Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,545)

Search Parameters:
Keywords = 9%Ni steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2177 KiB  
Article
Early Signs of Tool Damage in Dry and Wet Turning of Chromium–Nickel Alloy Steel
by Tanuj Namboodri, Csaba Felhő and István Sztankovics
J 2025, 8(3), 28; https://doi.org/10.3390/j8030028 - 6 Aug 2025
Abstract
Machining chromium–nickel alloy steel is challenging due to its material properties, such as high strength and toughness. These properties often lead to tool damage and degradation of tool life, which overall impacts the production time, cost, and quality of the product. Therefore, it [...] Read more.
Machining chromium–nickel alloy steel is challenging due to its material properties, such as high strength and toughness. These properties often lead to tool damage and degradation of tool life, which overall impacts the production time, cost, and quality of the product. Therefore, it is essential to investigate early signs of tool damage to determine the effective machining conditions for chromium–nickel alloy steel, thereby increasing tool life and improving product quality. In this study, the early signs of tool wear were observed in a physical vapor deposition (PVD) carbide-coated tool (Seco Tools, Björnbacksvägen, Sweden) during the machining of X5CrNi18-10 steel under both dry and wet conditions. A finish turning operation was performed on the outer diameter (OD) of the workpiece with a 0.4 mm nose radius tool. At the early stage, the tool was examined from the functional side (f–side) and the passive side (p–side). The results indicate that dry machining leads to increased coating removal, more heat generation, and visible damage, such as pits and surface scratches. By comparison, wet machining helps reduce heat and wear, thereby improving tool life and machining quality. These findings suggest that a coolant must be used when machining chromium–nickel alloy steel with a PVD carbide-coated tool. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

24 pages, 59662 KiB  
Article
Numerical Analysis of Composite Stiffened NiTiNOL-Steel Wire Ropes and Panels Undergoing Nonlinear Vibrations
by Teguh Putranto, Totok Yulianto, Septia Hardy Sujiatanti, Dony Setyawan, Ahmad Fauzan Zakki, Muhammad Zubair Muis Alie and Wibowo Wibowo
Modelling 2025, 6(3), 77; https://doi.org/10.3390/modelling6030077 - 4 Aug 2025
Viewed by 117
Abstract
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation [...] Read more.
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation theory (FSDT), based on Hamilton’s principle. Using the Galerkin truncation method (GTM), the model is converted into a system of nonlinear ordinary differential equations. The dynamic response to axial harmonic excitations is analyzed, emphasizing the vibration reduction provided by the embedded NiTi–ST ropes. Finite element analysis (FEA) validates the model by comparing natural frequencies and force responses with and without ropes. A newly developed experimental apparatus demonstrates that NiTi–ST cables provide outstanding vibration damping while barely affecting the system’s inherent frequency. The N3a configuration of NiTi–ST ropes demonstrates optimal vibration reduction, influenced by excitation frequency, amplitude, length-to-width ratio, and composite layering. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

20 pages, 1890 KiB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 243
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

20 pages, 15301 KiB  
Article
Application of CH241 Stainless Steel with High Concentration of Mn and Mo: Microstructure, Mechanical Properties, and Tensile Fatigue Life
by Ping-Yu Hsieh, Bo-Ding Wu and Fei-Yi Hung
Metals 2025, 15(8), 863; https://doi.org/10.3390/met15080863 - 1 Aug 2025
Viewed by 203
Abstract
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly [...] Read more.
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly manner and a two-stage heat treatment process, the hardness of as-cast CH241 was tailored from HRC 37 to HRC 29, thereby meeting the industrial specifications of cold-forged steel (≤HRC 30). X-ray diffraction analysis of the as-cast microstructure revealed the presence of a small amount of ferrite, martensite, austenite, and alloy carbides. After heat treatment, CH241 exhibited a dual-phase microstructure consisting of ferrite and martensite with dispersed Cr(Ni-Mo) alloy carbides. The CH241 alloy demonstrated excellent high-temperature stability. No noticeable softening occurred after 72 h for the second-stage heat treatment. Based on the mechanical and room-temperature tensile fatigue properties of CH241-F (forging material) and CH241-ST (soft-tough heat treatment), it was demonstrated that the CH241 stainless steel was superior to the traditional stainless steel 4xx in terms of strength and fatigue life. Therefore, CH241 stainless steel can be introduced into cold forging and can be used in precision fatigue application. The relevant data include composition design and heat treatment properties. This study is an important milestone in assisting the upgrading of the vehicle and aerospace industries. Full article
(This article belongs to the Special Issue Advanced High Strength Steels: Properties and Applications)
Show Figures

