Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = 64.70 P glass transitions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1016 KB  
Article
Sustainable Alternatives in Multilayer Packaging: Storage Stability of Pudding Powder Under Accelerated Storage Conditions
by Can Türksever, Banu Koç and Ozlem Kizilirmak Esmer
Foods 2025, 14(22), 3806; https://doi.org/10.3390/foods14223806 - 7 Nov 2025
Viewed by 404
Abstract
Multilayer packaging materials are extensively used in food packaging, particularly for powdered products. In alignment with sustainable development goals, packaging design should aim to minimize material usage while maintaining the protective properties necessary to preserve food quality and safety, thereby reducing environmental impact. [...] Read more.
Multilayer packaging materials are extensively used in food packaging, particularly for powdered products. In alignment with sustainable development goals, packaging design should aim to minimize material usage while maintaining the protective properties necessary to preserve food quality and safety, thereby reducing environmental impact. A key strategy is to simplify multilayer structures to enhance recyclability. This study aims to evaluate the potential of sustainable alternative packaging materials with reduced metal and plastic content and improved recyclability for pudding powder packaging, as substitutes for conventional films. Four packaging structures were tested: a conventional three-layer laminate (polyethylene terephthalate (PET)/aluminum foil (Al-foil)/low-density polyethylene (LDPE)), two two-layer structures (AlOx-coated PET/LDPE and Al-coated PET/LDPE), and a monolayer metallized biaxially oriented polypropylene (MetBOPP). Samples were stored under accelerated conditions (38 °C and 90% relative humidity) for 180 days, and changes in moisture content, water activity, caking degree, glass transition temperature, color, and sensory attributes were monitored. The experimental data were examined for their agreement with various sorption models by creating adsorption isotherms. The acceptable storage period was estimated using the constants calculated from these models. Statistically significant differences (p < 0.05) were observed among the packaging types, primarily associated with their water vapor permeability, affecting moisture content, water activity, caking degree, and color stability. In terms of moisture content, water activity, and caking degree, the conventional PET/Al-foil/LDPE (Polyethylene terephthalate/Aluminum foil/Low density polyethylene) structure demonstrated the best performance, followed by PET.AlOx/LDPE (AlOx-coated Polyethylene terephthalate/Low density polyethylene), MPET/LDPE (Metallized polyethylene terephthalate/Low density polyethylene), and MBOPP (Metallized biaxially oriented polypropylene), respectively. The sensory analysis scores followed the same ranking; however, all samples maintained scores above the threshold value of 3 throughout the storage period, indicating that they remained acceptable. Caking degree increased moderately (from 0.61% to 0.89%) and was negatively correlated with appearance scores (R2 = −0.89, p < 0.01). Despite slight darkening (Browning Index increased from 18.16 to 20.37), sensory scores for appearance, odor, and taste remained above the acceptable threshold (score > 3.0). Based on the WVTR values of the packaging materials and the application of the GAB model, the estimated shelf lives were 800.32 days for PET/Al-foil/LDPE, 577.92 days for PET.AlOx/LDPE, 407.58 days for MPET/LDPE, and 229.26 days for MBOPP. In conclusion, the longest shelf life was achieved with PET/Al-foil/LDPE, and it was observed that as the WVTR of the packaging materials increased, the shelf life of the cocoa-based pudding powder decreased; PET.AlOx/LDPE and MPET/LDPE could be considered for medium-term storage (up to about 1–1.5 years), while MBOPP appeared suitable only for shorter durations (6–8 months). Full article
Show Figures

