Irisin Concentrations in Children and Adolescent Cancer Survivors and Their Relation to Metabolic, Bone, and Reproductive Profile: A Pilot Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design—Setting
2.2. Study Participants
2.3. Variables—Procedures
2.3.1. Anthropometric Data
2.3.2. Blood Parameters
2.3.3. Body Composition Analysis
2.3.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. CCS vs. Controls
3.3. Irisin Correlations
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
17-OH-PRG | 17-hydroxyprogesterone |
25-OH-D | 25-hydroxyvitamin D |
Δ4-andro | androstenedione |
γ-GT | gamma-glutamyl transferase |
Alb | albumin |
ALP | alkaline phosphatase |
ALT | alanine transaminase |
AST | aspartate aminotransferase |
AT | adipose tissue |
BMI | Body Mass Index |
Ca | calcium |
CCS | childhood cancer survivors |
Chol | cholesterol |
CK | creatine kinase |
Cl | chloride |
Cr | creatinine |
CRP | C-reactive protein |
DBP | diastolic blood pressure |
DHEA-S | dehydroepiandrosterone sulfate |
E2 | estradiol |
ECW | extracellular water |
F | cortisol |
FFM | free fat mass |
FM | fat mass |
FSH | follicle-stimulating hormone |
FT4 | free thyroxine |
Glu | glucose |
HbA1c | hemoglobulin A1c |
HC | hips circumference |
Hct | hematocrit |
HDL | high-density lipoprotein |
Hgb | hemoglobin |
HOMA-IR | homeostatic model assessment-insulin resistance |
Ht | height |
ICW | intracellular water |
IGF-1 | insuline-like growth factor 1 |
IMAT | intramuscular AT |
Ins | insulin |
K | potassium |
LDH | lactate dehydrogenase |
LDL | low-density lipoprotein |
LH | luteinizing hormone |
Lp(a) | lipoprotein a |
Mg | magnesium |
Na | sodium |
P | phosphorus |
PLT | platelets |
PRL | prolactin |
PTH | parathyroid hormone |
QUICKI | Quantitative Insulin Sensitivity Check Index |
SBP | systolic blood pressure |
SHBG | sex hormone binding globulin |
SM | skeletal mass |
T3 | triiodothyronine |
TBW | total body water |
TESTO | testosterone |
TG | triglycerides |
TSH | thyroid-Stimulating Hormone |
U | urea |
UA | uric acid |
WC | waist circumference |
Wt | weight |
References
- Marzorati, C.; Riva, S.; Pravettoni, G. Who Is a Cancer Survivor? A Systematic Review of Published Definitions. J. Cancer Educ. 2017, 32, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.A.; King, J.B.; Lupo, P.J.; Durbin, E.B.; Tai, E.; Mills, K.; Van Dyne, E.; Buchanan Lunsford, N.; Henley, S.J.; Wilson, R.J. Counts, incidence rates, and trends of pediatric cancer in the United States, 2003–2019. J. Natl. Cancer Inst. 2023, 115, 1337–1354. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Bhakta, N.; Liu, Q.; Ness, K.K.; Baassiri, M.; Eissa, H.; Yeo, F.; Chemaitilly, W.; Ehrhardt, M.J.; Bass, J.; Bishop, M.W.; et al. The cumulative burden of surviving childhood cancer: An initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 2017, 390, 2569–2582. [Google Scholar] [CrossRef]
- Bhatia, S.; Tonorezos, E.S.; Landier, W. Clinical Care for People Who Survive Childhood Cancer: A Review. Jama 2023, 330, 1175–1186. [Google Scholar] [CrossRef]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Roca-Rivada, A.; Castelao, C.; Senin, L.L.; Landrove, M.O.; Baltar, J.; Belén Crujeiras, A.; Seoane, L.M.; Casanueva, F.F.; Pardo, M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS ONE 2013, 8, e60563. [Google Scholar] [CrossRef]
- Bacopoulou, F. Irisin as a Biomarker for Insulin Resistance in Polycystic Ovary Syndrome: A Meta-analysis. J. Mol. Biochem. 2020, 1, 57–64. [Google Scholar]
- Polyzos, S.A.; Anastasilakis, A.D.; Efstathiadou, Z.A.; Makras, P.; Perakakis, N.; Kountouras, J.; Mantzoros, C.S. Irisin in metabolic diseases. Endocrine 2018, 59, 260–274. [Google Scholar] [CrossRef]
- Pinkowska, A.; Podhorska-Okołów, M.; Dzięgiel, P.; Nowińska, K. The Role of Irisin in Cancer Disease. Cells 2021, 10, 1479. [Google Scholar] [CrossRef]
- Aydin, S.; Eren, M.N.; Kuloglu, T.; Aydin, S.; Yilmaz, M.; Gul, E.; Kalayci, M.; Yel, Y.; Cakmak, T.; Bico, S. Alteration of serum and cardiac tissue adropin, copeptin, irisin and TRPM2 expressions in DOX treated male rats. Biotech. Histochem. 2015, 90, 197–205. [Google Scholar] [CrossRef]
- He, W.; Tang, Y.; Li, C.; Zhang, X.; Huang, S.; Tan, B.; Yang, Z. Exercise Enhanced Cardiac Function in Mice With Radiation-Induced Heart Disease via the FNDC5/Irisin-Dependent Mitochondrial Turnover Pathway. Front. Physiol. 2021, 12, 739485. [Google Scholar] [CrossRef] [PubMed]
