Recent Advances in Periodontal Tissue Engineering

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Regenerative Engineering".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 393

Special Issue Editor


E-Mail Website
Guest Editor
Department of Periodontology, Tokyo Dental College, Tokyo, Japan
Interests: periodontal microbiology; periodontal regeneration
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Periodontitis is an inflammatory disease that affects susceptible individuals, caused in part by reciprocally reinforced interactions between the pathogenic microbiome and host immune and inflammatory responses. Periodontitis can not only lead to eventual loss of teeth but also negatively influence systemic health.

Recent advancements in our understanding of the mechanisms behind tissue engineering have led to the development and clinical implementation of various regenerative therapies. Key components of these regenerative approaches include signaling molecules and cutting-edge biomaterials. While periodontal regeneration is now achievable in clinical settings, significant work must be undertaken to prevent periodontitis and enhance the effectiveness and predictability of these treatments.

This Special Issue will publish original research articles (basic and clinical studies) related to periodontal tissue engineering. Review articles highlighting current challenges and future directions for periodontal regeneration will be considered for inclusion in this Special Issue.

Prof. Dr. Atsushi Saito
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • periodontal disease
  • periodontal tissue engineering
  • periodontal regeneration
  • biomaterials
  • soft and hard tissue regeneration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3961 KiB  
Article
Therapeutic Potential of Local Application of Fibroblast Growth Factor-2 to Periodontal Defects in a Preclinical Osteoporosis Model
by Shinta Mori, Sho Mano, Naoki Miyata, Tasuku Murakami, Wataru Yoshida, Kentaro Imamura and Atsushi Saito
Bioengineering 2025, 12(7), 748; https://doi.org/10.3390/bioengineering12070748 - 9 Jul 2025
Abstract
This study investigated the effects of local fibroblast growth factor (FGF)-2 application on periodontal healing in an osteoporotic model, both in vivo and in vitro. Wistar rats were divided into the ovariectomy (OVX) and Control groups. Periodontal defects were created 8 weeks post-OVX [...] Read more.
This study investigated the effects of local fibroblast growth factor (FGF)-2 application on periodontal healing in an osteoporotic model, both in vivo and in vitro. Wistar rats were divided into the ovariectomy (OVX) and Control groups. Periodontal defects were created 8 weeks post-OVX and treated with hydroxypropylcellulose (HPC) or FGF-2 + HPC. Healing was evaluated through micro-computed tomography and histological analyses at 2 and 4 weeks. In vitro, bone marrow mesenchymal stromal cells (BMSCs) were cultured with/without FGF-2 and assessed for cell morphology, viability/proliferation, and osteoblastic marker expression. Alkaline phosphatase (ALP) staining was also performed. FGF-2-treated defects in both groups showed significantly greater bone volume fraction, trabecular number, and thickness compared to HPC only. Histologically, FGF-2 enhanced new bone formation, with the greatest levels in the Control group. In vitro, OVX BMSCs showed reduced actin staining versus controls. FGF-2 increased cell viability/proliferation and protrusions in both groups while downregulating Alpl and Bglap expression levels and reducing ALP-positive cells. FGF-2 increased new bone formation in the OVX group, stimulated proliferation of OVX BMSCs, and modulated their differentiation. FGF-2 could enhance periodontal healing even under osteoporotic conditions, albeit to a lesser extent. Full article
(This article belongs to the Special Issue Recent Advances in Periodontal Tissue Engineering)
Show Figures

Graphical abstract

Back to TopTop