Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,613)

Search Parameters:
Keywords = ALPS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1599 KiB  
Article
CRISPR/Cas12a-Chemiluminescence Cascaded Bioassay for Amplification-Free and Sensitive Detection of Nucleic Acids
by Xiaotian Guan, Peizheng Wang, Yi Wang and Shuqing Sun
Biosensors 2025, 15(8), 479; https://doi.org/10.3390/bios15080479 (registering DOI) - 24 Jul 2025
Abstract
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline [...] Read more.
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline phosphatase (ALP) complex was constructed as the core component of the bioassay. During the detection process, the single-stranded target DNA was captured and enriched by LssDNA and then activated the trans-cleavage activity of Cas12a. Due to the Cas12a-mediated cleavage of LssDNA, ALP was released from the MB, subsequently catalyzing the substrate to generate a chemiluminescence (CL) signal. Given the cascade combination of CRISPR/Cas12a with the CL technique, the limits of detection for HPV-16 and PB-19 DNA were determined as 0.14 pM and 0.37 pM, respectively, and the whole detection could be completed within 60 min. The practicality and reliability of the platform were validated through target-spiked clinical specimens, and the recovery rate was 93.4–103.5%. This dual-amplification strategy—operating without target pre-amplification—featured high specificity, low contamination risk, facile preparation, and robust stability. It provides a novel approach for sensitive nucleic acid detection, with the potential for rapid extension to the diagnosis of various infectious diseases. Full article
Show Figures

Figure 1

15 pages, 2209 KiB  
Article
Exploration of Phosphorus Release Characteristics in Sediments from the Plains River Network: Vertical Distribution and the Response of Phosphorus and Microorganisms
by Xiaoshuang Dong, Haojie Chen, Yongsheng Chang, Xixi Yang, Haoran Yang and Wei Huang
Water 2025, 17(15), 2196; https://doi.org/10.3390/w17152196 - 23 Jul 2025
Abstract
Plains River networks are important natural ecosystems that play a vital role in storing, draining, conserving, and purifying water. This study selected the river network in the northern plain of Jiaxing as the research area. Samples were collected in October 2023. Sediments were [...] Read more.
Plains River networks are important natural ecosystems that play a vital role in storing, draining, conserving, and purifying water. This study selected the river network in the northern plain of Jiaxing as the research area. Samples were collected in October 2023. Sediments were collected using a sampler and divided into five layers according to the collection depth, namely the surface layer (5 cm), the second layer (15 cm), the third layer (25 cm), the fourth layer (35 cm), and the bottom layer (45 cm). This study analyzed the vertical distribution of each form of phosphorus, the vertical distribution of the microbial community, and the response between the two in the sediments of this plain river network. The results showed high sediment TP concentrations (633.9–2534.7 mg/kg) in this plain river network. The vertical distribution trend of Fe-P was almost the same as that of TP and had the highest concentration (134.9–1860.1 mg/kg). Ca-P is the second highest phosphorus content, which is also an inert phosphorus component, as well as Al-P, and both exhibit a relatively low percentage of surface layers. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria showed heterogeneity in the vertical distribution of sediments. The river network sediments in the Plains River have a high potential for phosphorus release, with most sites acting as phosphorus “sources”. The sediments in the second of these layers show a strong tendency to release phosphorus. Bottom sediments have a low capacity to both adsorb and release phosphorus. The findings of this study will provide a theoretical foundation for the prevention and management of river networks in this plain. Full article
Show Figures