- Provatopoulou, X.; Georgiou, G.P.; Kalogera, E.; Kalles, V.; Matiatou, M.A.; Papapanagiotou, I.; Sagkriotis, A.; Zografos, G.C.; Gounaris, A. Serum irisin levels are lower in patients with breast cancer: Association with disease diagnosis and tumor characteristics. BMC Cancer 2015, 15, 898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.P.; Zhang, X.F.; Li, H.; Liu, T.J.; Zhao, Q.P.; Huang, L.H.; Cao, Z.J.; He, L.M.; Hao, D.J. Serum irisin associates with breast cancer to spinal metastasis. Medicine 2018, 97, e0524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ke, M.; Ren, Y.; Bi, J.; Du, Z.; Zhang, M.; Wang, Y.; Zhang, L.; Wu, Z.; Lv, Y.; et al. Serum Irisin Predicts Posthepatectomy Complications in Patients with Hepatocellular Carcinoma. Dis. Markers 2019, 2019, 9850191. [Google Scholar] [CrossRef]
- Pazgan-Simon, M.; Zuwała-Jagiełło, J.; Kukla, M.; Grzebyk, E.; Simon, K. Serum concentrations of selected adipokines in virus-related liver cirrhosis and hepatocellular carcinoma. Clin. Exp. Hepatol. 2020, 6, 235–242. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, M.; Zhang, N.; Pan, H.; Lin, G.; Li, N.; Wang, L.; Yang, H.; Yan, K.; Gong, F. Serum and Adipose Tissue mRNA Levels of ATF3 and FNDC5/Irisin in Colorectal Cancer Patients With or Without Obesity. Front. Physiol. 2018, 9, 1125. [Google Scholar] [CrossRef]
- Esawy, M.M.; Abdel-Samd, K.M. The diagnostic and prognostic roles of serum irisin in bladder cancer. Curr. Probl. Cancer 2020, 44, 100529. [Google Scholar] [CrossRef]
- Tsiani, E.; Tsakiridis, N.; Kouvelioti, R.; Jaglanian, A.; Klentrou, P. Current Evidence of the Role of the Myokine Irisin in Cancer. Cancers 2021, 13, 2628. [Google Scholar] [CrossRef]
- Gaggini, M.; Cabiati, M.; Del Turco, S.; Navarra, T.; De Simone, P.; Filipponi, F.; Del Ry, S.; Gastaldelli, A.; Basta, G. Increased FNDC5/Irisin expression in human hepatocellular carcinoma. Peptides 2017, 88, 62–66. [Google Scholar] [CrossRef]
- Altay, D.U.; Keha, E.E.; Karagüzel, E.; Menteşe, A.; Yaman, S.O.; Alver, A. The Diagnostic Value of FNDC5/Irisin in Renal Cell Cancer. Int. Braz. J. Urol. 2018, 44, 734–739. [Google Scholar] [CrossRef]
- Shahidi, S.; Hejazi, J.; Moghimi, M.; Borji, S.; Zabihian, S.; Fathi, M. Circulating Irisin Levels and Redox Status Markers in Patients with Gastric Cancer: A Case-Control Study. Asian Pac. J. Cancer Prev. 2020, 21, 2847–2851. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Kuloglu, T.; Ozercan, M.R.; Albayrak, S.; Aydin, S.; Bakal, U.; Yilmaz, M.; Kalayci, M.; Yardim, M.; Sarac, M.; et al. Irisin immunohistochemistry in gastrointestinal system cancers. Biotech. Histochem. 2016, 91, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Kuloglu, T.; Celik, O.; Aydin, S.; Hanifi Ozercan, I.; Acet, M.; Aydin, Y.; Artas, G.; Turk, A.; Yardim, M.; Ozan, G.; et al. Irisin immunostaining characteristics of breast and ovarian cancer cells. Cell Mol. Biol. 2016, 62, 40–44. [Google Scholar]
- Ugur, K.; Aydin, S.; Kuloglu, T.; Artas, G.; Kocdor, M.A.; Sahin, İ.; Yardim, M.; Ozercan, İ.H. Comparison of irisin hormone expression between thyroid cancer tissues and oncocytic variant cells. Cancer Manag. Res. 2019, 11, 2595–2603. [Google Scholar] [CrossRef]
- Nowinska, K.; Jablonska, K.; Pawelczyk, K.; Piotrowska, A.; Partynska, A.; Gomulkiewicz, A.; Ciesielska, U.; Katnik, E.; Grzegrzolka, J.; Glatzel-Plucinska, N.; et al. Expression of Irisin/FNDC5 in Cancer Cells and Stromal Fibroblasts of Non-small Cell Lung Cancer. Cancers 2019, 11, 1538. [Google Scholar] [CrossRef]
- Sadim, M.; Xu, Y.; Selig, K.; Paulus, J.; Uthe, R.; Agarwl, S.; Dubin, I.; Oikonomopoulou, P.; Zaichenko, L.; McCandlish, S.A.; et al. A prospective evaluation of clinical and genetic predictors of weight changes in breast cancer survivors. Cancer 2017, 123, 2413–2421. [Google Scholar] [CrossRef]
- Gil-Cosano, J.J.; Ubago-Guisado, E.; Llorente-Cantarero, F.J.; Marmol-Perez, A.; Rodriguez-Solana, A.; Pascual-Gazquez, J.F.; Mateos, M.E.; Molina-Hurtado, J.R.; Garcia-Fontana, B.; Narciso, P.H.; et al. Movement Behaviors and Bone Biomarkers in Young Pediatric Cancer Survivors: A Cross-Sectional Analysis of the iBoneFIT Project. Nutrients 2024, 16, 3914. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Lohman, T.J.R.; Martorell, R.A.F. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [Google Scholar] [CrossRef]
- Faienza, M.F.; Brunetti, G.; Sanesi, L.; Colaianni, G.; Celi, M.; Piacente, L.; D’Amato, G.; Schipani, E.; Colucci, S.; Grano, M. High irisin levels are associated with better glycemic control and bone health in children with Type 1 diabetes. Diabetes Res. Clin. Pract. 2018, 141, 10–17. [Google Scholar] [CrossRef]
- Perakakis, N.; Triantafyllou, G.A.; Fernández-Real, J.M.; Huh, J.Y.; Park, K.H.; Seufert, J.; Mantzoros, C.S. Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 2017, 13, 324–337. [Google Scholar] [CrossRef]
- Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Mantzoros, C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 2012, 61, 1725–1738. [Google Scholar] [CrossRef]
- Löffler, D.; Müller, U.; Scheuermann, K.; Friebe, D.; Gesing, J.; Bielitz, J.; Erbs, S.; Landgraf, K.; Wagner, I.V.; Kiess, W.; et al. Serum irisin levels are regulated by acute strenuous exercise. J. Clin. Endocrinol. Metab. 2015, 100, 1289–1299. [Google Scholar] [CrossRef]
- Pardo, M.; Crujeiras, A.B.; Amil, M.; Aguera, Z.; Jiménez-Murcia, S.; Baños, R.; Botella, C.; de la Torre, R.; Estivill, X.; Fagundo, A.B.; et al. Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int. J. Endocrinol. 2014, 2014, 857270. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Elfers, C.; Lass, N.; Roth, C.L. Irisin and its relation to insulin resistance and puberty in obese children: A longitudinal analysis. J. Clin. Endocrinol. Metab. 2015, 100, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.S.; Kang, M.J.; Yang, S.; Hwang, I.T. Irisin is a biomarker for metabolic syndrome in prepubertal children. Endocr. J. 2018, 65, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Singhal, V.; Lawson, E.A.; Ackerman, K.E.; Fazeli, P.K.; Clarke, H.; Lee, H.; Eddy, K.; Marengi, D.A.; Derrico, N.P.; Bouxsein, M.L.; et al. Irisin levels are lower in young amenorrheic athletes compared with eumenorrheic athletes and non-athletes and are associated with bone density and strength estimates. PLoS ONE 2014, 9, e100218. [Google Scholar] [CrossRef]
- Soininen, S.; Sidoroff, V.; Lindi, V.; Mahonen, A.; Kröger, L.; Kröger, H.; Jääskeläinen, J.; Atalay, M.; Laaksonen, D.E.; Laitinen, T.; et al. Body fat mass, lean body mass and associated biomarkers as determinants of bone mineral density in children 6–8 years of age—The Physical Activity and Nutrition in Children (PANIC) study. Bone 2018, 108, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Montemayor, L.; Mendoza-Lara, G.; Gutierrez-DelBosque, G.; Peschard-Franco, M.; Nieblas, B.; Garcia-Rivas, G. Relationship of Circulating Irisin with Body Composition, Physical Activity, and Cardiovascular and Metabolic Disorders in the Pediatric Population. Int. J. Mol. Sci. 2018, 19, 3727. [Google Scholar] [CrossRef] [PubMed]
- Esin, K.; Batirel, S.; Ülfer, G.; Yigit, P.; Sanlier, N. Association of Serum Irisin Levels with Body Composition, Metabolic Profile, Leptin, and Adiponectin Levels in Lean and Obese Children. Medicina 2023, 59, 1954. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Wong, M.D.; Toy, W.C.; Tan, C.S.; Liu, S.; Ng, X.W.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Complicat. 2013, 27, 365–369. [Google Scholar] [CrossRef]
- Huerta, A.E.; Prieto-Hontoria, P.L.; Fernández-Galilea, M.; Sáinz, N.; Cuervo, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Circulating irisin and glucose metabolism in overweight/obese women: Effects of α-lipoic acid and eicosapentaenoic acid. J. Physiol. Biochem. 2015, 71, 547–558. [Google Scholar] [CrossRef]
- Binay, Ç.; Paketçi, C.; Güzel, S.; Samancı, N. Serum Irisin and Oxytocin Levels as Predictors of Metabolic Parameters in Obese Children. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 124–131. [Google Scholar] [CrossRef]
- De Meneck, F.; Victorino de Souza, L.; Oliveira, V.; do Franco, M.C. High irisin levels in overweight/obese children and its positive correlation with metabolic profile, blood pressure, and endothelial progenitor cells. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 756–764. [Google Scholar] [CrossRef]
- Çatlı, G.; Küme, T.; Tuhan, H.; Anık, A.; Çalan, Ö.G.; Böber, E.; Abacı, A. Relation of serum irisin level with metabolic and antropometric parameters in obese children. J. Diabetes Complicat. 2016, 30, 1560–1565. [Google Scholar] [CrossRef]
- Seppä, S.; Tenhola, S.; Voutilainen, R. Fibroblast Growth Factor 21, Adiponectin, and Irisin as Markers of Unfavorable Metabolic Features in 12-Year-Old Children. J. Endocr. Soc. 2019, 3, 825–837. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, X.; Yin, H.; Zügel, M.; Sun, Z.; Steinacker, J.M.; Schumann, U. Association between circulating irisin and insulin resistance in non-diabetic adults: A meta-analysis. Metabolism 2016, 65, 825–834. [Google Scholar] [CrossRef]
- Sesti, G.; Andreozzi, F.; Fiorentino, T.V.; Mannino, G.C.; Sciacqua, A.; Marini, M.A.; Perticone, F. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol. 2014, 51, 705–713. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Alkharfy, K.M.; Rahman, S.; Amer, O.E.; Vinodson, B.; Sabico, S.; Piya, M.K.; Harte, A.L.; McTernan, P.G.; Alokail, M.S.; et al. Irisin as a predictor of glucose metabolism in children: Sexually dimorphic effects. Eur. J. Clin. Invest. 2014, 44, 119–124. [Google Scholar] [CrossRef]
