TLR4/MyD88/NF-κB signaling, attenuated systemic inflammation, and reshaped gut microbiota composition by enriching beneficial taxa and reducing pathogenic Bacteroides. These findings demonstrate ACP multi-target efficacy in colitis, positioning it as a promising natural therapeutic for UC. Full article
Show Figures

Figure 1

26 pages, 9032 KiB  
Article
Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics
by Isaac Kwesi Nooni, Faustin Katchele Ogou, Abdoul Aziz Saidou Chaibou, Samuel Koranteng Fianko, Thomas Atta-Darkwa and Nana Agyemang Prempeh
Atmosphere 2025, 16(7), 828; https://doi.org/10.3390/atmos16070828 - 8 Jul 2025
Viewed by 487
Abstract
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather [...] Read more.
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather Forecasts Reanalysis v.5 (ERA5) reanalysis, TEMP and precipitation (PRE) from Climate Research Unit (CRU), and soil moisture (SM) and evapotranspiration (ET) from the Global Land Evaporation Amsterdam Model (GLEAM). In addition, four teleconnection indices were considered: El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). This study used the Mann–Kendall test and Sen’s slope estimator to analyze trends, alongside multiple linear regression to investigate the relationships between TEMP, RH, and key climatic variables—namely evapotranspiration (ET), soil moisture (SM), and precipitation (PRE)—as well as large-scale teleconnection indices (e.g., IOD, ENSO, PDO, and NAO) on annual and seasonal scales. The key findings are as follows: (1) mean annual TEMP exceeding 30 °C and RH less than 30% were concentrated in arid regions of the Sahelian–Sudano belt in West Africa (WAF), Central Africa (CAF) and North East Africa (NEAF). Semi-arid regions in the Sahelian–Guinean belt recorded moderate TEMP (25–30 °C) and RH (30–60%), while the Guinean coastal belt and Congo Basin experienced cooler, more humid conditions (TEMP < 20 °C, RH (60–90%). (2) Trend analysis using Mann–Kendal and Sen slope estimator analysis revealed spatial heterogeneity, with increasing TEMP and deceasing RH trends varying by region and season. (3) The warming rate was higher in arid and semi-arid areas, with seasonal rates exceeding annual averages (0.18 °C decade−1). Winter (0.27 °C decade−1) and spring (0.20 °C decade−1) exhibited the strongest warming, followed by autumn (0.18 °C decade−1) and summer (0.10 °C decade−1). (4) RH trends showed stronger seasonal decline compared to annual changes, with reduction ranging from 5 to 10% per decade in certain seasons, and about 2% per decade annually. (5) Pearson correlation analysis demonstrated a strong negative relationship between TEMP and RH with a correlation coefficient of r = − 0.60. (6) Significant associations were also observed between TEMP/RH and both climatic variables (ET, SM, PRE) and large scale-teleconnection indices (ENSO, IOD, PDO, NAO), indicating that surface conditions may reflect a combination of local response and remote climate influences. However, further analysis is needed to distinguish the extent to which local variability is independently driven versus being a response to large-scale forcing. Overall, this research highlights the physical mechanism linking TEMP and RH trends and their climatic drivers, offering insights into how these changes may impact different ecological and socio-economic sectors. Full article
(This article belongs to the Special Issue Precipitation in Africa (2nd Edition))
Show Figures

Figure 1

2 pages, 473 KiB  
Correction
Correction: Elbedwehy, A.M.; Atta, A.M. Novel Superadsorbent Highly Porous Hydrogel Based on Arabic Gum and Acrylamide Grafts for Fast and Efficient Methylene Blue Removal. Polymers 2020, 12, 338
by Ahmed M. Elbedwehy and Ayman M. Atta
Polymers 2025, 17(13), 1861; https://doi.org/10.3390/polym17131861 - 3 Jul 2025
Viewed by 248
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