Figure 1

21 pages, 1201 KiB  
Article
Seasonal and Dietary Effects on the Hematobiochemical Parameters of Creole Goats in the Peruvian Andes
by Aníbal Rodríguez-Vargas, Emmanuel Alexander Sessarego, Katherine Castañeda-Palomino, Huziel Ormachea, Fritz Trillo, Víctor Temoche-Socola, José Antonio Ruiz-Chamorro and Juancarlos Alejandro Cruz
Vet. Sci. 2025, 12(8), 687; https://doi.org/10.3390/vetsci12080687 - 23 Jul 2025
Abstract
Creole goats have adapted to the harsh Andean environment, yet the physiological impacts of high-altitude production systems remain underexplored. This study assessed seasonal and dietary influences on the hematological and biochemical profiles of 45 Creole goats in the Peruvian Andes. The animals were [...] Read more.
Creole goats have adapted to the harsh Andean environment, yet the physiological impacts of high-altitude production systems remain underexplored. This study assessed seasonal and dietary influences on the hematological and biochemical profiles of 45 Creole goats in the Peruvian Andes. The animals were assigned to three diets: D1 (grazing), D2 (grazing + 2000 g hay), and D3 (grazing + 400 g concentrate), across rainy and dry seasons. Biweekly blood sampling measured urea, cholesterol, total protein, albumin, ALP, ALT, WBCL, NeuP, LymP, HGB, and MCV. Season exerted the strongest influence (p < 0.001), with modest dietary effects and a consistent effect of sampling time. Urea, total protein, and albumin increased during the rainy season, though only urea responded significantly to diet. Leukocytosis rose in the dry season and with higher-protein diets, suggesting heightened immune activation under environmental stress. Hemoglobin peaked in the rainy season and early sampling, indicating better oxygenation. MCV and body weight were higher in the dry season, with weight unaffected by diet. These results underscore the complex interplay of environmental and nutritional factors in shaping goat physiology at high altitudes, emphasizing the importance of dynamic modeling in sustainable Andean livestock systems. Full article
Show Figures

Figure 1

29 pages, 15018 KiB  
Article
Investigating the Osteoregenerative Properties of Juglans regia L. Extract on Mesenchymal Stem Cells and Osteoblasts Through Evaluation of Bone Markers: A Pilot Study
by Alina Hanga-Fărcaș, Gabriela Adriana Filip, Simona Valeria Clichici, Laura Grațiela Vicaș, Olga Şoritău, Otilia Andercou, Luminița Fritea and Mariana Eugenia Mureșan
J. Funct. Biomater. 2025, 16(7), 268; https://doi.org/10.3390/jfb16070268 - 21 Jul 2025
Viewed by 119
Abstract
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) [...] Read more.
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) is rich in polyphenols with demonstrated osteoregeneration effects. In the present study, we investigated the extract’s effects on three types of cells with various stages of differentiation: adult mesenchymal stem cells (MSCs), osteoblasts at low passage (O6) and osteoblasts at advanced passage (O10). To assess the efficacy of the walnut leaf extract, in vitro treatments were performed in comparison with ellagic acid (EA) and catechin (CAT). The osteoregenerative properties of the leaf extract were evaluated in terms of cell viability, bone mineralization (by staining with alizarin red) and the expression of osteogenesis markers such as osteocalcin (OC), osteopontin (OPN), dentin matrix acidic phosphoprotein 1 (DMP1) and collagen type 1A. Another compound implicated in oxidative stress response, but also a bone homeostasis regulator, nuclear factor erythroid 2-related factor 2 (NRF2), was studied by immunocytochemistry. Together with collagen amount, alkaline phosphatase (ALP) activity and NF-kB levels were measured in cell lysates and supernatants. The obtained results demonstrate that JR treatment induced osteogenic differentiation and bone mineralization, and it showed protective effects against oxidative stress. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