- Blüher, S.; Panagiotou, G.; Petroff, D.; Markert, J.; Wagner, A.; Klemm, T.; Filippaios, A.; Keller, A.; Mantzoros, C.S. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity 2014, 22, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Navarrete, J.M.; Ortega, F.; Serrano, M.; Guerra, E.; Pardo, G.; Tinahones, F.; Ricart, W.; Fernández-Real, J.M. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 2013, 98, E769–E778. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Kim, M.K.; Bae, K.H.; Seo, H.A.; Jeong, J.Y.; Lee, W.K.; Kim, J.G.; Lee, I.K.; Park, K.G. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res. Clin. Pract. 2013, 100, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Duran, I.D.; Gülçelik, N.E.; Ünal, M.; Topçuoğlu, C.; Sezer, S.; Tuna, M.M.; Berker, D.; Güler, S. Irisin levels in the progression of diabetes in sedentary women. Clin. Biochem. 2015, 48, 1268–1272. [Google Scholar] [CrossRef]
- Elizondo-Montemayor, L.; Gonzalez-Gil, A.M.; Tamez-Rivera, O.; Toledo-Salinas, C.; Peschard-Franco, M.; Rodríguez-Gutiérrez, N.A.; Silva-Platas, C.; Garcia-Rivas, G. Association between Irisin, hs-CRP, and Metabolic Status in Children and Adolescents with Type 2 Diabetes Mellitus. Mediat. Inflamm. 2019, 2019, 6737318. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, R.; Jiang, F.; Wang, J.; Chen, M.; Peng, D.; Yan, J.; Wang, S.; Bao, Y.; Hu, C.; et al. Circulating irisin levels are associated with lipid and uric acid metabolism in a Chinese population. Clin. Exp. Pharmacol. Physiol. 2015, 42, 896–901. [Google Scholar] [CrossRef]
- Jang, H.B.; Kim, H.J.; Kang, J.H.; Park, S.I.; Park, K.H.; Lee, H.J. Association of circulating irisin levels with metabolic and metabolite profiles of Korean adolescents. Metabolism 2017, 73, 100–108. [Google Scholar] [CrossRef]
- Panagiotou, G.; Mu, L.; Na, B.; Mukamal, K.J.; Mantzoros, C.S. Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism 2014, 63, 1265–1271. [Google Scholar] [CrossRef]
- Park, K.H.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.E.; Tsoukas, M.A.; Geladari, E.V.; Huh, J.Y.; Dincer, F.; et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 4899–4907. [Google Scholar] [CrossRef] [PubMed]
- Oelmann, S.; Nauck, M.; Völzke, H.; Bahls, M.; Friedrich, N. Circulating Irisin Concentrations Are Associated with a Favourable Lipid Profile in the General Population. PLoS ONE 2016, 11, e0154319. [Google Scholar] [CrossRef] [PubMed]
- Koutroumpa, A.; Kanaka Gantenbein, C.; Mantzou, A.; Doulgeraki, A.; Bacopoulou, F.; Bouza, H.; Chrousos, G.; Siahanidou, T. Circulating Irisin Levels in Preadolescents and Adolescents Born Preterm. Horm. Res. Paediatr. 2021, 94, 416–425. [Google Scholar] [CrossRef]
- Anastasilakis, A.D.; Polyzos, S.A.; Saridakis, Z.G.; Kynigopoulos, G.; Skouvaklidou, E.C.; Molyvas, D.; Vasiloglou, M.F.; Apostolou, A.; Karagiozoglou-Lampoudi, T.; Siopi, A.; et al. Circulating irisin in healthy, young individuals: Day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J. Clin. Endocrinol. Metab. 2014, 99, 3247–3255. [Google Scholar] [CrossRef]
- Mehrabian, S.; Taheri, E.; Karkhaneh, M.; Qorbani, M.; Hosseini, S. Association of circulating irisin levels with normal weight obesity, glycemic and lipid profile. J. Diabetes Metab. Disord. 2015, 15, 17. [Google Scholar] [CrossRef]
- Gouni-Berthold, I.; Berthold, H.K.; Huh, J.Y.; Berman, R.; Spenrath, N.; Krone, W.; Mantzoros, C.S. Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS ONE 2013, 8, e72858. [Google Scholar] [CrossRef]
- Stengel, A.; Hofmann, T.; Goebel-Stengel, M.; Elbelt, U.; Kobelt, P.; Klapp, B.F. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity--correlation with body mass index. Peptides 2013, 39, 125–130. [Google Scholar] [CrossRef]
- Mazur-Bialy, A.I.; Pocheć, E.; Zarawski, M. Anti-Inflammatory Properties of Irisin, Mediator of Physical Activity, Are Connected with TLR4/MyD88 Signaling Pathway Activation. Int. J. Mol. Sci. 2017, 18, 701. [Google Scholar] [CrossRef]
- Du Clos, T.W.; Mold, C. C-reactive protein: An activator of innate immunity and a modulator of adaptive immunity. Immunol. Res. 2004, 30, 261–277. [Google Scholar] [CrossRef]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef]
- Hou, N.; Han, F.; Sun, X. The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin. Endocrinol. 2015, 83, 339–343. [Google Scholar] [CrossRef]