Graphical abstract

29 pages, 14647 KiB  
Article
Precipitation Processes in Sanicro 25 Steel at 700–900 °C: Experimental Study and Digital Twin Simulation
by Grzegorz Cempura and Adam Kruk
Materials 2025, 18(15), 3594; https://doi.org/10.3390/ma18153594 - 31 Jul 2025
Viewed by 278
Abstract
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures [...] Read more.
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures of 653 °C for fresh steam and 672 °C for reheated steam. While last-generation supercritical power plants still rely on fossil fuels, they represent a significant step forward in more sustainable energy production. The most sophisticated facilities of this kind can achieve thermodynamic efficiencies exceeding 47%. This study aimed to conduct a detailed analysis of the initial precipitation processes occurring in Sanicro 25 steel within the temperature range of 700–900 °C. The temperature of 700 °C corresponds to the operational conditions of this material, particularly in secondary steam superheaters in thermal power plants that operate under ultra-supercritical parameters. Understanding precipitation processes is crucial for optimizing mechanical performance, particularly in terms of long-term strength and creep resistance. To accurately assess the microstructural changes that occur during the early stages of service, a digital twin approach was employed, which included CALPHAD simulations and experimental heat treatments. Experimental annealing tests were conducted in air within the temperature range of 700–900 °C. Precipitation behavior was simulated using the Thermo-Calc 2025a with Dictra software package. The results from Prisma simulations correlated well with the experimental data related to the kinetics of phase transformations; however, it was noted that the predicted sizes of the precipitates were generally smaller than those observed in experiments. Additionally, computational limitations were encountered during some simulations due to the complexity arising from the numerous alloying elements present in Sanicro 25 steel. The microstructural evolution was investigated using various methods, including light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Full article
Show Figures

Figure 1

29 pages, 4258 KiB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 519
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

15 pages, 3051 KiB  
Article
Study on the Kinetics of Carbothermic Reduction of Stainless Steel Dust by Walnut Shell Biochar
by Guoyu Cui, Xiang Zhang, Yanghui Xu, Guojun Ma, Dingli Zheng and Ju Xu
Metals 2025, 15(8), 835; https://doi.org/10.3390/met15080835 - 26 Jul 2025
Viewed by 231
Abstract
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis [...] Read more.
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis of the carbothermic reduction of SSD and then employed walnut shell biochar as a reductant with non-isothermal thermogravimetric analysis with linear heating rates of 5 °C/min, 10 °C/min, 15 °C/min, and 20 °C/min. The activation energies of the carbothermic reduction reactions were calculated using the FWO method, KAS method, and Friedman method, respectively. Subsequently, the corresponding kinetic models were fitted and matched using the Málek method. The results indicate that before 600 °C, the direct reduction of SSD by carbon plays a dominant role. As the temperature increases, the indirect reduction becomes the main reduction reaction for SSD due to the generation of CO. The activation energies calculated by the Flynn–Wall–Ozawa (FWO) method, Kissinger–Akahira–Sunose (KAS) method, and Friedman method are 412.120 kJ/mol, 416.930 kJ/mol, and 411.778 kJ/mol, respectively, showing close values and a general trend of increasing activation energy as the conversion rate increased from 10% to 90%. Moreover, the reduction reaction is staged. In the conversion range of 10% to 50%, the carbothermic reduction reaction conforms to the shrinking core model within phase boundary reactions, coded as R1/4. In the conversion range of 50% to 60%, it conforms to the shrinking core model within phase boundary reactions, coded as R1/2; in the conversion range of 60% to 90%, the carbothermic reduction reaction follows the second-order chemical reaction model, coded as F2. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