Graphical abstract

24 pages, 3040 KB  
Article
Fully Biobased Biodegradable Elastomeric Polymer Blends Based on PHAs
by Pavol Alexy, Vojtech Horváth, Roderik Plavec, Zuzana Vanovčanová, Katarína Tomanová, Michal Ďurfina, Mária Fogašová, Leona Omaníková, Slávka Hlaváčiková, Zuzana Kramárová, Jana Navrátilová, Vojtěch Komínek, David Jaška and Jozef Feranc
Polymers 2025, 17(21), 2811; https://doi.org/10.3390/polym17212811 - 22 Oct 2025
Viewed by 565
Abstract
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that [...] Read more.
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that semicrystalline/amorphous PHA combinations are fully miscible (single Tg) at amorphous PHA contents below 30 wt%. Above this threshold, a two-phase morphology develops, consisting of crystalline spherulites embedded in an amorphous matrix. When the amorphous PHA content reached ≥30 wt%, the blends could be oriented by stretching, yielding materials that display thermoplastic elastomer (TPE)-like behavior without chemical modification of the base polymers. Thermal and mechanical characterization, supported by X-ray diffraction of samples before and after orientation, confirmed that the elastomeric properties originate from the multiphase architecture formed by crystalline and amorphous domains interconnected through a miscible amorphous fraction. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 6164 KB  
Article
Development and Feasibility Assessment of a Sequential Antenna Deployment System Based on Fiber-Reinforced Shape Memory Polymer Composites
by Marylen T. De la Cruz, Riana Gabrielle P. Gamboa, Jon Dewitt E. Dalisay, Ricky Kristan M. Raguindin and Eduardo R. Magdaluyo
Polymers 2025, 17(20), 2797; https://doi.org/10.3390/polym17202797 - 20 Oct 2025
Cited by 1 | Viewed by 508
Abstract
With the growing demand for reliable, low-impact deployment systems in small satellite missions, this work introduces an antenna deployment mechanism using fiber-reinforced shape memory polymer composites (SMPC). The mechanism utilized thermally activated SMPCs for stowage and release, configured with different glass transition temperatures [...] Read more.
With the growing demand for reliable, low-impact deployment systems in small satellite missions, this work introduces an antenna deployment mechanism using fiber-reinforced shape memory polymer composites (SMPC). The mechanism utilized thermally activated SMPCs for stowage and release, configured with different glass transition temperatures (Tg), tuned through the addition of poly(ethylene glycol) (PEG-600), for sequential actuation. The deployment mechanism consisted of three SMPC components with varying PEG concentrations: SMPC-P (0 wt%), SMPC-5 (5 wt%), and SMPC-10 (10 wt%). For component design, three bending angle configurations (BAC) of 20°, 30°, and 40° were tested. The samples exhibited the highest fixity ratio (93.58%, 95.76%, and 96.52% for SMPC-P, SMPC-5, and SMPC-10, respectively) when conformed to the 20° BAC. All samples achieved full recovery within 2 min, with PEG-incorporated composites exhibiting more uniform behavior across cycles, while recovery rates varied by material and BAC. Deployment testing confirmed the antenna was released successfully across all BACs. The 20° BAC exhibited the fastest response, completing deployment 24 s and 30 s ahead of the 30° and 40° BACs, respectively. The proposed mechanism exhibits promising potential for integration in future CubeSat missions. However, further testing under simulated space conditions is necessary to comprehensively assess and validate its performance. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 2906 KB  
Article
Effect of PEG-600 Incorporation on the Mechanical and Thermal Response of Tunable Fiber-Reinforced Shape Memory Polymer Composites
by Marylen T. De la Cruz, Riana Gabrielle P. Gamboa, Ricky Kristan M. Raguindin, Jon Dewitt E. Dalisay and Eduardo R. Magdaluyo
Polymers 2025, 17(20), 2742; https://doi.org/10.3390/polym17202742 - 14 Oct 2025
Cited by 1 | Viewed by 1311
Abstract
Shape memory polymer composites (SMPCs) are an intelligent class of materials capable of self-actuation, offering promising applications in diverse stimuli-responsive material systems. This study developed epoxy-based SMPCs reinforced with carbon–aramid fibers at a 15:85 ratio, with their glass transition temperature (Tg) [...] Read more.
Shape memory polymer composites (SMPCs) are an intelligent class of materials capable of self-actuation, offering promising applications in diverse stimuli-responsive material systems. This study developed epoxy-based SMPCs reinforced with carbon–aramid fibers at a 15:85 ratio, with their glass transition temperature (Tg) tailored by incorporating 5 wt.% (SMPC-5) and 10 wt.% (SMPC-10) polyethylene glycol (PEG-600). Dynamic mechanical analysis (DMA) confirmed that PEG addition effectively reduced the Tg from 89.79 °C in the neat composite (SMPC-P) to 70.28 °C in SMPC-5 and 59.34 °C in SMPC-10. Incorporating 5 wt.% PEG enhanced storage and loss moduli, whereas excessive plasticization at 10 wt.% reduced stiffness. Infrared spectroscopy analysis revealed shifts and increased intensities in hydroxyl (OH), aliphatic C-H, and carbonyl (C=O) groups, indicating enhanced intermolecular interactions and bond formation. Tensile testing showed that the carbon–aramid filler significantly improved tensile strength and stiffness, with SMPC-10 achieving the highest tensile strength (233.59 MPa) and SMPC-5 the highest Young’s modulus (14.081 GPa). These results highlight the complementary role of carbon–aramid reinforcement and PEG plasticization in tuning thermomechanical behavior, providing baseline insights for designing SMPCs with tailored actuation and reliable structural performance. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

