Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1: Field Investigation
2.1.1. Study Sites and Sampling
2.1.2. Plant Biomass and Soil Properties
2.1.3. DNA Extraction, PCR Amplification, and Illumina Sequencing
2.2. Experiment 2: Greenhouse Experiment
2.2.1. Growth Substrate, PLANT Seeds, and Fungal Inoculum
2.2.2. Experimental Design
2.2.3. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Soil Properties in Grasslands with Different Degrees of Degradation
3.2. Microbial Communities in Grasslands with Different Degrees of Degradation
3.3. Relationship Between Microbial Community and Plant Biomass Allocation Patterns
3.4. Composition, Co-Occurrence Networks, and Keystone Taxa of AMF Communities
3.5. Effects of the Selected AMF Species Inoculation on Plant Biomass Allocation Under Rocky Desertification Stress
3.6. Relationship Between Plant Nutrient Distribution and Plant Biomass Allocation
4. Discussion
4.1. Plant Biomass Allocation Patterns in Festuca ovina Grasslands Along Rocky Desertification Gradient
4.2. AMF Had a Stronger Effect on PLANT Biomass Allocation than Bacteria and Fungi in the Grassland
4.3. Mechanism of AMF on Plant Biomass Allocation in a Greenhouse Experiment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACL | Acaulospora laevis |
AGB | Aboveground biomass |
ALP | Alkaline phosphatase |
AMF | Arbuscular mycorrhizal fungi |
AN | Available nitrogen |
AP | Available phosphorus |
BGB | Belowground biomass |
CEC | Cation exchange capacity |
DIS | Diversispora spurca |
EC | Electrical conductivity |
ESP | Exchangeable sodium percentage |
GLI | Glomus intraradices |
GLM | Glomus mosseae |
HDG | Heavily degraded grassland |
LDG | Lightly degraded grassland |
MDG | Moderately degraded grassland |
MIX | Mixture of four AMF species |
NDG | Non-degraded grassland |
NM | Inoculated without AMF |
PT | Phosphate transporter |
RD | Rocky desertification |
SAR | Sodium adsorption ratio |
SDG | Severely degraded grassland |
SEM | Structural equation model |
SMA | Standardized major axis |
SOC | Soil organic carbon |
TN | Total nitrogen |
TP | Total phosphorus |
References
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Funct. Plant Biol. 2000, 27, 1191. [Google Scholar] [CrossRef]
- Golan, G.; Weiner, J.; Zhao, Y.; Schnurbusch, T. Agroecological genetics of biomass allocation in wheat uncovers genotype interactions with canopy shade and plant size. New Phytol. 2024, 242, 107–120. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.C.; Enquist, B.J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 2007, 21, 713–720. [Google Scholar] [CrossRef]
- Kim, H.J.; Lin, M.Y.; Mitchell, C.A. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environ. Exp. Bot. 2019, 157, 228–240. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 2008; pp. 145–187. [Google Scholar]
- Niklas, K.J.; Enquist, B.J. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. Ann. Bot. 2002, 159, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Shipley, B.; Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 2002, 16, 326–331. [Google Scholar] [CrossRef]
- Niklas, K.J. Modelling below- and above-ground biomass for non-woody and woody plants. Ann. Bot. 2005, 95, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fang, J.; Ma, W.; Guo, D.; Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Global. Ecol. Biogeogr. 2010, 19, 268–277. [Google Scholar] [CrossRef]
- Cheng, D.; Niklas, K.J. Above- and below-ground biomass relationships across 1534 forested communities. Ann. Bot. 2007, 99, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhan, T.; Liu, M.; Zhang, Z.; Wang, Y.; Liu, S.; Wu, G.L.; Liu, G.; Tsunekawa, A. Verification of the biomass transfer hypothesis under moderate grazing across the Tibetan plateau: A meta-analysis. Plant Soil. 2019, 458, 139–150. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Y. Isometric biomass partitioning pattern in forest ecosystems: Evidence from temporal observations during stand development. J. Ecol. 2011, 99, 431–437. [Google Scholar] [CrossRef]