- Buscemi, S.; Corleo, D.; Vasto, S.; Buscemi, C.; Massenti, M.F.; Nuzzo, D.; Lucisano, G.; Barile, A.M.; Rosafio, G.; Maniaci, V.; et al. Factors associated with circulating concentrations of irisin in the general population cohort of the ABCD study. Int. J. Obes. 2018, 42, 398–404. [Google Scholar] [CrossRef]
- Eslampour, E.; Ebrahimzadeh, F.; Abbasnezhad, A.; Khosroshahi, M.Z.; Choghakhori, R.; Asbaghi, O. Association between Circulating Irisin and C-Reactive Protein Levels: A Systematic Review and Meta-Analysis. Endocrinol. Metab. 2019, 34, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Zügel, M.; Qiu, S.; Laszlo, R.; Bosnyák, E.; Weigt, C.; Müller, D.; Diel, P.; Steinacker, J.M.; Schumann, U. The role of sex, adiposity, and gonadectomy in the regulation of irisin secretion. Endocrine 2016, 54, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, R.L.; Peltonen, G.L.; Giordano, G.R.; Binns, S.E.; Klochak, A.L.; Paris, H.L.; Schweder, M.M.; Szallar, S.E.; Wood, L.M.; Larson, D.G.; et al. Regulators of human white adipose browning: Evidence for sympathetic control and sexual dimorphic responses to sprint interval training. PLoS ONE 2014, 9, e90696. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, E.; Özgen, İ.T.; Bulut, H.; Koçyiğit, A.; Otçu, H.; Cesur, Y. Serum Irisin Levels in Central Precocious Puberty and Its Variants. J. Clin. Endocrinol. Metab. 2021, 106, e247–e254. [Google Scholar] [CrossRef]
- Garcés, M.F.; Peralta, J.J.; Ruiz-Linares, C.E.; Lozano, A.R.; Poveda, N.E.; Torres-Sierra, A.L.; Eslava-Schmalbach, J.H.; Alzate, J.P.; Sánchez, A.Y.; Sanchez, E.; et al. Irisin levels during pregnancy and changes associated with the development of preeclampsia. J. Clin. Endocrinol. Metab. 2014, 99, 2113–2119. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, Q.; Lian, A.; Xu, Y. Irisin stimulates gonadotropins gene expression in tilapia (Oreochromis niloticus) pituitary cells. Anim. Reprod. Sci. 2017, 185, 140–147. [Google Scholar] [CrossRef]
- Bastu, E.; Zeybek, U.; Gurel Gurevin, E.; Yüksel Ozgor, B.; Celik, F.; Okumus, N.; Demiral, I.; Dural, O.; Celik, C.; Bulut, H.; et al. Effects of Irisin and Exercise on Metabolic Parameters and Reproductive Hormone Levels in High-Fat Diet-Induced Obese Female Mice. Reprod. Sci. 2018, 25, 281–291. [Google Scholar] [CrossRef]
- Ulker, N.; Yardimci, A.; Kaya Tektemur, N.; Bulmus, O.; Ozer Kaya, S.; Gulcu Bulmus, F.; Turk, G.; Ozcan, M.; Canpolat, S. Irisin may have a role in pubertal development and regulation of reproductive function in rats. Reproduction 2020, 160, 281–292. [Google Scholar] [CrossRef]
- Poretsky, L.; Islam, J.; Avtanski, D.; Lin, Y.K.; Shen, Y.L.; Hirth, Y.; Lesser, M.; Rosenwaks, Z.; Seto-Young, D. Reproductive effects of irisin: Initial in vitro studies. Reprod. Biol. 2017, 17, 285–288. [Google Scholar] [CrossRef]
- Humaidan, P.; Bungum, L.; Bungum, M.; Andersen, C.Y. Ovarian response and pregnancy outcome related to mid-follicular LH levels in women undergoing assisted reproduction with GnRH agonist down-regulation and recombinant FSH stimulation. Hum. Reprod. 2002, 17, 2016–2021. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Sha, A.; Han, D.; Li, P.; Geng, J.; Ma, C. Does prolonged pituitary down-regulation with gonadotropin-releasing hormone agonist improve the live-birth rate in in vitro fertilization treatment? Fertil. Steril. 2014, 102, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Qiao, X.; Xu, L.; Huang, G. Irisin: Circulating levels in serum and its relation to gonadal axis. Endocrine 2022, 75, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Naderpoor, N.; Shorakae, S.; Joham, A.; Boyle, J.; De Courten, B.; Teede, H.J. Obesity and polycystic ovary syndrome. Minerva Endocrinol. 2015, 40, 37–51. [Google Scholar]
- Luo, Y.; Qiao, X.; Ma, Y.; Deng, H.; Xu, C.C.; Xu, L. Irisin deletion induces a decrease in growth and fertility in mice. Reprod. Biol. Endocrinol. 2021, 19, 22. [Google Scholar] [CrossRef]
- Tekin, S.; Beytur, A.; Erden, Y.; Beytur, A.; Cigremis, Y.; Vardi, N.; Turkoz, Y.; Tekedereli, I.; Sandal, S. Effects of intracerebroventricular administration of irisin on the hypothalamus-pituitary-gonadal axis in male rats. J. Cell Physiol. 2019, 234, 8815–8824. [Google Scholar] [CrossRef]
- Kamenov, Z.; Assyov, Y.; Angelova, P.; Gateva, A.; Tsakova, A. Irisin and Testosterone in Men with Metabolic Syndrome. Horm. Metab. Res. 2017, 49, 755–759. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Wang, X.; Liao, X.; Li, L.; Yang, G.; Gao, L. Free androgen index and Irisin in polycystic ovary syndrome. J. Endocrinol. Invest. 2016, 39, 549–556. [Google Scholar] [CrossRef]
- Li, M.; Yang, M.; Zhou, X.; Fang, X.; Hu, W.; Zhu, W.; Wang, C.; Liu, D.; Li, S.; Liu, H.; et al. Elevated circulating levels of irisin and the effect of metformin treatment in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2015, 100, 1485–1493. [Google Scholar] [CrossRef]