17 pages, 2409 KiB  
Article
Synthesis of Physically Activated Carbons from Vitellaria paradoxa Shells for Supercapacitor Electrode Applications
by Joshua Atta Alabi, Neda Nazari, Daniel Nframah Ampong, Frank Ofori Agyemang, Mark Adom-Asamoah, Richard Opoku, Rene Zahrhuber, Christoph Unterweger and Kwadwo Mensah-Darkwa
Inorganics 2025, 13(7), 224; https://doi.org/10.3390/inorganics13070224 - 2 Jul 2025
Viewed by 470
Abstract
This study investigates the processing of shea nut shells (SNSs), an abundant agricultural waste, into porous activated carbon for supercapacitor electrodes through a two-stage thermal treatment involving pyrolysis and physical activation with CO2 and steam. The aim was to develop sustainable, high-performance [...] Read more.
This study investigates the processing of shea nut shells (SNSs), an abundant agricultural waste, into porous activated carbon for supercapacitor electrodes through a two-stage thermal treatment involving pyrolysis and physical activation with CO2 and steam. The aim was to develop sustainable, high-performance electrode materials while addressing waste management. Carbonization followed by activation yielded 16.5% (CO2) and 11.3% (steam) activation yields, with total yields of 4.3% and 2.9%, respectively. CO2 activation produced carbon (AC_CO2) with a specific surface area (SBET) of 1528 m2 g−1 and a total pore volume of 0.72 cm3 g−1, a graphitization degree (ID/IG = 1.0), and low charge transfer resistance (9.05 Ω), delivering a specific capacitance of 47.5 F g−1 at 0.5 A g−1, an energy density of 9.5 Wh kg−1 at 299 W kg−1, and a fast discharge time of 2.10 s, ideal for power-intensive applications. Steam activation yielded carbon (AC_H2O) with a higher specific surface area (1842 m2 g−1) and pore volume (1.57 cm3 g−1), achieving a superior specific capacitance of 102.2 F g−1 at 0.5 A g−1 and a power density of 204 W kg−1 at 9.2 Wh kg−1, suited for energy storage. AC_CO2 also exhibited exceptional cyclic stability (90% retention after 10,000 cycles). These findings demonstrate SNS-derived activated carbon as a versatile, eco-friendly material, with CO2 activation optimizing power delivery and steam activation enhancing energy capacity, offering tailored solutions for supercapacitor applications and sustainable waste utilization. Full article
Show Figures

Figure 1

21 pages, 3017 KiB  
Article
Ecological Integrity Assessment of Alpine Lotic Ecosystems: A Case Study of a High-Altitude National Park in Northern Pakistan
by Salar Ali, Junfeng Gao, Alamdar Hussain, Atta Rasool, Saad Abdullah and Attarad Ali
Water 2025, 17(13), 1948; https://doi.org/10.3390/w17131948 - 29 Jun 2025
Viewed by 420
Abstract
This study assesses the ecological status of alpine lotic ecosystems in Khunjerab National Park, Pakistan, situated at approximately 4000 m in the Karakoram Range along the Pakistan–China border. An integrative approach was employed, evaluating alpine stream ecosystems through benthic macroinvertebrate indices in conjunction [...] Read more.
This study assesses the ecological status of alpine lotic ecosystems in Khunjerab National Park, Pakistan, situated at approximately 4000 m in the Karakoram Range along the Pakistan–China border. An integrative approach was employed, evaluating alpine stream ecosystems through benthic macroinvertebrate indices in conjunction with physicochemical habitat parameters. Samples were gathered using kick nets and hand-picking at seventeen randomly selected sites in early spring and summer. The study recorded 710 summer taxa from 41 families and seven orders, and 1250 early spring taxa from 30 families and six orders. The abundance of macroinvertebrates increased in early spring, while taxonomic diversity increased during the summer. Statistical tests revealed a strong relationship between water quality conditions and biological features. The biotic index reached its peak in early spring, while diversity indices peaked in summer when Ephemeroptera dominated. Due to the macroinvertebrate source in early spring, the majority of EPT taxa were abundant at all alpine stream sites during early spring, except for upstream sites in summer. The indices from the biotic metric evaluation revealed low levels of natural environmental disturbance caused by humans. This research is significant in terms of natural resource conservation and health assessment based on the benthic fauna community structure in alpine streams. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 7709 KiB  
Article
Orientation Controllable RCS Enhancement Electromagnetic Surface to Improve the Road Barriers Detectability for Autonomous Driving Radar
by Yanbin Chen, Tong Wang, Qi Liu, Haochen Wang and Cheng Jin
Sensors 2025, 25(13), 4048; https://doi.org/10.3390/s25134048 - 29 Jun 2025
Cited by 1 | Viewed by 310
Abstract
An orientation controllable radar cross section (RCS) enhancement surface is presented in this paper, which can be used to improve the road pile detectability of on-board microwave radar for autonomous driving system. In addition, the RCS enhancement orientation can be controlled in a [...] Read more.
An orientation controllable radar cross section (RCS) enhancement surface is presented in this paper, which can be used to improve the road pile detectability of on-board microwave radar for autonomous driving system. In addition, the RCS enhancement orientation can be controlled in a specified direction without interfering with other microwave systems. We first designed a modified one-dimensional VanAtta array with adjustable phase for retrodirective backtracking the incoming electromagnetic waves, which can achieve wide-angle RCS enhancement. Then, we arranged the one-dimensional VanAtta array in another dimension forming a two-dimensional array, enabling adjustable orientation RCS enhancement due to the controllable phase of the reflected electromagnetic waves. We designed, manufactured, and tested a 4 × 8 array to validate the theory and assess the design’s feasibility. Finally, six orientation controllable VanAtta arrays were mounted on the outside surface of a cylinder road barrier, and measurements demonstrated that RCS enhancement of over 10 dB have been achieved compared to the same pile with perfect electric conductor surface. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