- Gargaglione, V.; Peri, P.L.; Rubio, G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. Forest Ecol. Manag. 2010, 259, 1118–1126. [Google Scholar] [CrossRef]
- Rao, P.S.; Mishra, B.; Gupta, S.R. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Sci. 2013, 20, 284–291. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.; An, S.; Zhu, Z. Abiotic and biotic factors modulate plant biomass and root/shoot (R/S) ratio in grassland on the Loess Plateau, China. Sci. Total Environ. 2018, 636, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Xue, X.; You, Q.; Huang, C.; Dong, S.; Liao, J.; Duan, H.; Tsunekawa, A.; Wang, T. Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet Plateau. Ecol. Indic. 2018, 93, 572–580. [Google Scholar] [CrossRef]
- Hovenden, M.J.; Leuzinger, S.; Newton, P.C.; Fletcher, A.; Fatichi, S.; Lüscher, A.; Reich, P.B.; Andresen, L.C.; Beier, C.; Blumenthal, D.M.; et al. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nat. Plants 2019, 5, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Chanratana, M.; Kim, K.; Seshadri, S.; Sa, T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front. Plant Sci. 2019, 10, 457. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bai, X.; Lv, D.; Zou, S.; He, B.; Feng, T. Assessing the influences of grassland degradation on soil quality through different minimum data sets in southwest China. Agronomy 2025, 15, 1091. [Google Scholar] [CrossRef]
- Szada-Borzyszkowska, A.; Krzyżak, J.; Rusinowski, S.; Magurno, F.; Pogrzeba, M. Inoculation with arbuscular mycorrhizal fungi supports the uptake of macronutrients and promotes the growth of Festuca ovina L. and Trifolium medium L., a candidate species for green urban infrastructure. Plants 2024, 13, 2620. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Xu, C.; Li, X.; Zhou, M.; Cao, K.; Dong, C.; Li, X.; Ji, N.; Wang, F.; Su, H.; et al. Arbuscular mycorrhizal fungi community analysis revealed the significant impact of arsenic in antimony- and arsenic-contaminated soil in three Guizhou regions. Front. Microbiol. 2023, 14, 1189400. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lai, C.; Peng, F.; Zhou, J.; Zhang, W.; Song, X.; Luo, S.; Sun, J.; Chen, X.; Chen, B.; et al. Restoration of degraded alpine meadows from the perspective of plant-soil feedbacks. Biol. Fertil. Soils 2024, 60, 941–953. [Google Scholar] [CrossRef]
- LY/T 1840-2009; Technology Regulations of Vegetation Restoration in Karst Desertification Zone. State Forestry Administration of the People’s Republic of China: Beijing, China, 2011.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Summer, M.E., Eds.; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Bundy, L.G.; Meisinger, J.J. Nitrogen availability indice. In Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties; Weaver, R., Angles, J., Bottomley, P., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 951–984. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1958; pp. 111–133. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Handbook No 60; Department of Agriculture: Washington, DC, USA, 1968; pp. 110–118. [Google Scholar]
- Tahira, J.J.; Khan, S.N.; Suliman, R.; Anwar, W. Evaluation of soil quality on the basis of chemical and microbial health for potential use in agriculture. Afri. J. Agric. Res. 2011, 6, 3713–3717. [Google Scholar]
- Starr, R.I.; Ross, C.W. A method for determination of carbon in plant tissue. Anal. Biochem. 1964, 9, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cao, Y.; Li, Z.; Zhukova, A.; Yang, S.; Wang, J.; Tang, Z.; Cao, Y.; Zhang, Y.; Wang, D. Interactive effects of exogenous melatonin and Rhizophagus intraradices on saline-alkaline stress tolerance in Leymus chinensis. Mycorrhiza 2020, 30, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wu, X.; Zhukova, A.; Tang, Z.; Weng, Y.; Li, Z.; Yang, Y. Arbuscular mycorrhizal fungi (AMF) species and abundance exhibit different effects on saline-alkaline tolerance in Leymus chinensis. J. Plant Interact. 2020, 15, 266–279. [Google Scholar] [CrossRef]