20 pages, 7113 KiB  
Article
Effect of Cu Content on Corrosion Resistance of 3.5%Ni Weathering Steel in Marine Atmosphere of South China Sea
by Yuanzheng Li, Ziyu Guo, Tianle Fu, Sha Sha, Bing Wang, Xiaoping Chen, Shujun Jia and Qingyou Liu
Materials 2025, 18(15), 3496; https://doi.org/10.3390/ma18153496 - 25 Jul 2025
Viewed by 291
Abstract
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was [...] Read more.
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was evaluated based on weight loss measurements. Surface oxide layers were characterized using three-dimensional laser confocal microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. Electron probe microanalysis (EPMA) was employed to examine the cross-sectional morphology of the oxide layer after 72 h of accelerated corrosion tests. The results indicate that the solution state of Cu increased the strength of 3.5%Ni steels but significantly damaged the low-temperature toughness. As the Cu content increased from 0.75% to 1.25%, the corrosion rate decreased from 4.65 to 3.74 g/m2 h. However, when there was a further increase in the Cu content to 2.15%, there was little decrease in the corrosion rate. With the increase in the Cu content from 0.75% to 2.15%, the surface roughness of 3.5%Ni weathering steel after corrosion decreased from 5.543 to 5.019 μm, and the corrosion behavior was more uniform. Additionally, the α/γ protective factor of the oxide layer of the surface layer increased from 2.58 to 2.84 with an increase in the Cu content from 0.75% to 1.25%, resulting in the oxide layer of the surface layer being more protective. For 1.25%Cu steel, the corrosion current density of rusted samples is lower (ranging from 1.2609 × 10−4 A/cm2 to 3.7376 × 10−4 A/cm2), and the corrosion potential is higher (ranging from −0.85544 V to −0.40243 V). Therefore, the rusted samples are more corrosion resistant. The Cu in the oxide layer of the surface layer forms CuO and CuFeO2, which are helpful for increasing corrosion resistance, which inhibits the penetration of Cl. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

16 pages, 4296 KiB  
Article
Enhanced Photocathodic Protection Performance of TiO2/NiCo2S4 Composites for 304 Stainless Steel
by Honggang Liu, Hong Li, Xuan Zhang, Baizhao Xing, Zhuangzhuang Sun and Yanhui Li
Coatings 2025, 15(8), 874; https://doi.org/10.3390/coatings15080874 - 25 Jul 2025
Viewed by 331
Abstract
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth [...] Read more.
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth of hexagonal NiCo2S4 particles on anatase TiO2 nanotube arrays, forming a type-II heterojunction. Spectroscopy of ultraviolet-visible diffuse reflectance absorption showed that NiCo2S4 extended TiO2’s light absorption into the visible region. Electrochemical tests revealed that under visible light, the composite photoanode decreased the corrosion potential of 304ss to −0.7 V vs. SCE and reduced charge transfer resistance by 20% compared to pure TiO2. The enhanced performance stemmed from efficient electron-hole separation and transport enabled by the type-II heterojunction. Cyclic voltammetry tests indicated the composite’s electrochemical active surface area increased 1.8-fold, demonstrating superior catalytic activity. In conclusion, the TiO2/NiCo2S4 composite photoanode offers an effective approach for marine corrosion protection of 304ss. Full article
Show Figures

