FRET-Based TURN-ON Aptasensor for the Sensitive Detection of CK-MB
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Aptamers for CK-MB (Magnetic-SELEX)
2.4. Preparation of Nanoassembly (AGQDs@MoS2NSs)
2.5. Development of Sandwich Assay
2.6. Experimental Optimization of Assay Components
3. Results
3.1. Optical Characteristics of Nanoassembly
3.2. Effect of Ascorbic Acid on the MoS2 Nanosheets
3.3. Optimization Experiments
3.4. AGQDs and Quenching Behavior in Two Different Dispersing Mediums
3.5. Effect of Substrate on Enzyme Activity
3.6. Stability of Sensor
3.7. Analytical Performance of the Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CK-MB | Creatine Kinase Myocardial Band |
ELAA | Enzyme Linked Aptamer Based assay |
apt. A1 | Aptamer A1 |
apt. A2 | Aptamer A2 |
FRET | Förster Resonance Energy Transfer |
Fluorescence Intensity | (F.I (a.u)) |
MoS2NSs | Molybdenum disulfide nanosheets |
AGQDs | Aminated Graphene Quantum Dots |
AA2P | L-Ascorbic acid 2-phosphate |
AA | Ascorbic acid |
AGQDs@MoS2NSs | Nanoassembly of Aminated Graphene Quantum dots & Molybdenum disulfide nanosheets |
CD | Carbon Dots |
QD | Quantum Dots |
GQD | Graphene Quantum Dots |
References
- Rezaei, Z.; Ranjbar, B. Ultra-Sensitive, Rapid Gold Nanoparticle-Quantum Dot Plexcitonic Self-Assembled Aptamer-Based Nanobiosensor for the Detection of Human Cardiac Troponin I. Eng. Life Sci. 2017, 17, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Lopa, N.S.; Rahman, M.M.; Ahmed, F.; Ryu, T.; Sutradhar, S.C.; Lei, J.; Kim, J.; Kim, D.H.; Lee, Y.H.; Kim, W. Simple, Low-Cost, Sensitive and Label-Free Aptasensor for the Detection of Cardiac Troponin I Based on a Gold Nanoparticles Modified Titanium Foil. Biosens. Bioelectron. 2019, 126, 381–388. [Google Scholar] [CrossRef]
- Friess, U.; Stark, M. Cardiac Markers: A Clear Cause for Point-of-Care Testing. Anal. Bioanal. Chem. 2009, 393, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Ingwall, J.S.; Kramer, M.F.; Fifer, M.A.; Lorell, B.H.; Shemin, R.; Grossman, W.; Allen, P.D. The Creatine Kinase System in Normal and Diseased Human Myocardium. N. Engl. J. Med. 1985, 313, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- NACB Writing Group Members; Morrow, D.A.; Cannon, C.P.; Jesse, R.L.; Newby, L.K.; Ravkilde, J.; Storrow, A.B.; Wu, A.H.B.; Christenson, R.H. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical Characteristics and Utilization of Biochemical Markers in Acute Coronary Syndromes. Circulation 2007, 115, e356–e375. [Google Scholar] [CrossRef]
- Moreira, F.T.C.; Sharma, S.; Dutra, R.A.F.; Noronha, J.P.C.; Cass, A.E.G.; Sales, M.G.F. Smart Plastic Antibody Material (SPAM) Tailored on Disposable Screen Printed Electrodes for Protein Recognition: Application to Myoglobin Detection. Biosens. Bioelectron. 2013, 45, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.L.; de Lima, L.F.; Moraes, A.S.; Rubira, R.J.G.; Constantino, C.J.L.; Leite, F.L.; Delgado-Silva, A.O.; Ferreira, M. Development of a Novel Biosensor for Creatine Kinase (CK-MB) Using Surface Plasmon Resonance (SPR). Appl. Surf. Sci. 2021, 554, 149565. [Google Scholar] [CrossRef]
- Roberts, R.; Sobel, B.E.; Parker, C.W. Radioimmunoassay for Creatine Kinase Isoenzymes. Science 1976, 194, 855–857. [Google Scholar] [CrossRef]
- Park, J. An Optimized Colorimetric Readout Method for Lateral Flow Immunoassays. Sensors 2018, 18, 4084. [Google Scholar] [CrossRef]
- Shin, S.R.; Zhang, Y.S.; Kim, D.-J.; Manbohi, A.; Avci, H.; Silvestri, A.; Aleman, J.; Hu, N.; Kilic, T.; Keung, W.; et al. Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Anal. Chem. 2016, 88, 10019–10027. [Google Scholar] [CrossRef]