- Huse, S.M.; Dethlefsen, L.; Huber, J.A. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 2008, 4, e1000255. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Salas-González, I.; Reyt, G.; Flis, P.; Custódio, V.; Gopaulchan, D.; Bakhoum, N.; Dew, T.P.; Suresh, K.; Franke, R.B.; Dangl, J.L.; et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 2021, 371, eabd0695. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.; Young, J.P.W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008, 65, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Lumini, E.; Orgiazzi, A.; Borriello, R.; Bonfante, P.; Bianciotto, V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ. Microbiol. 2010, 12, 2165–2179. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Jiang, Y.; Li, M.; Zhang, X.; Zhang, S.; Wu, Y.; Xu, Z. Homogenous stands of a wetland grass living in heavy metal polluted wetlands harbor diverse consortia of arbuscular mycorrhizal fungi. Chemosphere 2017, 181, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.; Oksanen, M.J.; Suggests, M.A. The vegan package. Community Ecol. 2007, 10, 719. [Google Scholar]
- Rosas-Moreno, J.; Walker, C.; Duffy, K.; Krüger, C.; Krüger, M.; Robinson, C.H.; Pittman, J.K. Isolation and identification of arbuscular mycorrhizal fungi from an abandoned uranium mine and their role in soil-to-plant transfer of radionuclides and metals. Sci. Total Env. 2023, 876, 162781. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; He, Y.; Xu, X.; Umer, M.; Liu, X.; Xia, T.; Guo, Y.; Wu, B.; Xu, H.; Zang, L.; et al. Effects of AMF on plant nutrition and growth depend on substrate gravel content and patchiness in the karst species Bidens pilosa L. Front. Plant Sci. 2022, 13, 968719. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yin, H.; O’Connor, P.; Wang, Y.; Zhu, Y. C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil. 2010, 326, 21–29. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Falster, D.S.; Warton, D.I.; Wright, I.J. SMATR: Standardized Major Axis Tests and Routines. version 3.4–8. 2022. Available online: http://www.bitbucket.org/remkoduursma/smatr/ (accessed on 10 July 2025).
- Liu, R.; Yang, X.; Gao, R.; Hou, X.; Huo, L.; Huang, Z.; Cornelissen, J.H. Allometry rather than abiotic drivers explains biomass allocation among leaves, stems and roots of Artemisia across a large environmental gradient in China. J. Ecol. 2021, 109, 1026–1040. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R. News 2002, 2, 18–22. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. ICWSM 2009, 3, 361–362. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, H. Soil nitrogen and carbon determine the trade-offs of the above-and below-ground biomass across alpine grasslands, Tibetan Plateau. Ecol. Indic. 2016, 60, 1070–1076. [Google Scholar] [CrossRef]
- McConnaughay, K.D.M.; Coleman, J.S. Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients. Ecology 1999, 80, 2581–2593. [Google Scholar] [CrossRef]
- Bloom, A.J. Wild and cultivated barleys show similar affinities for mineral nitrogen. Oecologia 1985, 65, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Enquist, B.J.; Niklas, K.J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 2002, 295, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Linkohr, B.I.; Williamson, L.C.; Fitter, A.H.; Leyser, H.M.O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 2002, 29, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Lutz, S.; Bodenhausen, N.; Hess, J.; Valzano-Held, A.; Waelchli, J.; Deslandes-Hérold, G.; Schlaeppi, K.; van der Heijden, M.G. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat. Microbiol. 2023, 8, 2277–2289. [Google Scholar] [CrossRef] [PubMed]
- Treseder, K.K.; Lennon, J.T. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 2015, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef] [PubMed]
- Maherali, H.; Klironomos, J.N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 2007, 316, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, Q.; Koide, R.T.; Hoeksema, J.D.; Tang, J.; Bian, X.; Hu, S.; Chen, X.; Cahill, J. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J. Ecol. 2016, 105, 219–228. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, T.; Huang, Q.; Guo, H.; Zhang, H.; Xu, Q.; Shen, Q.; Ling, N. Core species impact plant health by enhancing soil microbial cooperation and network complexity during community coalescence. Soil. Biol. Biochem. 2024, 188, 109231. [Google Scholar] [CrossRef]