22 pages, 19738 KB  
Article
Temporal Sculpting of Laser Pulses for Functional Engineering of Al2O3/AgO Films: From Structural Control to Enhanced Gas Sensing Performance
by Doaa Yaseen Doohee, Abbas Azarian and Mohammad Reza Mozaffari
Sensors 2025, 25(18), 5836; https://doi.org/10.3390/s25185836 - 18 Sep 2025
Viewed by 1126
Abstract
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were [...] Read more.
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were achieved through optical lens modifications to control both energy density and laser spot size. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses showed a distinct reduction in both crystallite and grain sizes with decreasing pulse width, along with significant improvements in surface morphology refinement and film compactness. Hall effect measurements revealed a transition from n-type to p-type conductivity with decreasing pulse width, demonstrating increased hole concentration and reduced carrier mobility attributed to grain boundary scattering. Furthermore, current-voltage (I-V) characteristics demonstrated improved photoconductivity under illumination, with the most pronounced enhancement observed in samples prepared using longer pulse durations. Gas sensing measurements for NO2 and H2S revealed enhanced sensitivity, improved response/recovery characteristics at 250 °C, with optimal performance achieved in films deposited using shorter pulse durations. This improvement is attributed to their larger surface area and higher density of active adsorption sites. Our results demonstrate a clear relationship between laser pulse parameters and the functional properties of Al2O3/AgO films, providing valuable insights for optimizing deposition processes to develop advanced gas sensors. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

16 pages, 1510 KB  
Article
Mixed Polaron and Bipolaron Transport in (xV2O5–(65–x) Sb2O3–35P2O5) Glasses
by Manar Alenezi, Amrit Prasad Kafle, Meznh Alsubaie, Ian L. Pegg, Najwa Albalawi and Biprodas Dutta
J. Exp. Theor. Anal. 2025, 3(3), 24; https://doi.org/10.3390/jeta3030024 - 26 Aug 2025
Viewed by 582
Abstract
This study presents the electrical and optical properties of 35P2O5–xV2O5–(65–x) Sb2O3 glasses for 0 ≤ x ≤ 65 mol%. The direct current (DC) resistivity was measured by the Van der Pauw method [...] Read more.
This study presents the electrical and optical properties of 35P2O5–xV2O5–(65–x) Sb2O3 glasses for 0 ≤ x ≤ 65 mol%. The direct current (DC) resistivity was measured by the Van der Pauw method and optical absorption spectra were taken in the Ultraviolet–Visible-Near-Infrared (UV–VIS–NIR) range. Electrical transport is attributed to simultaneous hopping of small polarons (SPs) between V4+ and V5+ (vanadium ion) sites and small bipolarons (SBPs) between the Sb3+ and Sb5+ (antimony ion) sites. The resistivity exhibits a non-linear dependence on the ionic fraction of vanadium (nv), whereas the resistivity exhibits a minimum in the composition range 0 ≤ nV ≤ 0.3, and a resistivity maximum was observed in the range 0.3 ≤ nV ≤ 0.5. On further increasing nv, the resistivity exhibits a monotonic decline. In the composition range 0 ≤ nV ≤ 0.3, where the hopping distance between V ions decreases, while that between the Sb ions increases, the resistivity minimum has been shown to be the consequence of decreasing tunneling distance of SPs between the V4+ and V5+ ion sites. In the composition range 0.3 ≤ nV ≤ 0.5, the resistivity, activation energy for DC conduction, glass transition temperature, and density exhibit their respective maxima even though the separation between the V4+ and V5+ sites continues to decrease. This feature is explained by enhanced localization of electrons on account of increased disorder (entropy) among the SPs and SBPs, like that of Anderson localization. This argument is further supported by a shift in the polaronic optical absorption bands associated with the SPs and SBPs toward higher energies. The transport behavior of all the glasses except the x = 0 composition has been explained by adiabatic transport, principally, by the SPs on V ions while the Sb ions contribute little to the total transport process. The results provide a clear relation between composition, polaron/bipolaron contributions, and conduction in these glasses. Full article
Show Figures