13 pages, 1863 KiB  
Article
Photoluminescence and Stability of 2D Ruddlesden–Popper Halide Perovskites
by Zhilin Ren, Zhengtian Yuan, Aleksandr A. Sergeev, Ivor Lončarić, Muhammad Umair Ali, Atta Ur Rehman, Kam Sing Wong, Yanling He, Juraj Ovčar, Jasminka Popović and Aleksandra B. Djurišić
Molecules 2025, 30(13), 2716; https://doi.org/10.3390/molecules30132716 - 24 Jun 2025
Viewed by 459
Abstract
Two-dimensional lead halide perovskites are of significant interest for a variety of practical applications. However, the relationships between their composition and properties are not fully clear. Here we investigated photoluminescence from 2D Ruddlesden–Popper perovskites with different bulky spacer cations. Significant differences in their [...] Read more.
Two-dimensional lead halide perovskites are of significant interest for a variety of practical applications. However, the relationships between their composition and properties are not fully clear. Here we investigated photoluminescence from 2D Ruddlesden–Popper perovskites with different bulky spacer cations. Significant differences in their optical properties and stability are observed, and perovskites with benzylammonium (BZA) and phenethylammonium (PEA) were selected for more detailed investigation of the observed stability differences due to their similar structure. We find that PEA2PbI4 exhibits more narrow emission and increased stability compared to BZA2PbI4. In addition, PEA2PbI4 exhibits self-healing of defects evident from PL enhancement, which is absent for BZA2PbI4. The observed differences between perovskites with BZA and PEA spacer cations can be attributed to differences in the formation of spacer cation vacancies. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

18 pages, 4486 KiB  
Article
Ibuprofen Does Not Prevent Inhibition of Fetal Breathing Movements Caused by Intrauterine Inflammation in Fetal Sheep
by Nhi T. Tran, Vanesa Stojanovska, Sharmony B. Kelly, Kayla Vidinopoulos, John Atta, Eva Matthews-Staindl, Valerie A. Zahra, Yen Pham, Eric A. P. Herlenius, Stuart B. Hooper, Beth J. Allison, Robert Galinsky and Graeme R. Polglase
Int. J. Mol. Sci. 2025, 26(12), 5591; https://doi.org/10.3390/ijms26125591 - 11 Jun 2025
Viewed by 432
Abstract
Antenatal inflammation/infection is a major cause of neonatal apnoea and hypoventilation. Prostaglandin E2 (PGE2) is a key inflammatory mediator associated with depression of fetal and neonatal breathing. We aimed to determine whether antenatal ibuprofen, a cyclooxygenase inhibitor that reduces synthesis of [...] Read more.
Antenatal inflammation/infection is a major cause of neonatal apnoea and hypoventilation. Prostaglandin E2 (PGE2) is a key inflammatory mediator associated with depression of fetal and neonatal breathing. We aimed to determine whether antenatal ibuprofen, a cyclooxygenase inhibitor that reduces synthesis of PGE2, restores fetal breathing movements (FBM) in late-gestation fetal sheep exposed to systemic lipopolysaccharide (LPS). Fetal sheep (125 days gestation, d; term ~148 d) were instrumentally monitored for continuous measurement of FBM and physiological parameters. At 130 d fetuses were randomly allocated between groups receiving i.v. saline (CTLSAL, n = 9), escalating doses of LPS (i.v.) over 3 days (LPSSAL, n = 8), or ibuprofen one hour after each LPS dose (LPSIBU, n = 8). Regular plasma samples were collected for PGE2 assessment. At 135 d, cerebrospinal fluid and brainstem tissue were collected at autopsy for assessments of PGE2 expression, and immunohistochemical quantification of astrocytes and microglia within key brainstem respiratory centres was performed to assess inflammation. LPS exposure increased PGE2 levels in plasma, cerebrospinal fluid and the RTN/pFRG (p < 0.05) and decreased the incidence, amplitude and amount of the accentuated (>5 mmHg) FBMs. Ibuprofen reduced plasma and RTN/pFRG PGE2 expression (p < 0.01 and p = 0.031, respectively) but did not restore FBMs. Astrocyte and microglial density increased in the RTN/pFRG, NTS and raphe nucleus in LPSIBU fetuses, compared to LPSSAL (p < 0.05). Antenatal ibuprofen treatment did not restore depressed FBM, despite reducing the circulating and brainstem PGE2 levels in LPS-exposed fetal sheep. Other inflammatory pathways or more specific targeting of PGE2 may be more effective in preventing apnoea caused by exposure to intrauterine infection/inflammation. Full article
Show Figures