23 pages, 7168 KiB  
Article
Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators
by Chunhua Gao, Weilin Kong, Fengtao Zhao, Feiyan Ju, Ping Liu, Zongxin Li, Kaichang Liu and Haijun Zhao
Agronomy 2025, 15(7), 1748; https://doi.org/10.3390/agronomy15071748 - 20 Jul 2025
Viewed by 152
Abstract
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. [...] Read more.
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. Hedou 22) in fluvisols and luvisols soil according to World Reference Base for Soil Resources (WRB) standard. Under a 4-row corn and 6-row soybean strip intercropping system, three treatments were applied: a water control (CK), and two plant growth regulators—T1 (EC: ethephon [300 mg/L] + cycocel [2 g/L]) and T2 (ED: ethephon [300 mg/L] + 2-Diethyl aminoethyl hexanoate [10 mg/L]). Foliar applications were administered at the V7 stage (seventh leaf) of intercropped corn plants to assess how foliar-applied PGRs (T1/T2) modulated the soil phosphorus availability, microbial communities, and functional genes in maize intercropping systems. PGRs increased the soil organic phosphorus and available phosphorus contents, and alkaline phosphatase activity, but not total phosphorus. PGRs declined the α-diversity in fluvisols soil but increased the α-diversity in luvisols soil. The major taxa changed from Actinobacteria (CK) to Proteobacteria (T1) and Saccharibacteria (T2) in fluvisols soil, and from Actinobacteria/Gemmatimonadetes (CK) to Saccharibacteria (T1) and Acidobacteria (T2) in luvisols soil. Functional gene dynamics indicated soil-specific regulation, where fluvisols soil harbored more phoD (organic phosphorus mineralization) and relA (polyphosphate degradation) genes, whereas phnP gene dominated in luvisols soil. T1 stimulated organic phosphorus mineralization and inorganic phosphorus solubilization in fluvisols soil, upregulating regulation genes, and T2 enhanced polyphosphate synthesis and transport gene expression in luvisols soil. Proteobacteria, Nitrospirae, and Chloroflexi were positively correlated with organic phosphorus mineralization and polyphosphate cycling genes, whereas Bacteroidetes and Verrucomicrobia correlated with available potassium (AP), total phosphorus (TP), and alkaline phosphatase (ALP) activity. Thus, PGRs activated soil phosphorus by restructuring soil type-dependent microbial functional networks, connecting PGRs-induced shifts with microbial phosphorus cycling mechanisms. These findings facilitate the targeted use of PGRs to optimize microbial-driven phosphorus efficiency in strategies for sustainable phosphorus management in diverse agricultural soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

20 pages, 4241 KiB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 - 19 Jul 2025
Viewed by 225
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

19 pages, 428 KiB  
Article
Irisin Concentrations in Children and Adolescent Cancer Survivors and Their Relation to Metabolic, Bone, and Reproductive Profile: A Pilot Case–Control Study
by Despoina Apostolaki, Katerina Katsibardi, Vasiliki Efthymiou, Charikleia Stefanaki, Aimilia Mantzou, Stavroula Papadodima, George P. Chrousos, Antonis Kattamis and Flora Bacopoulou
J. Clin. Med. 2025, 14(14), 5098; https://doi.org/10.3390/jcm14145098 - 17 Jul 2025
Viewed by 198
Abstract
Background/Objectives: Childhood cancer survivors (CCS) experience chronic health problems and significant metabolic burden. Timely identification of CCS at higher metabolic risk requires novel biomarkers. Irisin, a novel myokine/adipokine has been associated with metabolic, bone and reproductive diseases, but its role in the [...] Read more.
Background/Objectives: Childhood cancer survivors (CCS) experience chronic health problems and significant metabolic burden. Timely identification of CCS at higher metabolic risk requires novel biomarkers. Irisin, a novel myokine/adipokine has been associated with metabolic, bone and reproductive diseases, but its role in the health of CCS is unknown. The aim of this study was to examine irisin concentrations in children and adolescent CCS (vs. controls) and their association with metabolic, bone and hormonal parameters. Methods: Children and adolescent CCS, aged 8–18 years, as well as healthy controls, underwent a detailed physical, body composition, biochemical, hormonal and serum irisin assessment at least 6 months post-treatment. Results: A total of 59 children and adolescents (36 CCS, 23 controls; mean age ± SD 12.8 ± 2.9 years; 10 prepubertal, 49 pubertal) participated in the study. Serum irisin concentrations (ng/mL) were significantly lower in CCS than controls [median (IQR) 6.54 (4.12) vs. 11.70 (8.75) ng/mL, respectively, p < 0.001]. In the total study sample, serum irisin was correlated negatively with LH (rs = −0.314, p < 0.05), CRP (rs = −0.366, p < 0.005), age (rs = −0.323, p < 0.05) and positively with ALP (rs = 0.328, p < 0.05). Serum irisin was also positively correlated with ApoB and Lpa (rs = 0.410 and 0.421, respectively, p < 0.05) in CCS, and with PTH (r = 0.542, p < 0.005) in controls. Multivariate linear regression analysis indicated parathyroid hormone (PTH) as the only independent variable affecting irisin concentrations. Conclusions: Study results reinforce the irisin–PTH interplay hypothesis. Future studies are needed to clarify the potential role of irisin as a bone biomarker of CCS in childhood and adolescence. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