Figure 1

19 pages, 3620 KB  
Article
Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights
by Tăchiță Vlad-Bubulac, Diana Serbezeanu, Elena Perju, Dana Mihaela Suflet, Daniela Rusu, Gabriela Lisa, Tudor-Alexandru Filip and Marius-Andrei Olariu
Nanomaterials 2025, 15(16), 1251; https://doi.org/10.3390/nano15161251 - 14 Aug 2025
Cited by 1 | Viewed by 760
Abstract
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular [...] Read more.
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular interactions, as confirmed with FTIR spectroscopy. Morphological and optical analyses revealed a transition from homogeneous to phase-separated structures with birefringent textures in ChLC-rich films. Thermal studies demonstrated improved stability and increased glass transition and melting temperatures, particularly in samples with higher ChLC content. Mechanical and dielectric evaluations highlighted the tunability of stiffness, flexibility, permittivity, and dielectric losses depending on MXene and ChLC ratios. These multifunctional films exhibit flame-retardant behavior and show promise for use in stimuli-responsive, sustainable electronic devices such as flexible displays and sensors. Full article
Show Figures

Figure 1

16 pages, 5296 KB  
Article
The Effect of the Fresh Latex Ratio on the Composition and Properties of Bio-Coagulated Natural Rubber
by Jianwei Li, Honghai Huang, Li Ding, Tuo Dai, Haoran Geng, Tao Zhao, Liguang Zhao, Fan Wu and Hongxing Gui
Polymers 2025, 17(16), 2211; https://doi.org/10.3390/polym17162211 - 13 Aug 2025
Viewed by 941
Abstract
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization [...] Read more.
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization characteristics of compounded rubber, and physical–mechanical properties of vulcanized natural rubber. The results indicate that, compared to acid-coagulated natural rubber, enzyme-assisted microbial coagulated natural rubber exhibits slightly lower levels of volatile matter, impurities, plasticity retention index (PRI), nitrogen content, calcium ions (Ca2+), iron ions (Fe3+), and fatty acid content. Conversely, it demonstrates higher values in ash content, initial plasticity (P0), Mooney viscosity (ML(1+4)), acetone extract, magnesium ions (Mg2+), copper ions (Cu2+), manganese ions (Mn2+), gel content, molecular weight and distribution, and glass transition temperature (Tg). With the increase in the proportion of PR107 and Reyan 72059 fresh latex, the ash content, volatile matter content, fatty acid content, gel content, and dispersion coefficient (PDI) of natural rubber gradually decrease, while the impurity content, PRI, nitrogen content, weight-average molecular weight (Mw), and number-average molecular weight (Mn) gradually increase. Compared to acid-coagulated natural rubber compounds, enzyme-assisted microbial-coagulated natural rubber compounds exhibit higher minimum torque (ML) and maximum torque (MH), but shorter scorch time (t10) and optimum cure time (t90). Furthermore, as the proportion of PR107 and Reyan 72059 fresh latex increases, the ML of the compounds gradually decreases. In pure rubber formulations, enzyme-assisted microbial-coagulated natural rubber vulcanizates demonstrate higher tensile strength, tear strength, modulus at 300%, and Shore A hardness compared to acid-coagulated natural rubber vulcanizates. When the fresh latex ratio of PR107, Reyan 72059, and Reyan 73397 is 1:1:3, the tensile strength and 300% modulus of the natural rubber vulcanizates reach their maximum values. In carbon black formulations, the tensile strength and tear strength of enzyme-assisted microbial-coagulated natural rubber vulcanizates are significantly higher than those of acid-coagulated natural rubber vulcanizates in pure rubber formulations, with the increase exceeding that of other samples. Full article
(This article belongs to the Special Issue Polymer Functionalization Modification)
Show Figures