- Bacopoulou, F.; Athanasopoulos, N.; Efthymiou, V.; Mantzou, A.; Aravantinos, L.; Vlahopoulos, S.; Deligeoroglou, E. Serum irisin concentrations in lean adolescents with polycystic ovary syndrome. Clin. Endocrinol. 2018, 88, 585–591. [Google Scholar] [CrossRef]
- Zhu, X.; Li, X.; Wang, X.; Chen, T.; Tao, F.; Liu, C.; Tu, Q.; Shen, G.; Chen, J.J. Irisin deficiency disturbs bone metabolism. J. Cell Physiol. 2021, 236, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Nie, Y.; Ma, Y.; Chen, Y.; Cheng, R.; Yin, W.; Hu, Y.; Xu, W.; Xu, L. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci. Rep. 2016, 6, 18732. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Wrann, C.D.; Jedrychowski, M.; Vidoni, S.; Kitase, Y.; Nagano, K.; Zhou, C.; Chou, J.; Parkman, V.-J.A.; Novick, S.J.; et al. Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell 2018, 175, 1756–1768.e17. [Google Scholar] [CrossRef]
- Colaianni, G.; Cuscito, C.; Mongelli, T.; Pignataro, P.; Buccoliero, C.; Liu, P.; Lu, P.; Sartini, L.; Di Comite, M.; Mori, G.; et al. The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. USA 2015, 112, 12157–12162. [Google Scholar] [CrossRef]
- Colaianni, G.; Mongelli, T.; Cuscito, C.; Pignataro, P.; Lippo, L.; Spiro, G.; Notarnicola, A.; Severi, I.; Passeri, G.; Mori, G.; et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci. Rep. 2017, 7, 2811. [Google Scholar] [CrossRef]
- Colaianni, G.; Cuscito, C.; Mongelli, T.; Oranger, A.; Mori, G.; Brunetti, G.; Colucci, S.; Cinti, S.; Grano, M. Irisin enhances osteoblast differentiation in vitro. Int. J. Endocrinol. 2014, 2014, 902186. [Google Scholar] [CrossRef]
- Colucci, S.C.; Buccoliero, C.; Sanesi, L.; Errede, M.; Colaianni, G.; Annese, T.; Khan, M.P.; Zerlotin, R.; Dicarlo, M.; Schipani, E.; et al. Systemic Administration of Recombinant Irisin Accelerates Fracture Healing in Mice. Int. J. Mol. Sci. 2021, 22, 10863. [Google Scholar] [CrossRef]
- Buccoliero, C.; Oranger, A.; Colaianni, G.; Pignataro, P.; Zerlotin, R.; Lovero, R.; Errede, M.; Grano, M. The effect of Irisin on bone cells in vivo and in vitro. Biochem. Soc. Trans. 2021, 49, 477–484. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, Y.; Qiao, X.; Zeng, R.; Cheng, R.; Nie, Y.; Li, S.; A, R.; Shen, X.; Yang, M.; et al. Irisin ameliorates bone loss in ovariectomized mice. Climacteric 2020, 23, 496–504. [Google Scholar] [CrossRef]
- Estell, E.G.; Le, P.T.; Vegting, Y.; Kim, H.; Wrann, C.; Bouxsein, M.L.; Nagano, K.; Baron, R.; Spiegelman, B.M.; Rosen, C.J. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. eLife 2020, 9, 58172. [Google Scholar] [CrossRef] [PubMed]
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of Muscle and Bone Aging. J. Cell Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Zanker, J.; Duque, G. Osteosarcopenia: Epidemiology, diagnosis, and treatment-facts and numbers. J. Cachexia Sarcopenia Muscle 2020, 11, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; O’Neill, T.W.; Hofbauer, L.C.; Langdahl, B.; Reid, I.R.; Gold, D.T.; Cummings, S.R. Postmenopausal osteoporosis. Nat. Rev. Dis. Primers 2016, 2, 16069. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Wang, D.; Zhang, C.; Song, H.; Ni, G. Role of irisin in bone diseases. Front. Endocrinol. 2023, 14, 1212892. [Google Scholar] [CrossRef]
- Colaianni, G.; Faienza, M.F.; Sanesi, L.; Brunetti, G.; Pignataro, P.; Lippo, L.; Bortolotti, S.; Storlino, G.; Piacente, L.; D’Amato, G.; et al. Irisin serum levels are positively correlated with bone mineral status in a population of healthy children. Pediatr. Res. 2019, 85, 484–488. [Google Scholar] [CrossRef]
- Anastasilakis, A.D.; Polyzos, S.A.; Makras, P.; Gkiomisi, A.; Bisbinas, I.; Katsarou, A.; Filippaios, A.; Mantzoros, C.S. Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos. Int. 2014, 25, 1633–1642. [Google Scholar] [CrossRef]
- He, L.; He, W.Y.; A, L.T.; Yang, W.L.; Zhang, A.H. Lower Serum Irisin Levels Are Associated with Increased Vascular Calcification in Hemodialysis Patients. Kidney Blood Press. Res. 2018, 43, 287–295. [Google Scholar] [CrossRef]
- Palermo, A.; Sanesi, L.; Colaianni, G.; Tabacco, G.; Naciu, A.M.; Cesareo, R.; Pedone, C.; Lelli, D.; Brunetti, G.; Mori, G.; et al. A Novel Interplay Between Irisin and PTH: From Basic Studies to Clinical Evidence in Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2019, 104, 3088–3096. [Google Scholar] [CrossRef]