Figure 1

11 pages, 1430 KiB  
Article
Determination of Trace 55Fe and 63Ni in Steel Samples via Liquid Scintillation Counting
by Giada Gandolfo, Maria Letizia Cozzella, Tiziana Guarcini and Giuseppe Augusto Marzo
Appl. Sci. 2025, 15(15), 8264; https://doi.org/10.3390/app15158264 - 25 Jul 2025
Viewed by 236
Abstract
In the decommissioning of nuclear facilities, activated steel often contains radionuclides such as 55Fe and 63Ni, which are categorized as hard-to-measure due to their emission of only low-energy beta particles or X-rays. In samples exhibiting very low radioactivity, close to background [...] Read more.
In the decommissioning of nuclear facilities, activated steel often contains radionuclides such as 55Fe and 63Ni, which are categorized as hard-to-measure due to their emission of only low-energy beta particles or X-rays. In samples exhibiting very low radioactivity, close to background levels, a large quantity of steel must undergo extensive physical and chemical processing to achieve the Minimum Detectable Activity Concentration (MDC) necessary for clearance, recycling, or reuse. Italian regulations set particularly stringent clearance levels for these radionuclides (1 Bq/g for both 55Fe and 63Ni), significantly lower than those specified in the EU Directive 2013/59 (1000 Bq/g for 55Fe and 100 Bq/g for 63Ni). Additionally, Italian authorities may enforce even stricter limits depending on specific circumstances. The analytical challenge is compounded by the presence of large amounts of non-radioactive Fe and Ni, which can cause color quenching, further extending analysis times. This study presents a reliable and optimized method for the quantitative determination of 55Fe and 63Ni in steel samples with activity levels approaching regulatory thresholds. The methodology was specifically developed and applied to steel from the Frascati Tokamak Upgrade (FTU) facility, under decommissioning by ENEA. The optimization process demonstrated that achieving the required MDCs necessitates acquisition times of approximately 5 days for 55Fe and 6 h for 63Ni, ensuring compliance with stringent regulatory requirements and supporting efficient laboratory workflows. Full article
(This article belongs to the Special Issue Radioactive Waste Treatment and Environment Recovery)
Show Figures

Figure 1

17 pages, 7068 KiB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 317
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

14 pages, 7306 KiB  
Article
Influence of Gear Set Loading on Surface Damage Forms for Gear Teeth with DLC Coating
by Edyta Osuch-Słomka, Remigiusz Michalczewski, Anita Mańkowska-Snopczyńska, Michał Gibała, Andrzej N. Wieczorek and Emilia Skołek
Coatings 2025, 15(7), 857; https://doi.org/10.3390/coatings15070857 - 21 Jul 2025
Viewed by 288
Abstract
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is [...] Read more.
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is applied gradually, the presented tests employed direct maximum loading—shock loading—without prior lapping of the gears under lower loads. This loading method significantly increases the vulnerability of the analyzed components to scuffing, enabling an evaluation of their limit in terms of operational properties. To identify the changes and the types of the teeth’s working surface damage, the following microscopy techniques were applied: scanning electron microscopy (FE-SEM) with EDS microanalyzer, optical interferential profilometry (WLI), atomic force microscope (AFM), and optical microscopy. The results allowed us to define the characteristic damage mechanisms and assess the efficiency of the applied DLC coatings when it comes to resistance to scuffing in shock scuffing conditions. Tribological tests were performed by means of an FZG T-12U gear test rig in a power circulating system to test cylindrical gear scuffing. The gears were made from 18CrNiMo7-6 steel and 35CrMnSiA nano-bainitic steel and coated with W-DLC/CrN. Full article
Show Figures

Figure 1

12 pages, 4677 KiB  
Article
Lap Welding of Nickel-Plated Steel and Copper Sheets Using Coaxial Laser Beams
by Kuan-Wei Su, Yi-Hsuan Chen, Hung-Yang Chu and Ren-Kae Shiue
Materials 2025, 18(14), 3407; https://doi.org/10.3390/ma18143407 - 21 Jul 2025
Viewed by 262
Abstract
The laser heterogeneous lap welding of nickel-plated steel and Cu sheets has been investigated in this study. The YAG (Yttrium-Aluminum-Garnet) laser beam only penetrates the upper Ni-plated steel sheet and cannot weld the bottom Cu sheet due to the low absorption coefficient of [...] Read more.
The laser heterogeneous lap welding of nickel-plated steel and Cu sheets has been investigated in this study. The YAG (Yttrium-Aluminum-Garnet) laser beam only penetrates the upper Ni-plated steel sheet and cannot weld the bottom Cu sheet due to the low absorption coefficient of the YAG laser beam. Incorporating a blue-light and fiber laser into the coaxial laser beam significantly improves the quality of the weld fusion zone. The fiber laser beam can penetrate the upper nickel-plated steel sheet, and the blue-light laser beam can melt the bottom copper sheet. Introducing the blue-light laser to the coaxial laser beams overcomes the low reflectivity of the bottom copper sheet. The fiber/blue-light coaxial laser continuous welding can achieve the best integrity and defect-free welding. It shows potential in the mass production of the next generation of lithium batteries. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Metal and Non-Metallic Materials)
Show Figures

