Determination of Trace 55Fe and 63Ni in Steel Samples via Liquid Scintillation Counting
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Methods
- R: sum of double coincidences (light photons detected in coincidence by two photomultipliers) per unit of time in the appropriate range of spectrum channels for the traced sample.
- Rb: sum of double coincidences per unit of time in the appropriate range of spectrum channels for the blank sample.
- A: known activity in the vial (Bq).
3. Results
4. Discussion
- TRU resins, while commercially available, have limited capacities (only ~3 mg of Fe).
- Chelex-100 has been used as a pre-concentrator for Fe but lacks selectivity and often requires additional purification steps such as di-isopropyl ether extraction [7].
- Silica-immobilized formyl salicylic acid has a high Fe loading capacity but, again, lacks Fe specificity [17].
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreani, R. The FTU Frascati Tokamak Upgrade; Fusion Technology, Pergamon Books Inc.: Elmsford, NY, USA, 1987; pp. 149–160. [Google Scholar]
- Pucella, G.; Alessi, E.; Almaviva, S.; Angelini, B.; Apicella, M.L.; Apruzzese, G.; Aquilini, M.; Artaserse, G.; Baiocchi, B.; Baruzzo, M.; et al. Overview of the FTU results. Nucl. Fusion 2022, 62, 042004. [Google Scholar] [CrossRef]
- Marzo, G.A.; Lepore, L.; Levizzari, R.; Di Pace, L.; Cherubini, N. Non-destructive radiological characterization applied to fusion waste management. Fus. Eng Des. 2021, 173, 112805. [Google Scholar]
- Griffiths, M. Ni-based alloys for Reactor Internals and Steam Generator Applications. In Structural Alloys for Nuclear Energy Applications; Odette, G.R., Zinkle, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 9, pp. 349–409. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, Y.; Tong, W.; Ma, H. Utilization of nickel slag as raw material in the production of Portland cement for road construction. Constr. Build. Mater. 2018, 193, 426–434. [Google Scholar] [CrossRef]
- Hou, X.; Østergaard, L.R.F.; Nielsen, S.V. Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal. Chim. Acta 2005, 535, 297–307. [Google Scholar] [CrossRef]
- Konig, W.; Schupfer, R.; Schuttelkopf, H. A fast and sensitive LSC procedure to determine Fe55 in steel and concrete. J. Radioanal Nucl. Chem. 1995, 193, 119. [Google Scholar] [CrossRef]
- Warwick, P.E.; Cundy, A.B.; Croudace, I.W.; Bains, M.E.D.; Dale, A.A. The Uptake of Iron-55 by Marine Sediment, Macroalgae, and Biota Following Discharge from a Nuclear Power Station. Environ. Sci. Thecnol. 2001, 35, 2171. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Dai, X. Environmental liquid scintillation analysis. In Handbook of Radioactivity Analysis; L’Annunziata, M.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 41–136. [Google Scholar]
- Peng, C.T. Quenching Correction in Liquid Scintillation Counting. In Advances in Tracer Methodology; Rothchild, S., Ed.; Springer: New York, NY, USA, 1966. [Google Scholar] [CrossRef]
- Priya, S.; Gopalakrishnan, R.K.; Goswami, A. TDCR measurements of 3H, 63Ni and 55Fe using Hidex 300SL LSC device. J. Radioanal Nucl. Chem. 2014, 302, 353–359. [Google Scholar] [CrossRef]
- SK-10 High Pressure Rotor Application Book; Milestone: Sorisole, Italy, 2019; Available online: https://subitam.sinop.edu.tr/wp-content/uploads/sites/93/2019/12/Mikrodalga.pdf (accessed on 13 July 2025).
- Warwick, P.E.; Croudace, I.W. Isolation and quantification of 55Fe and 63Ni in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal. Chim. Acta 2006, 567, 277–285. [Google Scholar] [CrossRef]
- Corcho-Alvarado, J.A.; Sahli, H.; Röllin, S.; von Gunten, C.; Ossola, J. Validation of a radiochemical method for the determination of 55Fe and 63Ni in water and steel samples from decommissioning activities. J. Radioanal. Nucl. Chem. 2020, 3, 455–463. [Google Scholar] [CrossRef]
- Cozzella, M.L.; Gandolfo, G.; La Notte, G.; Marzo, G.A. A comparative study on the influence of the type of acid used for 55Fe and 63Ni determination in steel samples ANIMMA Lucca (Italy). EPJ Web Conf. 2023, 288, 07002. [Google Scholar] [CrossRef]
- Lloyd, A. Currie, Limits for Qualitative Detection and Quantitative Determination: Application to Radiochemistry. Anal. Chem 1968, 40, 586–593. [Google Scholar]
- Mahmoud, M.E.; Soliman, E.M. Silica-Immobilized Formylsalicylic Acid As A Selective Phase For The Extraction Of Iron (III). Talanta 1997, 44, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hou, X. Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. J. Radioanal. Nucl. Chem. 2018, 318, 1597–1628. [Google Scholar] [CrossRef]
Step | Time (min) | T1 (°C) | T2 (°C) | P (bar) | Power (W) |
---|---|---|---|---|---|
1 | 20 | 220 | 120 | 45 | 1500 |
2 | 15 | 220 | 120 | 45 | 1500 |
Sample | Weight (g) |
---|---|
1 | 0.5070 ± 0.0200 |
2 | 0.5006 ± 0.0300 |
3 | 0.5070 ± 0.0180 |
Vial | Sample Mass (g) | ε (%) | Acq. Time to Reach MDC (Days) |
---|---|---|---|
#1 | 0.063 ± 0.002 | 28.3 ± 2.0 | 12 |
#2 | 0.125 ± 0.002 | 21.2 ± 1.0 | 5 |
#3 | 0.250 ± 0.004 | 2.0 ± 0.1 | 157 |
Vial | Sample Mass (g) | ε (%) | Acq. Time to Reach MDC (Hours) |
---|---|---|---|
#1 | 0.063 ± 0.002 | 63.0 ± 4.0 | 59 |
#2 | 0.127 ± 0.002 | 54.0 ± 3.0 | 19 |
#3 | 0.254 ± 0.004 | 47.0 ± 3.0 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandolfo, G.; Cozzella, M.L.; Guarcini, T.; Marzo, G.A. Determination of Trace 55Fe and 63Ni in Steel Samples via Liquid Scintillation Counting. Appl. Sci. 2025, 15, 8264. https://doi.org/10.3390/app15158264
Gandolfo G, Cozzella ML, Guarcini T, Marzo GA. Determination of Trace 55Fe and 63Ni in Steel Samples via Liquid Scintillation Counting. Applied Sciences. 2025; 15(15):8264. https://doi.org/10.3390/app15158264
Chicago/Turabian StyleGandolfo, Giada, Maria Letizia Cozzella, Tiziana Guarcini, and Giuseppe Augusto Marzo. 2025. "Determination of Trace 55Fe and 63Ni in Steel Samples via Liquid Scintillation Counting" Applied Sciences 15, no. 15: 8264. https://doi.org/10.3390/app15158264
APA StyleGandolfo, G., Cozzella, M. L., Guarcini, T., & Marzo, G. A. (2025). Determination of Trace 55Fe and 63Ni in Steel Samples via Liquid Scintillation Counting. Applied Sciences, 15(15), 8264. https://doi.org/10.3390/app15158264