- Albrecht, E.; Norheim, F.; Thiede, B.; Holen, T.; Ohashi, T.; Schering, L.; Lee, S.; Brenmoehl, J.; Thomas, S.; Drevon, C.A.; et al. Irisin—A myth rather than an exercise-inducible myokine. Sci. Rep. 2015, 5, 8889. [Google Scholar] [CrossRef]
Parameters | CCS Group | Control Group | p |
---|---|---|---|
Age | 13.27 ± 2.84 | 12.16 ± 2.93 | 0.153 |
Ht (cm) | 157.54 ± 15.07 | 152.83 ± 17.35 | 0.275 |
Wt (Κg) † | 59.00 (25.00) | 54.00 (23.00) | 0.155 |
BMI (Kg/m2) † | 22.58 (6.49) | 21.64 (7.24) | 0.410 |
WC (cm) † | 75.50 (16.75) | 75.00 (18.50) | 0.360 |
HC (cm) | 92.75 ± 10.73 | 87.96 ± 18.65 | 0.361 |
Gender (male) | 16 (59.3%) | 11 (40.7%) | >0.999 |
Tanner Stage (I, prepubertal) | 6 (16.7%) | 4 (17.4%) | >0.999 |
SBP (mmHg) | 110.02 ± 12.40 | 107.57 ± 12.62 | 0.480 |
DBP (mmHg) | 63.20 ± 9.27 | 62.45 ± 9.69 | 0.776 |
Pulses (bpm) | 78.81 ± 14.37 | 78.00 ± 13.48 | 0.840 |
FFM% | 76.74 ± 11.17 | 76.86 ± 10.51 | 0.974 |
FM% | 23.26 ± 11.17 | 23.80 ± 10.44 | 0.873 |
SM% FFM | 35.54 ± 5.54 | 35.93 ± 5.27 | 0.818 |
AT% BW | 29.10 ± 14.00 | 29.76 ± 13.21 | 0.878 |
TBW% BW | 52.49 ± 8.26 | 53.27 ± 8.33 | 0.761 |
ECW% TBW | 44.97 ± 4.31 | 44.80 ± 4.52 | 0.899 |
ICW% TBW | 55.03 ± 4.31 | 54.53 ± 4.66 | 0.718 |
FFM (kg) | 44.31 ± 10.24 | 41.00 ± 10.69 | 0.317 |
FM (kg) | 15.82 ± 12.13 | 15.25 ± 12.76 | 0.882 |
SM (kg) | 16.13 ± 5.77 | 14.96 ± 5.86 | 0.528 |
AT (kg) | 19.81 ± 15.20 | 19.09 ± 16.04 | 0.881 |
IMAT (kg) | 1.27 ± 0.62 | 1.29 ± 0.62 | 0.920 |
Body Density (kg) | 1.04 ± 0.02 | 1.04 ± 0.02 | 0.630 |
Bone (kg) | 3.37 ± 0.94 | 3.20 ± 0.88 | 0.548 |
Chol (mg/dL) | 167.38 ± 29.22 | 154.09 ± 30.44 | 0.113 |
TG (mg/dL) † | 72.50 (47.00) | 58.50 (43.00) | 0.089 |
HDL (mg/dL) † | 57.00 (20.50) | 49.00 (15.00) | 0.063 |
LDL (mg/dL) | 91.19 ± 23.64 | 86.65 ± 23.21 | 0.488 |
Lp(a) (mg/dL) | 6.04 ± 8.00 | 7.40 ± 6.88 | 0.286 |
UA (mg/dL) | 4.65 ± 1.15 | 4.36 ± 0.94 | 0.329 |
Apo-A1 (mg/dL) | 147.87 ± 27.15 | 137.05 ± 20.62 | 0.122 |
Apo-B (mg/dL) | 83.53 ± 18.42 | 77.86 ± 17.71 | 0.270 |
Glu (mg/dL) | 83.41 ± 7.54 | 84.36 ± 6.37 | 0.627 |
HbA1c (%) | 5.10 ± 0.31 | 5.13 ± 0.15 | 0.641 |
Ins (μUI/mL) † | 11.20 (8.16) | 8.55 (6.77) | 0.206 |
HOMA-IR † | 1.78 (1.63) | 1.72 (1.37) | 0.228 |
QUICKI | 0.34 ± 0.03 | 0.35 ± 0.03 | 0.470 |
Ca (mg/dL) | 9.73 ± 0.31 | 9.68 ± 0.23 | 0.485 |
P (mg/dL) | 4.31 ± 0.71 | 4.66 ± 0.47 | 0.048 |
Mg (mg/dL) | 2.08 ± 0.17 | 2.03 ± 0.27 | 0.592 |
ALP (U/L) † | 208.00 (125.00) | 293.50 (298.00) | 0.013 |
25-OH-D (ng/mL) | 24.16 ± 8.37 | 23.75 ± 6.02 | 0.844 |
PTH (pg/mL) † | 34.80 (20.60) | 29.90 (13.60) | 0.124 |
Hgb (g/dL) | 13.62 ±1.05 | 13.21 ± 0.76 | 0.124 |
Hct (%) | 40.26 ± 2.58 | 39.70 ± 2.51 | 0.429 |
PLT (×109/L) | 231.89 ± 61.42 | 276.95 ± 59.56 | 0.009 |
U (mg/dL) | 28.12 ± 9.53 | 27.6 ± 4.95 | 0.791 |
Cr (mg/dL) | 0.57 (0.21) | 0.59 (0.20) | 0.724 |
AST (U/L) † | 21.00 (9.00) | 21.00 (9.00) | 0.686 |
ALT (U/L) † | 16.00 (7.00) | 14.00 (9.20) | 0.840 |
γ-GT (U/L) † | 11.00 (5.00) | 11.00 (5.00) | 0.544 |
Protein Total (g/dL) | 7.20 ± 0.42 | 7.07 ± 0.51 | 0.370 |
Alb (g/dL) † | 4.80 (0.40) | 4.55 (0.38) | 0.021 |
CK (U/L) † | 99.00 (51.00) | 104.00 (64.00) | 0.535 |
LDH (U/L) † | 225.50(65.00) | 203.00 (91.00) | 0.901 |
Na (nmol/L) | 139.79 ± 1.92 | 140.79 ± 1.40 | 0.052 |
K (nmol/L) | 4.34 ± 0.24 | 4.32 ± 0.25 | 0.773 |
Cl (nmol/L) | 100.16 ± 2.15 | 101.4 ± 3.97 | 0.298 |
CRP (mg/L) | 2.19 ± 3.42 | 1.40 ± 1.93 | 0.003 |
T3 (ng/mL) | 1.25 ± 0.23 | 1.34 ± 0.32 | 0.210 |
TSH (μUI/mL) † | 2.26 (1.69) | 2.07 (1.40) | >0.999 |
FT4 (pmol/L) † | 14.20 (2.30) | 14.20 (3.20) | 0.551 |
FSH (mU/mL) † | 4.55 (4.39) | 2.93 (2.88) | 0.043 |
LH (mU/mL) † | 3.48 (6.21) | 1.80 (3.66) | 0.094 |
E2 (mUI/mL) † | 23.30 (57.00) | 23.25 (13.50) | 0.443 |
PRL (pg/mL) † | 8.50 (3.71) | 7.82 (3.89) | 0.986 |
SHBG (nmol/L) † | 42.50 (62.70) | 39.45 (41.20) | 0.613 |
TESTO (ng/mL) † | 0.24 (2.39) | 0.33 (0.89) | 0.935 |
DHEAS (mg/dL) † | 112.00 (121.10) | 109.00 (181.90) | 0.904 |
Δ4-Andro (ng/mL) † | 1.00 (1.09) | 0.54 (0.90) | 0.069 |
17-OH-PRG(ng/mL) † | 1.06 (1.12) | 1.09 (0.75) | 0.418 |
F (μg/dL) | 10.20 ± 4.74 | 12.33 ± 4.06 | 0.096 |
IGF-1 (ng/mL) | 215.01 ±100.16 | 206.03 ± 62.93 | 0.730 |
Irisin (ng/mL) † | 6.54 (4.12) | 11.70 (8.75) | 0.001 |
Parameters | Total sample | CCS Group | Control Group |
---|---|---|---|
Age | −0.323 *,† | −0.075 † | −0.476 * |
Somatometric | |||
Ht (cm) | −0.148 † | 0.037 † | −0.085 |
Wt (kg) | −0.107 † | 0.080 † | −0.085 |
BMI | −0.067 † | −0.010 † | −0.012 |
WC (cm) | 0.056 † | 0.206 † | 0.004 |
HC (cm) | −0.147 † | 0.155 † | −0.191 |
SBP | −0.053 † | 0.119 † | −0.086 |
DBP | 0.066 † | 0.064 † | 0.253 |
Pulse | 0.120 † | 0.090 † | 0.223 |
BIA | |||
FFM% | −0.033 † | −0.069 † | 0.079 |
FM% | 0.032 † | 0.069 † | −0.159 |
SM% FFM | −0.092 † | 0.005 † | −0.338 |