18 pages, 2946 KiB  
Article
Feasibility of Observing Glymphatic System Activity During Sleep Using Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) Index
by Chang-Soo Yun, Chul-Ho Sohn, Jehyeong Yeon, Kun-Jin Chung, Byong-Ji Min, Chang-Ho Yun and Bong Soo Han
Diagnostics 2025, 15(14), 1798; https://doi.org/10.3390/diagnostics15141798 - 16 Jul 2025
Viewed by 221
Abstract
Background/Objectives: The glymphatic system plays a crucial role in clearing brain metabolic waste, and its dysfunction has been correlated to various neurological disorders. The Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a non-invasive marker of [...] Read more.
Background/Objectives: The glymphatic system plays a crucial role in clearing brain metabolic waste, and its dysfunction has been correlated to various neurological disorders. The Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a non-invasive marker of glymphatic function by measuring diffusivity along perivascular spaces; however, its sensitivity to sleep-related changes in glymphatic activity has not yet been validated. This study aimed to evaluate the feasibility of using the DTI-ALPS index as a quantitative marker of dynamic glymphatic activity during sleep. Methods: Diffusion tensor imaging (DTI) data were obtained from 12 healthy male participants (age = 24.44 ± 2.5 years; Pittsburgh Sleep Quality Index (PSQI) < 5), once while awake and 16 times during sleep, following 24 h sleep deprivation and administration of 10 mg zolpidem. Simultaneous MR-compatible electroencephalography was used to determine whether the subject was asleep or awake. DTI preprocessing included eddy current correction and tensor fitting. The DTI-ALPS index was calculated from nine regions of interest in projection and association areas aligned to standard space. The final analysis included nine participants (age = 24.56 ± 2.74 years; PSQI < 5) who maintained a continuous sleep state for 1 h without awakening. Results: Among nine ROI pairs, three showed significant increases in the DTI-ALPS index during sleep compared to wakefulness (Friedman test; p = 0.027, 0.029, 0.034). These ROIs showed changes at 14, 19, and 25 min after sleep induction, with FDR-corrected p-values of 0.024, 0.018, and 0.018, respectively. Conclusions: This study demonstrated a statistically significant increase in the DTI-ALPS index within 30 min after sleep induction through time-series DTI analysis during wakefulness and sleep, supporting its potential as a biomarker reflecting glymphatic activity. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

36 pages, 3457 KiB  
Article
Evaluating CHIRPS and ERA5 for Long-Term Runoff Modelling with SWAT in Alpine Headwaters
by Damir Bekić and Karlo Leskovar
Water 2025, 17(14), 2116; https://doi.org/10.3390/w17142116 - 16 Jul 2025
Viewed by 307
Abstract
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and [...] Read more.
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and Water Assessment Tool (SWAT) across three headwater catchments (Sill, Drava and Isel) in the Austrian Alps from 1991 to 2018. The region’s complex topography and climatic variability present a rigorous test for GPP application. The evaluation methods combined point-to-point comparisons with gauge observations and assessments of generated runoff and runoff trends at annual, seasonal and monthly scales. CHIRPS showed a lower precipitation error (RMAE = 25%) and generated more consistent runoff results (RMAE = 12%), particularly in smaller catchments, whereas ERA5 showed higher spatial consistency but higher overall precipitation bias (RMAE = 37%). Although both datasets successfully reproduced the seasonal runoff regime, CHIRPS outperformed ERA5 in trend detection and monthly runoff estimates. Both GPPs systematically overestimate annual and seasonal precipitation amounts, especially at lower elevations and during the cold season. The results highlight the critical influence of GPP spatial resolution and its alignment with catchment morphology on model performance. While both products are viable alternatives to observed precipitation, CHIRPS is recommended for hydrological modelling in smaller, topographically complex alpine catchments due to its higher spatial resolution. Despite its higher precipitation bias, ERA5’s superior correlation with observations suggests strong potential for improved model performance if bias correction techniques are applied. The findings emphasize the importance of selecting GPPs based on the scale and geomorphological and climatic conditions of the study area. Full article
(This article belongs to the Special Issue Use of Remote Sensing Technologies for Water Resources Management)
Show Figures