- Hammerer-Lercher, A.; Erlacher, P.; Bittner, R.; Korinthenberg, R.; Skladal, D.; Sorichter, S.; Sperl, W.; Puschendorf, B.; Mair, J. Clinical and Experimental Results on Cardiac Troponin Expression in Duchenne Muscular Dystrophy. Clin. Chem. 2001, 47, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Real-Fernández, F.; Gallo, A.; Nuti, F.; Altamore, L.; Vescovo, G.G.D.; Traldi, P.; Ragazzi, E.; Rovero, P.; Lapolla, A.; Papini, A.M. ELISA Based on Peptide Antigens Reproducing Cross-Reactive Viral Epitopes to Detect Antibodies in Latent Autoimmune Diabetes in Adults vs. Type 1 Diabetes. MethodsX 2021, 8, 101452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-J.; Ning, Y. Silicon Nanowire Biosensor and Its Applications in Disease Diagnostics: A Review. Anal. Chim. Acta 2012, 749, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-Linked Immunosorbent Assay for the Quantitative/Qualitative Analysis of Plant Secondary Metabolites. J. Nat. Med. 2018, 72, 32–42. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Zhao, X.; Zhang, J.; Peng, Y.; Bai, J.; Li, S.; Han, D.; Ren, S.; Qin, K.; et al. Target-Responsive DNA Hydrogel with Microfluidic Chip Smart Readout for Quantitative Point-of-Care Testing of Creatine Kinase MB. Talanta 2022, 243, 123338. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhao, X.; Chen, M.; Peng, Y.; Bai, J.; Li, S.; Han, D.; Ren, S.; Qin, K.; et al. Dual Sensitization Smartphone Colorimetric Strategy Based on RCA Coils Gathering Au Tetrahedra and Its Application in the Detection of CK-MB. Anal. Chem. 2021, 93, 16922–16931. [Google Scholar] [CrossRef]
- He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater. 2010, 20, 453–459. [Google Scholar] [CrossRef]
- He, D.; He, X.; Wang, K.; Yang, X.; Yang, X.; Li, X.; Zou, Z. Nanometer-Sized Manganese Oxide-Quenched Fluorescent Oligonucleotides: An Effective Sensing Platform for Probing Biomolecular Interactions. Chem. Commun. 2014, 50, 11049–11052. [Google Scholar] [CrossRef]
- Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A Graphene Platform for Sensing Biomolecules. Angew. Chem. Int. Ed. 2009, 48, 4785–4787. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. Chem. Commun. 2012, 48, 3686–3699. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Graphene Quantum Dots: An Emerging Material for Energy-Related Applications and Beyond. Energy Environ. Sci. 2012, 5, 8869–8890. [Google Scholar] [CrossRef]
- Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano 2010, 4, 5321–5331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Hachtel, J.A.; Apte, A.; Tiwary, C.S.; Vajtai, R.; Idrobo, J.C.; Ozturk, R.; Ajayan, P. Etching of Transition Metal Dichalcogenide Monolayers into Nanoribbon Arrays. Nanoscale Horiz. 2019, 4, 689–696. [Google Scholar] [CrossRef]
- Xiao, P.; Lv, X.; Wang, S.; Iqbal, J.; Qing, H.; Li, Q.; Deng, Y. An Aptamer-Based Trypsin Reactor for on-Line Protein Digestion with Electrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. 2013, 441, 123–132. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, X.; Feng, W.; Li, X.; Li, K.; Deng, Y. Aptamer-Based Fluorometric Lateral Flow Assay for Creatine Kinase MB. Microchim. Acta 2018, 185, 364. [Google Scholar] [CrossRef] [PubMed]
- Ghayeb Zamharir, S.; Karimzadeh, R.; Aboutalebi, S.H. Laser-Assisted Tunable Optical Nonlinearity in Liquid-Phase Exfoliated MoS2 Dispersion. Appl. Phys. A Mater. Sci. Process. 2018, 124, 692. [Google Scholar] [CrossRef]
- Ullah, M.S.; Yousuf, A.H.B.; Es-Sakhi, A.D.; Chowdhury, M.H. Analysis of Optical and Electronic Properties of MoS2 for Optoelectronics and FET Applications. AIP Conf. Proc. 2018, 1957, 20001. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Adv. Mater. 2016, 28, 9454–9477. [Google Scholar] [CrossRef]
- Sun, X.; Lei, Y. Fluorescent Carbon Dots and Their Sensing Applications. TrAC Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Li, Y.R.; Yao, M.D.; Feng, W.; Lv, X.F.; Deng, Y.L. Aptamer-Based Colloidal Gold Chromatography Strips for Rapid Detection of Creatine Kinase-MB. Beijing Ligong Daxue Xuebao/Trans. Beijing Inst. Technol. 2019, 39, 108–115. [Google Scholar]
- Fosset, M.; Chappelet-Tordo, D.; Lazdunski, M. Intestinal Alkaline Phosphatase. Physical Properties and Quaternary Structure. Biochemistry 1974, 13, 1783–1788. [Google Scholar] [CrossRef]
- Latner, A.L.; Parsons, M.E.; Skillen, A.W. Isoelectric Focusing of Alkaline Phosphatases from Human Kidney and Calf Intestine. Enzymologia 1971, 40, 1–7. [Google Scholar]