AT% BW | 0.026 † | 0.066 † | −0.193 |
TBW% BW | −0.038 † | −0.077 † | 0.105 |
ECW% TBW | 0.071 † | −0.001 † | 0.285 |
ICW% TBW | −0.072 † | 0.001 † | −0.128 |
FFM (kg) | −0.071 † | 0.181 † | −0.273 |
FM (kg) | 0.016 † | 0.123 † | −0.143 |
SM (kg) | −0.050 † | 0.150 † | −0.270 |
AT (kg) | 0.017 † | 0.117 † | −0.143 |
IMAT (kg) | 0.086 † | 0.133 † | −0.140 |
Body Density (kg) | −0.077 † | −0.018 † | 0.023 |
Bone (kg) | −0.050 † | 0.147 † | −0.289 |
Lipid profile | |||
Chol (mg/dL) | 0.045 † | 0.296 † | −0.120 |
TG (mg/dL) | −0.033 † | 0.163 † | −0.103 |
HDL (mg/dL) | −0.035 † | 0.107 † | −0.028 |
LDL (mg/dL) | 0.045 † | 0.306 † | −0.181 |
Lp(a) (mg/dL) | 0.228 † | 0.421 *,† | 0.115 |
UA (mg/dL) | −0.071 † | 0.180 † | −0.173 |
Apo-A1 (mg/dL) | 0.139 † | 0.258 † | 0.159 |
Apo-B (mg/dL) | 0.111 † | 0.410 *,† | −0.115 |
Glycemic profile | |||
Glu (mg/dL) | 0.186 † | 0.096 † | 0.269 |
HbA1c (%) | −0.036 † | 0.089 † | −0.321 |
Ins (μUI/mL) | −0.109 † | −0.286 † | 0.270 |
HOMA-IR | −0.085 † | −0.222 † | 0.189 |
QUICKI | 0.040 † | ||
Hormones | |||
T3 (ng/mL) | 0.104 † | −0.200 † | 0.337 |
TSH (μUI/mL) | −0.198 † | −0.248 † | −0.119 |
FT4 (pmol/L) | 0.108 † | 0.073 † | 0.385 |
FSH (mU/mL) | −0.207 † | −0.041 † | −0.201 |
LH (mU/mL) | −0.314 *,† | −0.177 † | −0.300 |
E2 (mUI/mL) | 0.029 † | 0.131 † | 0.027 |
PRL (pg/mL) | −0.038 † | 0.107 † | −0.168 |
SHBG (nmol/L) | −0.060 † | −0.147 † | 0.063 |
TESTO TOTAL (ng/mL) | −0.242 † | −0.149 † | −0.266 |
DHEAS (mg/dL) | −0.072 † | 0.052 † | −0.175 |
Δ4-Andro (ng/mL) | −0.262 † | −0.034 † | −0.271 |
17-OH-(ng/mL) | −0.080 † | 0.100 † | −0.108 |
F (μg/dL) | −0.066 † | −0.143 † | −0.335 |
IGF-C (ng/mL) | −0.051 † | 0.009 † | −0.110 |
Bone Metabolism | |||
Ca (mg/dL) | 0.154 † | 0.204 † | 0.337 |
P (mg/dL) | 0.172 † | −0.030 † | 0.297 |
Mg (mg/dL) | 0.096 † | 0.197 † | −0.116 |
ALP (U/L) | 0.328 *,† | 0.150 † | 0.242 |
25-OH-D (ng/mL) | −0.051 † | 0.061 † | −0.164 |
PTH (pg/mL) | 0.035 † | −0.198 † | 0.542 * |
Others | |||
Hgb | −0.189 † | −0.260 † | 0.104 |
Hct | −0.075 † | −0.208 † | 0.318 |
PLT | 0.380 **,† | 0.194 † | 0.404 |
U (mg/dL) | −0.038 † | −0.032 † | −0.150 |
Cr (mg/dL) | −0.140 † | −0.011 † | −0.242 |
AST (U/L) | 0.131 † | −0.022 † | 0.422 |
ALT (U/L) | 0.012 † | −0.219 † | 0.403 |
γ-GT (U/L) | −0.219 † | −0.210 † | −0.186 |
Protein Total (g/dL) | −0.103 † | −0.163 † | 0.086 |
Alb (g/dL) | −0.094 † | 0.022 † | 0.201 |
CK (U/L) | 0.176 † | 0.202 † | 0.357 |
LDH (U/L) | 0.186 † | 0.100 † | 0.377 |
K (nmol/L) | 0.153 † | 0.006 † | 0.434 |
Na (nmol/L) | 0.224 † | 0.265 † | −0.025 |
Cl (nmol/L) | 0.352 *,† | 0.406 *,† | −0.100 |
CRP (mg/L) | −0.366 **,† | −0.152 † | −0.327 |
Variable | β | t | p-Value |
---|---|---|---|
(Constant) | 0.499 | 0.060 | 0.952 |
Age | 0.023 | 0.062 | 0.951 |
LH (mU/mL) | −0.352 | −1.551 | 0.131 |
CRP (mg/L) | −0.404 | −1.430 | 0.163 |
ALP (U/L) | 0.000 | 0.064 | 0.950 |
Apo-B (mg/dL) | 0.000 | −0.005 | 0.996 |
Lp(a) (mg/dL) | 0.080 | 1.569 | 0.127 |
PTH (pg/mL) | 0.110 | 2.060 | 0.048 |
PLT | 0.024 | 1.805 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolaki, D.; Katsibardi, K.; Efthymiou, V.; Stefanaki, C.; Mantzou, A.; Papadodima, S.; Chrousos, G.P.; Kattamis, A.; Bacopoulou, F. Irisin Concentrations in Children and Adolescent Cancer Survivors and Their Relation to Metabolic, Bone, and Reproductive Profile: A Pilot Case–Control Study. J. Clin. Med. 2025, 14, 5098. https://doi.org/10.3390/jcm14145098
Apostolaki D, Katsibardi K, Efthymiou V, Stefanaki C, Mantzou A, Papadodima S, Chrousos GP, Kattamis A, Bacopoulou F. Irisin Concentrations in Children and Adolescent Cancer Survivors and Their Relation to Metabolic, Bone, and Reproductive Profile: A Pilot Case–Control Study. Journal of Clinical Medicine. 2025; 14(14):5098. https://doi.org/10.3390/jcm14145098
Chicago/Turabian StyleApostolaki, Despoina, Katerina Katsibardi, Vasiliki Efthymiou, Charikleia Stefanaki, Aimilia Mantzou, Stavroula Papadodima, George P. Chrousos, Antonis Kattamis, and Flora Bacopoulou. 2025. "Irisin Concentrations in Children and Adolescent Cancer Survivors and Their Relation to Metabolic, Bone, and Reproductive Profile: A Pilot Case–Control Study" Journal of Clinical Medicine 14, no. 14: 5098. https://doi.org/10.3390/jcm14145098
APA StyleApostolaki, D., Katsibardi, K., Efthymiou, V., Stefanaki, C., Mantzou, A., Papadodima, S., Chrousos, G. P., Kattamis, A., & Bacopoulou, F. (2025). Irisin Concentrations in Children and Adolescent Cancer Survivors and Their Relation to Metabolic, Bone, and Reproductive Profile: A Pilot Case–Control Study. Journal of Clinical Medicine, 14(14), 5098. https://doi.org/10.3390/jcm14145098