Figure 1

22 pages, 3382 KiB  
Article
Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China
by Wangjun Li, Xiaolong Bai, Dongpeng Lv and Yurong Yang
J. Fungi 2025, 11(7), 525; https://doi.org/10.3390/jof11070525 - 16 Jul 2025
Viewed by 260
Abstract
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, [...] Read more.
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, remain unclear. Therefore, we conducted a field investigation combined with a greenhouse experiment to explore the importance of AMF compared to bacteria and fungi for plant biomass allocation. The results showed that plant biomass in degraded grasslands exhibited allometric biomass allocation, contrasting with isometric partitioning in non-degraded grasslands. AMF, not bacteria or fungi, were the primary microbial mediators of grassland degradation effects on plant biomass allocation based on structural equation modeling. The greenhouse experiment demonstrated that the selected AMF keystone species from the field study performed according to ecological network analysis, particularly multi-species combinations, enhanced the belowground biomass allocation of F. ovina under rocky desertification stress compared to single-species inoculations, through decreasing soil pH, enhancing alkaline phosphatase (ALP) activity, and increasing the expression level of AMF-inducible phosphate transporter (PT4). This study highlights the critical role of the AMF community, rather than individual species, in mediating plant survival strategies under rocky desertification stress. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

14 pages, 1906 KiB  
Article
FRET-Based TURN-ON Aptasensor for the Sensitive Detection of CK-MB
by Rabia Asghar, Madiha Rasheed, Xuefei Lv and Yulin Deng
Biosensors 2025, 15(7), 446; https://doi.org/10.3390/bios15070446 - 11 Jul 2025
Viewed by 332
Abstract
A fluorescent sandwich assay was devised to quantify CK-MB. In a typical immunoassay, antibodies bind to the target, and the detected signal is quantified according to the target’s concentration. We innovated a unique fluorescence assay known as the “enzyme-linked aptamer assay” (ELAA) by [...] Read more.
A fluorescent sandwich assay was devised to quantify CK-MB. In a typical immunoassay, antibodies bind to the target, and the detected signal is quantified according to the target’s concentration. We innovated a unique fluorescence assay known as the “enzyme-linked aptamer assay” (ELAA) by substituting antibodies with a pair of high-affinity aptamers labelled with biotin, namely apt. A1 and apt. A2. Avidin-labelled ALP binds to biotin-labelled aptamers, hydrolyzing its substrate, 2-phosphoascorbic acid trisodium salt, resulting in the formation of ascorbic acid. The catalytic hydrolysate functions as a reducing agent, causing the deterioration of MoS2 nanosheets. This results in the transformation of MoS2 nanosheets into nanoribbons, leading to the release of quenched AGQDs. The reestablishment of fluorescence is triggered by Förster Resonance Energy Transfer (FRET) between the MoS2 nanoribbons and AGQDs, enhancing the sensitivity of disease biomarker detection. The working range for detection falls between 2.5 nM and 160 nM, and the limit of detection (LOD) for CK-MB is verified at 0.20 nM. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