- Bhatti, A.S.; Chaudhry, M.; Rehman, M.A.; Gul, A.; Farooq, A.; Qamar, R. The Effect of Varied PH Environment on the Optical Efficiency of ZnS Nanowires and CdSe/ZnS Quantum Dots as Biomarkers. In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, Australia, 4–6 December 2017; pp. 1–4. [Google Scholar]
- Sapsford, K.E.; Berti, L.; Medintz, I.L. Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations. Angew. Chem. Int. Ed. 2006, 45, 4562–4589. [Google Scholar] [CrossRef]
- Feng, L.; Tang, X.-Y.; Zhong, Y.-X.; Liu, Y.-W.; Song, X.-H.; Deng, S.-L.; Xie, S.-Y.; Yan, J.-W.; Zheng, L.-S. Ultra-Bright Alkylated Graphene Quantum Dots. Nanoscale 2014, 6, 12635–12643. [Google Scholar] [CrossRef]
- Lingam, K.; Podila, R.; Qian, H.; Serkiz, S.; Rao, A.M. Evidence for Edge-State Photoluminescence in Graphene Quantum Dots. Adv. Funct. Mater. 2013, 23, 5062–5065. [Google Scholar] [CrossRef]
- Ritter, K.A.; Lyding, J.W. The Influence of Edge Structure on the Electronic Properties of Graphene Quantum Dots and Nanoribbons. Nat. Mater. 2009, 8, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Radovic, L.R.; Bockrath, B. On the Chemical Nature of Graphene Edges: Origin of Stability and Potential for Magnetism in Carbon Materials. J. Am. Chem. Soc. 2005, 127, 5917–5927. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Haque, E.; Reddy, K.R.; Minett, A.I.; Chen, J.; Gomes, V.G. Edge-Enriched Graphene Quantum Dots for Enhanced Photo-Luminescence and Supercapacitance. Nanoscale 2014, 6, 11988–11994. [Google Scholar] [CrossRef]
- Rajender, G.; Goswami, U.; Giri, P.K. Solvent Dependent Synthesis of Edge-Controlled Graphene Quantum Dots with High Photoluminescence Quantum Yield and Their Application in Confocal Imaging of Cancer Cells. J. Colloid Interface Sci. 2019, 541, 387–398. [Google Scholar] [CrossRef]
- Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H. Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001. [Google Scholar] [CrossRef] [PubMed]
- Rombola, T.H.; Pedrinho, E.A.N.; de Macedo Lemos, E.G.; Gonçalves, A.M.; dos Santos, L.F.J.; Pizauro, J.M. Identification and Enzymatic Characterization of Acid Phosphatase from Burkholderia Gladioli. BMC Res. Notes 2014, 7, 221. [Google Scholar] [CrossRef] [PubMed]
- Hlukhova, H.; Menger, M.; Offenhäusser, A.; Vitusevich, S. Highly Sensitive Aptamer-Based Method for the Detection of Cardiac Biomolecules on Silicon Dioxide Surfaces. MRS Adv. 2018, 3, 1535–1541. [Google Scholar] [CrossRef]
- Zhang, J.; Lakshmipriya, T.; Gopinath, S.C.B. Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates. ACS Omega 2020, 5, 25899–25905. [Google Scholar] [CrossRef]
- Surya, S.G.; Majhi, S.M.; Agarwal, D.K.; Lahcen, A.A.; Yuvaraja, S.; Chappanda, K.N.; Salama, K.N. A Label-Free Aptasensor FET Based on Au Nanoparticle Decorated Co3O4 Nanorods and a SWCNT Layer for Detection of Cardiac Troponin T Protein. J. Mater. Chem. B 2020, 8, 18–26. [Google Scholar] [CrossRef]
Methods | Probes | Material | Linear Ranges/LOD | Ref. |
---|---|---|---|---|
Aptamer-based fluorometric lateral flow assay | Aptamers C.Apt.21 and C.Apt.30 | Fluorescently labelled nanoparticles | 0.63 ng/mL | [26] |
Aptamer-based microfluidic electrochemical biosensor | Aptamers | Microfluidic chip | 2.4 pg/mL | [10] |
Aptamer-based lateral flow assay | Aptamers | Colloidal Gold Chromatography Strips | 82 nM, 7146 ng/mL | [31] |
Aptamer-based sandwich assay | Aptamers | AGQDs@MoS2 nanoassembly | 0.20 nM, 17 ng/mL | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, R.; Rasheed, M.; Lv, X.; Deng, Y. FRET-Based TURN-ON Aptasensor for the Sensitive Detection of CK-MB. Biosensors 2025, 15, 446. https://doi.org/10.3390/bios15070446
Asghar R, Rasheed M, Lv X, Deng Y. FRET-Based TURN-ON Aptasensor for the Sensitive Detection of CK-MB. Biosensors. 2025; 15(7):446. https://doi.org/10.3390/bios15070446
Chicago/Turabian StyleAsghar, Rabia, Madiha Rasheed, Xuefei Lv, and Yulin Deng. 2025. "FRET-Based TURN-ON Aptasensor for the Sensitive Detection of CK-MB" Biosensors 15, no. 7: 446. https://doi.org/10.3390/bios15070446
APA StyleAsghar, R., Rasheed, M., Lv, X., & Deng, Y. (2025). FRET-Based TURN-ON Aptasensor for the Sensitive Detection of CK-MB. Biosensors, 15(7), 446. https://doi.org/10.3390/bios15070446