Figure 1

15 pages, 1615 KiB  
Article
Development of Xanthyletin-Loaded Nanoparticles for the Control of Leucoagaricus gongylophorus
by Cristiane de Melo Cazal, Moacir Rossi Forim, Ana Paula Terezan, Andreia Pereira Matos, Gracielle Oliveira Sabbag Cunha, Maria Fátima das Graças Fernandes da Silva, Paulo Cezar Vieira, Fernando Carlos Pagnocca and João Batista Fernandes
Molecules 2025, 30(11), 2469; https://doi.org/10.3390/molecules30112469 - 5 Jun 2025
Viewed by 566
Abstract
This study describes the development, characterization and in vitro evaluation of poly(ε-caprolactone) (PCL) nanoparticles loaded with xanthyletin for the control of Atta sexdens rubropilosa through the inhibition of its symbiotic fungus Leucoagaricus gongylophorus. Nanoparticles were prepared via interfacial polymer deposition, with formulation [...] Read more.
This study describes the development, characterization and in vitro evaluation of poly(ε-caprolactone) (PCL) nanoparticles loaded with xanthyletin for the control of Atta sexdens rubropilosa through the inhibition of its symbiotic fungus Leucoagaricus gongylophorus. Nanoparticles were prepared via interfacial polymer deposition, with formulation NC5 selected based on optimal physicochemical properties. NC5 exhibited an encapsulation efficiency of 98.0%, average particle size of 304 nm and zeta potential of −29.3 mV. Scanning electron microscopy confirmed spherical morphology and the absence of crystalline residues. The formulation remained physically stable for four months at 4 °C. In vitro release showed biphasic behavior, with an initial burst followed by sustained release. Under UV exposure, NC5 enhanced xanthyletin photostability by 15.4-fold compared to the free compound. Fungicidal assays revealed 76% inhibition of fungal growth with NC5, compared to 85% with free xanthyletin. These results support the potential application of xanthyletin-loaded PCL nanoparticles as a stable and controlled delivery system for the biological control of leaf-cutting ants by targeting their fungal mutualist. Further in vivo studies are recommended to assess efficacy under field conditions. Full article
Show Figures

Graphical abstract

25 pages, 1917 KiB  
Review
Deciphering the Complex Relationships Between the Hemostasis System and Infective Endocarditis
by Muhammad Aamir Wahab, Atta Ullah Khan, Silvia Mercadante, Iolanda Cafarella, Lorenzo Bertolino and Emanuele Durante-Mangoni
J. Clin. Med. 2025, 14(11), 3965; https://doi.org/10.3390/jcm14113965 - 4 Jun 2025
Viewed by 829
Abstract
Infective endocarditis (IE) arises from complex interactions between microbial pathogens and host hemostasis systems, where dysregulated coagulation mediates microbial persistence and systemic thromboembolic complications. Alterations in primary, secondary, and tertiary hemostasis in the acute IE phase have direct clinical implications for vegetation formation [...] Read more.
Infective endocarditis (IE) arises from complex interactions between microbial pathogens and host hemostasis systems, where dysregulated coagulation mediates microbial persistence and systemic thromboembolic complications. Alterations in primary, secondary, and tertiary hemostasis in the acute IE phase have direct clinical implications for vegetation formation and detachment. Staphylococcus aureus is one of the most common pathogens that causes IE, and it is capable of profoundly altering the coagulation cascade through several mechanisms, such as platelet activation, prothrombin activation through staphylocoagulase release, and plasminogen stimulation via staphylokinase production. Understanding these complex and yet unmasked mechanisms is of pivotal importance to promoting targeted therapeutic intervention aimed at reducing IE morbidity and mortality. Moreover, the management of antiplatelet and anticoagulant treatment during IE onset is a controversial issue and needs to be tailored to patient comorbidities and IE-related complications, such as cerebral embolism. This review provides a roadmap to promote clinicians’ understanding of the complex interactions between hemostasis and IE clinical manifestations and complications, discussing pathogen-specific coagulation profiles while addressing critical knowledge gaps for IE management. Full article
(This article belongs to the Special Issue Diagnostic and Therapeutic Challenges in Infective Endocarditis)
Show Figures

Figure 1

Back to TopTop