17 pages, 3961 KiB  
Article
Therapeutic Potential of Local Application of Fibroblast Growth Factor-2 to Periodontal Defects in a Preclinical Osteoporosis Model
by Shinta Mori, Sho Mano, Naoki Miyata, Tasuku Murakami, Wataru Yoshida, Kentaro Imamura and Atsushi Saito
Bioengineering 2025, 12(7), 748; https://doi.org/10.3390/bioengineering12070748 - 9 Jul 2025
Viewed by 367
Abstract
This study investigated the effects of local fibroblast growth factor (FGF)-2 application on periodontal healing in an osteoporotic model, both in vivo and in vitro. Wistar rats were divided into the ovariectomy (OVX) and Control groups. Periodontal defects were created 8 weeks post-OVX [...] Read more.
This study investigated the effects of local fibroblast growth factor (FGF)-2 application on periodontal healing in an osteoporotic model, both in vivo and in vitro. Wistar rats were divided into the ovariectomy (OVX) and Control groups. Periodontal defects were created 8 weeks post-OVX and treated with hydroxypropylcellulose (HPC) or FGF-2 + HPC. Healing was evaluated through micro-computed tomography and histological analyses at 2 and 4 weeks. In vitro, bone marrow mesenchymal stromal cells (BMSCs) were cultured with/without FGF-2 and assessed for cell morphology, viability/proliferation, and osteoblastic marker expression. Alkaline phosphatase (ALP) staining was also performed. FGF-2-treated defects in both groups showed significantly greater bone volume fraction, trabecular number, and thickness compared to HPC only. Histologically, FGF-2 enhanced new bone formation, with the greatest levels in the Control group. In vitro, OVX BMSCs showed reduced actin staining versus controls. FGF-2 increased cell viability/proliferation and protrusions in both groups while downregulating Alpl and Bglap expression levels and reducing ALP-positive cells. FGF-2 increased new bone formation in the OVX group, stimulated proliferation of OVX BMSCs, and modulated their differentiation. FGF-2 could enhance periodontal healing even under osteoporotic conditions, albeit to a lesser extent. Full article
(This article belongs to the Special Issue Recent Advances in Periodontal Tissue Engineering)
Show Figures

Graphical abstract

29 pages, 2331 KiB  
Review
Therapeutic Potential of Tanshinones in Osteolytic Diseases: From Molecular and Cellular Pathways to Preclinical Models
by Rafael Scaf de Molon
Dent. J. 2025, 13(7), 309; https://doi.org/10.3390/dj13070309 - 9 Jul 2025
Viewed by 341
Abstract
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, [...] Read more.
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, including anti-inflammatory, antioxidant, anti-tumor, antiresorptive, and antimicrobial effects. Recent studies have highlighted the potential of tanshinones in the treatment of osteolytic diseases, characterized by excessive bone resorption, such as osteoporosis, rheumatoid arthritis, and periodontitis. The therapeutic effects of tanshinones in these diseases are primarily attributed to their ability to inhibit osteoclast differentiation and activity, suppress inflammatory cytokine production (e.g., tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6), and modulate critical signaling pathways, including NF-kB, MAPK, PI3K/Akt, and the RANKL/RANK/OPG axis. Additionally, tanshinones promote osteoblast differentiation and mineralization by enhancing the expression of osteogenic markers such as Runx2, ALP, and OCN. Preclinical models have demonstrated that T-IIA and STS can significantly reduce bone destruction and inflammatory cell infiltration in arthritic joints and periodontal tissues while also enhancing bone microarchitecture in osteoporotic conditions. This review aims to provide a comprehensive overview of the pharmacological actions of tanshinones in osteolytic diseases, summarizing current experimental findings, elucidating underlying molecular mechanisms, and discussing the challenges and future directions for their clinical application as novel therapeutic agents in bone-related disorders, especially periodontitis. Despite promising in vitro and in vivo findings, clinical evidence remains limited, and further investigations are necessary to validate the efficacy, safety, and pharmacokinetics of tanshinones in human populations. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