- Bertolet, B.L.; Rodriguez, L.C.; Murúa, J.M.; Favela, A.; Allison, S.D. The impact of microbial interactions on ecosystem function intensifies under stress. Ecol. Lett. 2024, 27, e14528. [Google Scholar] [CrossRef] [PubMed]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Elser, J.J.; Dobberfuhl, D.R.; MacKay, N.A.; Schampel, J.H. Organism Size, Life History, and N:P Stoichiometry: Toward a unified view of cellular and ecosystem processes. Bioscience 1996, 46, 674–684. [Google Scholar] [CrossRef]
- Fitter, A.H. Darkness visible: Reflections on underground ecology. J. Ecol. 2005, 93, 231–243. [Google Scholar] [CrossRef]
- Jakobsen, I.; Abbott, L.K.; Robson, A.D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. spread of hyphae and phosphorus inflow into roots. New Phytol. 1992, 120, 371–380. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Menexes, G.; Rillig, M.C. Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza 2012, 22, 227–235. [Google Scholar] [CrossRef] [PubMed]
- El Attar, I.; Hnini, M.; Taha, K.; Aurag, J. Phosphorus availability and its sustainable use. J. Soil. Sci. Plant Nut. 2022, 22, 5036–5048. [Google Scholar] [CrossRef]
- Andrino, A.; Guggenberger, G.; Kernchen, S.; Mikutta, R.; Sauheitl, L.; Boy, J. Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides. Front. Plant Sci. 2021, 12, 661842. [Google Scholar] [CrossRef] [PubMed]
- Aono, T.; Maldonado-Mendoza, I.E.; Dewbre, G.R.; Harrison, M.J.; Saito, M. Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol. 2024, 162, 525–534. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, W.; Feng, Z.; Feng, G.; Zhu, H.; Yao, Q. Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl. Soil. Ecol. 2022, 170, 104294. [Google Scholar] [CrossRef]
- Lanfranco, L.; Fiorilli, V.; Gutjahr, C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol. 2018, 220, 1031–1046. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Pan, F.; Jiang, Z.; Li, Q.; Pu, J.; Liu, K. Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems. BMC Plant Biol. 2022, 22, 188. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | Study Sites | ||||
---|---|---|---|---|---|
NDG | LDG | MDG | HDG | SDG | |
pH | 6.39 ± 0.59 c | 6.66 ± 0.48 c | 7.45 ± 0.80 b | 7.82 ± 0.58 a | 7.97 ± 0.56 a |
EC (μS m−1) | 270 ± 25.8 c | 368 ± 23.3 b | 398 ± 21.5 b | 439 ± 17.5 a | 475 ± 58.6 a |
CEC (cmol kg−1) | 0.35 ± 0.02 a | 0.35 ± 0.02 a | 0.36 ± 0.04 a | 0.35 ± 0.03 a | 0.38 ± 0.03 a |
ESP (%) | 2.81 ± 0.50 c | 3.08 ± 0.28 bc | 2.49 ± 0.36 ab | 3.40 ± 0.18 a | 3.07 ± 0.31 ab |
SAR (cmol0.5 kg−0.5) | 1.90 ± 0.15 c | 2.16 ± 0.08 bc | 2.22 ± 0.25 b | 2.33 ± 0.11 b | 2.71 ± 0.14 a |
SOC (mg g−1) | 56.9 ± 9.57 ab | 57.8 ± 8.73 ab | 60.1 ± 9.76 a | 53.5 ± 8.19 b | 43.5 ± 8.06 b |
TP (mg g−1) | 0.46 ± 0.02 a | 0.44 ± 0.02 ab | 0.39 ± 0.01 c | 0.41 ± 0.03 bc | 0.42 ± 0.03 bc |
AP (mg kg−1) | 7.53 ± 0.85 a | 7.44 ± 0.63ab | 6.82 ± 0.63 b | 5.58 ± 0.53 c | 4.85 ± 0.24 d |
TN (mg g−1) | 2.00 ± 0.11 a | 2.01 ± 0.13 a | 1.84 ± 0.07 a | 1.89 ± 0.08 a | 1.92 ± 0.15 a |
AN (mg kg−1) | 2.63 ± 0.26 a | 2.56 ± 0.17 a | 2.53 ± 0.11 ab | 2.28 ± 0.20 bc | 2.27 ± 0.21 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Bai, X.; Lv, D.; Yang, Y. Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China. J. Fungi 2025, 11, 525. https://doi.org/10.3390/jof11070525
Li W, Bai X, Lv D, Yang Y. Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China. Journal of Fungi. 2025; 11(7):525. https://doi.org/10.3390/jof11070525
Chicago/Turabian StyleLi, Wangjun, Xiaolong Bai, Dongpeng Lv, and Yurong Yang. 2025. "Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China" Journal of Fungi 11, no. 7: 525. https://doi.org/10.3390/jof11070525
APA StyleLi, W., Bai, X., Lv, D., & Yang, Y. (2025). Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China. Journal of Fungi, 11(7), 525. https://doi.org/10.3390/jof11070525