materials-logo

Journal Browser

Journal Browser

Advanced Machining and Technologies in Materials Science

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Manufacturing Processes and Systems".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1809

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Robots and Machine Design, Faculty of Mechanical Engineering, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland
Interests: additive manufacturing; mechanical properties of polymers and metals; fatigue and fracture of polymers and metals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to present groundbreaking developments in advanced manufacturing processes, precision manufacturing, and innovative material applications. The scope of this Special Issue includes high-performance machining techniques, additive and hybrid manufacturing, advanced coatings and tool materials, smart manufacturing, automation, and sustainable machining processes. We welcome experimental, theoretical, and computational studies that push the boundaries of modern machining and material sciences. A key aspect of these advancements is the development and application of innovative materials with superior properties. Therefore, this Special Issue aims to promote knowledge regarding the enhancement of machining efficiency via the achievement of exceptional hardness and wear resistance, improving the longevity of tools by reducing friction and thermal effects, and developing materials that offer high strength, corrosion resistance, and thermal stability.  This Special Issue explores the interplay between material properties and manufacturing techniques, driving innovation toward more efficient, precise, and sustainable production.

Dr. Janusz Kluczyński
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced manufacturing
  • additive manufacturing
  • hybrid technologies
  • high-speed machining
  • production technologies, precision manufacturing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 17666 KB  
Article
Modeling and Experimental Investigation of Ultrasonic Vibration-Assisted Drilling Force for Titanium Alloy
by Chuanmiao Zhai, Xubo Li, Cunqiang Zang, Shihao Zhang, Bian Guo, Canjun Wang, Xiaolong Gao, Yuewen Su and Mengmeng Liu
Materials 2025, 18(19), 4460; https://doi.org/10.3390/ma18194460 - 24 Sep 2025
Viewed by 14
Abstract
To overcome the issues of excessive cutting force, poor chip segmentation, and premature tool wear during the drilling of Ti-6Al-4V titanium alloy. This study established the cutting edge motion trajectory function and instantaneous dynamic cutting thickness equation for ultrasonic vibration-assisted drilling through kinematic [...] Read more.
To overcome the issues of excessive cutting force, poor chip segmentation, and premature tool wear during the drilling of Ti-6Al-4V titanium alloy. This study established the cutting edge motion trajectory function and instantaneous dynamic cutting thickness equation for ultrasonic vibration-assisted drilling through kinematic analysis. Based on this, an analytical model of drilling force was formulated, integrating tool geometry, cutting radius scale effects, dynamic chip thickness, and drilling depth. In parallel, a finite element model was constructed to achieve visual simulation analysis of chip deformation and cutting force. Finally, the accuracy of the model was verified through experiments, with a comprehensive analysis performed on how cutting parameters affect thrust force. The findings indicate that the average absolute prediction errors of thrust force and torque between the analytical model and finite element simulations were 7.87% and 6.26%, respectively, confirming the model’s capability to accurately capture instantaneous force and torque variations. Compared to traditional drilling methods, the application of ultrasonic vibration assistance resulted in reductions of 40.8% in thrust force and 41.7% in torque. The drilling force exhibited nonlinear growth as the spindle speed and feed rate were elevated, while it declined with greater vibration frequency and amplitude as drilling depth increased. Furthermore, the combined effect of optimized vibration parameters enhanced chip fragmentation, producing short discontinuous chips and effectively preventing entanglement. Overall, this research provides a theoretical and practical foundation for optimizing ultrasonic vibration-assisted drilling and improving precision hole making in titanium alloys. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

11 pages, 1946 KB  
Article
Influence of Surface Treatments on the Pull-Off Performance of Adhesively Bonded Polylactic Acid (PLA) Specimens Manufactured by Fused Deposition Modeling (FDM)
by Gianluca Parodo, Giuseppe Moffa, Alessandro Silvestri, Luca Sorrentino, Gabriel Testa and Sandro Turchetta
Materials 2025, 18(17), 3965; https://doi.org/10.3390/ma18173965 - 24 Aug 2025
Cited by 1 | Viewed by 718
Abstract
This study investigates the influence of different surface treatments (namely, mechanical abrasion and solvent cleaning with isopropyl alcohol and acetone) on the adhesive bonding performance of polylactic acid (PLA) substrates produced by Fused Deposition Modeling (FDM). Pull-off tests revealed that the isopropanol-cleaned specimens [...] Read more.
This study investigates the influence of different surface treatments (namely, mechanical abrasion and solvent cleaning with isopropyl alcohol and acetone) on the adhesive bonding performance of polylactic acid (PLA) substrates produced by Fused Deposition Modeling (FDM). Pull-off tests revealed that the isopropanol-cleaned specimens achieved the highest bond strength, with an average pull-off value exceeding 8.5 MPa, compared to approximately 5.6 MPa for untreated PLA. Conversely, acetone cleaning resulted in the lowest performance (about 3.5 MPa), while mechanical abrasion yielded intermediate values of about 6 MPa. FTIR analysis confirmed that no chemical reactions occurred, although acetone and abrasion induced significant physical surface changes, unlike isopropanol, which acted as an effective cleaning agent. These findings demonstrate that surface cleanliness plays a dominant role over morphological alterations in enhancing the adhesion of PLA-based 3D-printed joints. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 1890 KB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 537
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

Back to TopTop