12 pages, 823 KiB  
Article
The Effect of Prophylactic Hepatoprotective Therapy on Drug-Induced Liver Injury in Patients Undergoing Chemotherapy for Cervical Cancer: A Retrospective Analysis Based on Propensity Score Matching
by Zhe Liu, Dongliang Yuan, Jun Chang, Lei Shi, Jingmeng Li, Mei Zhao and Qi Yang
Curr. Oncol. 2025, 32(7), 393; https://doi.org/10.3390/curroncol32070393 - 9 Jul 2025
Viewed by 237
Abstract
This retrospective study aimed to assess the effectiveness of prophylactic hepatoprotective therapy in decreasing the incidence of drug-induced liver injury (DILI) among patients with cervical cancer undergoing chemotherapy. The analysis was performed on patients with cervical cancer who received chemotherapy at a tertiary [...] Read more.
This retrospective study aimed to assess the effectiveness of prophylactic hepatoprotective therapy in decreasing the incidence of drug-induced liver injury (DILI) among patients with cervical cancer undergoing chemotherapy. The analysis was performed on patients with cervical cancer who received chemotherapy at a tertiary hospital between September 2019 and August 2020. Propensity score matching (PSM) was utilized to equilibrate baseline characteristics between the treatment group, which received prophylactic hepatoprotective drugs, and the control group, which did not receive prophylaxis. The incidence and severity of liver injury were evaluated using the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. Out of the 609 patients initially screened, 299 were included following PSM, with 105 in the treatment group and 194 in the control group. There were no significant differences in the incidence of liver injury (21.90% vs. 18.04%, p = 0.420) or its severity (p = 0.348) observed between the groups. Furthermore, none of the subgroups exhibited a significant reduction in DILI risk with prophylaxis. However, the number of patients experiencing an increase in their grade of liver injury was significantly higher in the treatment group (18.10% vs. 13.40%, p = 0.002), with these patients also exhibiting increased levels of alkaline phosphatase (ALP) and direct bilirubin (DBIL) post-chemotherapy (p < 0.05). Hepatoprotective drugs are not associated with a reduced risk of DILI and may in fact increase risk. Full article
Show Figures

Figure 1

22 pages, 307 KiB  
Article
The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood
by Panagiota Markopoulou, Artemis Doulgeraki, Arsinoi Koutroumpa, Georgios Polyzois, Helen Athanasopoulou, Christina Kanaka-Gantenbein and Tania Siahanidou
Metabolites 2025, 15(7), 463; https://doi.org/10.3390/metabo15070463 - 8 Jul 2025
Viewed by 243
Abstract
Background/Objectives: Recent data on long-term consequences of prematurity on bone health are conflicting. The aim of this study was to assess the metabolic bone profile and bone mineral density (BMD) in prepubertal children born prematurely and to examine possible associations between bone [...] Read more.
Background/Objectives: Recent data on long-term consequences of prematurity on bone health are conflicting. The aim of this study was to assess the metabolic bone profile and bone mineral density (BMD) in prepubertal children born prematurely and to examine possible associations between bone health parameters and perinatal morbidity factors. Methods: This cross-sectional observational study included 144 children of mean (SD) age 10.9 (1.6) years: 49 children born very preterm (≤32 gestational weeks), 37 moderate-to-late preterm (32+1 to 36+6 gestational weeks), and 58 born at term (controls). Serum levels of calcium/Ca, phosphorus/P, alkaline phosphatase/ALP, 25-hydroxyvitamin D/25(OH)D, bone formation markers (osteocalcin/OC, procollagen type I C-terminal propeptide/PICP, and insulin growth factor-1/IGF-1), and bone resorption markers (serum tartrate-resistant acid phosphatase 5b/bone TRAP5band urinary calcium-to-creatinine ratio) were measured. Total-body and lumbar-spine BMD and BMD Z-scores were calculated using dual-energy X-ray absorptiometry/DXA. Results: Children born very preterm showed significantly higher ALP, OC, PICP, and bone TRAP5b levels compared to controls, as well as compared to children born moderate-to-late preterm. Total-body and lumbar-spine BMD Z-scores were significantly lower in the very preterm-born group compared to controls. Gestational diabetes, preeclampsia, and bronchopulmonary dysplasia were associated with lower total-body BMD in the very preterm-born population. Conclusions: Preterm birth is associated with impaired metabolic bone profile and lower total-body and lumbar-spine BMD in childhood. Moderate-to-late preterm-born children exhibit altered metabolic bone parameters compared to very preterm-born children. Further research in children might allow better insight into the long-term impact of preterm birth on bone health. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

Back to TopTop