Figure 1

15 pages, 4528 KiB  
Article
Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors
by Alexey Dikov, Sergey Kislitsin, Boris Ivanov, Ruslan Kiryanov and Egor Maksimkin
Materials 2025, 18(14), 3391; https://doi.org/10.3390/ma18143391 - 19 Jul 2025
Viewed by 275
Abstract
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service [...] Read more.
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service life of nuclear reactors is a modern problem, since most operating reactors are early-generation reactors that have exhausted their design lifespan. The possibility of extending the service life is largely determined by the condition of the structural materials of the nuclear facility, i.e., their residual resources must ensure safe operation of the reactor. For the SAV-1 alloy, the structural material of the WWR-K reactor, studies were conducted on witness samples which were in the active zone during its operation for 56 years. It was found that yield strength and tensile strength of the irradiated SAV-1 alloy decreased by 24–48%, and relative elongation decreased by ~2% compared to the unirradiated alloy. Inside the grains and along their boundaries, there were particles of secondary phases enriched with silicon, which is typical for aged aluminum alloys. For irradiated structural steels of power reactors, studied at 350–450 C, hardening and a damping nature of creep were revealed, caused by dispersion hardening and the Hall–Petch effect. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 6250 KiB  
Article
Microstructure and Chemical Stability of Al2O3-ZrO2-ReB2 Composite Coatings Obtained by Air Plasma Spraying
by Adriana Wrona, Kinga Czechowska, Katarzyna Bilewska, Monika Czerny, Anna Czech, Marcin Lis, Anna Brudny, Grzegorz Muzia and Lucyna Jaworska
Materials 2025, 18(14), 3363; https://doi.org/10.3390/ma18143363 - 17 Jul 2025
Viewed by 300
Abstract
This study investigated the effect of adding superhard ReB2 to atmospheric plasma sprayed (APS) coatings based on 60 wt% Al2O3 and 40 wt% ZrO2. The amorphous phases commonly present in such coatings are known to impair their [...] Read more.
This study investigated the effect of adding superhard ReB2 to atmospheric plasma sprayed (APS) coatings based on 60 wt% Al2O3 and 40 wt% ZrO2. The amorphous phases commonly present in such coatings are known to impair their performance. ReB2 was introduced as a crystallization nucleus due to its high melting point. ReB2 decomposes in the presence of moisture and oxygen into H3BO3, ReO3, HBO2, and HReO4. ReB2 was encapsulated with Al2O3 via metallothermic synthesis to improve moisture stability, yielding a powder with d90 = 15.1 μm. After milling, it was added at 20 wt% to the Al2O3-ZrO2 feedstock. Agglomeration parameters were optimized, and coatings were deposited under varying APS conditions onto 316L steel substrates with a NiAl bond coat. In the coating with the highest ReB2 content, the identified phases included ReB2 (2.6 wt%), Re (0.8 wt%), α-Al2O3 (30.9 wt%), η-Al2O3 (32.4 wt%), and monoclinic and tetragonal ZrO2. The nanohardness of the coating, measured using a Vickers indenter at 96 mN and calculated via the Oliver–Pharr method, was 9.2 ± 1.0 GPa. High abrasion resistance was obtained for the coating with a higher content of η-Al2O3 (48.7 wt%). The coefficient of friction, determined using a ball-on-disc test with a corundum ball, was 0.798 ± 0.03. After 15 months, the formation of (H3O)(ReO4) was observed, suggesting initial moisture-induced changes. The results confirm that Al2O3-encapsulated ReB2 can enhance phase stability and crystallinity in APS coatings. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

Back to TopTop