Figure 1

12 pages, 1806 KB  
Article
Massive Fluctuations in the Derivatives of Pair Distribution Function Minima and Maxima During the Glass Transition
by Michael I. Ojovan, Anh Khoa Augustin Lu and Dmitri V. Louzguine-Luzgin
Metals 2025, 15(8), 869; https://doi.org/10.3390/met15080869 - 2 Aug 2025
Cited by 1 | Viewed by 970
Abstract
Parametric changes in the first coordination shell (FCS) of a vitreous metallic Pd42.5Cu30Ni7.5P20 alloy are analysed, aiming to confirm the identification of the glass transition temperature (Tg) via processing of XRD patterns utilising [...] Read more.
Parametric changes in the first coordination shell (FCS) of a vitreous metallic Pd42.5Cu30Ni7.5P20 alloy are analysed, aiming to confirm the identification of the glass transition temperature (Tg) via processing of XRD patterns utilising radial and pair distribution functions (RDFs and PDFs) and their evolution with temperature. The Wendt–Abraham empirical criterion of glass transition and its modifications are confirmed in line with previous works, which utilised the kink of the temperature dependences of the minima and maxima of both the PDF and the maxima of the structure factor S(q). Massive fluctuations are, however, identified near the Tg of the derivatives of the minima and maxima of the PDF and maxima of S(q), which adds value to understanding the glass transition in the system as a true second-order-like phase transformation in the non-equilibrium system of atoms. Full article
Show Figures

Figure 1

15 pages, 7412 KB  
Article
Effect of Sequence-Based Incorporation of Fillers, Kenaf Fiber and Graphene Nanoplate, on Polypropylene Composites via a Physicochemical Compounding Method
by Soohyung Lee, Kihyeon Ahn, Su Jung Hong and Young-Teck Kim
Polymers 2025, 17(14), 1955; https://doi.org/10.3390/polym17141955 - 17 Jul 2025
Cited by 1 | Viewed by 613
Abstract
Natural-fiber-reinforced polypropylene (PP) composites are gaining increasing interest as lightweight, sustainable alternatives for various packaging and applications. This study investigates the effect of filler addition sequence on the mechanical, morphological, thermal, and dynamic mechanical properties of PP-based composites reinforced with graphite nanoplatelets (GnP) [...] Read more.
Natural-fiber-reinforced polypropylene (PP) composites are gaining increasing interest as lightweight, sustainable alternatives for various packaging and applications. This study investigates the effect of filler addition sequence on the mechanical, morphological, thermal, and dynamic mechanical properties of PP-based composites reinforced with graphite nanoplatelets (GnP) and kenaf fiber (KF). Two filler incorporation sequences were evaluated: GnP/KF/PP (GnP initially mixed with KF before PP addition) and GnP/PP/KF (KF added after mixing GnP with PP). The GnP/KF/PP composite exhibited superior mechanical properties, with tensile strength and flexural strength increasing by up to 25% compared to the control, while GnP/PP/KF showed a 13% improvement. SEM analyses revealed that initial mixing of GnP with KF significantly improved filler dispersion and interfacial bonding, enhancing stress transfer within the composite. XRD and DSC analyses showed reduced crystallinity and lower crystallization temperatures in the addition of KF due to restricted polymer chain mobility. Thermal stability assessed by TGA indicated minimal differences between the composites regardless of filler sequence. DMA results demonstrated a significantly higher storage modulus and enhanced elastic response in the addition of KF, alongside a slight decrease in glass transition temperature (Tg). The results emphasize the importance of optimizing filler addition sequences to enhance mechanical performance, confirming the potential of these composites in sustainable packaging and structural automotive applications. Full article
(This article belongs to the Special Issue Natural Fiber-Based Green Materials, Second Edition)
Show Figures

Figure 1

15 pages, 1336 KB  
Article
Radiologic and Clinical Correlates of Long-Term Post-COVID-19 Pulmonary Sequelae
by Gorkem Durak, Kaan Akin, Okan Cetin, Emre Uysal, Halil Ertugrul Aktas, Ulku Durak, Ahmet Yasin Karkas, Naci Senkal, Hatice Savas, Atadan Tunaci, Alpay Medetalibeyoglu, Ulas Bagci and Sukru Mehmet Erturk
J. Clin. Med. 2025, 14(14), 4874; https://doi.org/10.3390/jcm14144874 - 9 Jul 2025
Viewed by 1248
Abstract
Background/Objectives: The long-term sequelae of COVID-19 pneumonia, particularly the persistence of imaging abnormalities and their relationship to clinical symptoms, remain unclear. While the acute radiologic patterns are well-documented, the transition to chronic pulmonary changes—and their implications for long COVID symptoms—require systematic investigation. [...] Read more.
Background/Objectives: The long-term sequelae of COVID-19 pneumonia, particularly the persistence of imaging abnormalities and their relationship to clinical symptoms, remain unclear. While the acute radiologic patterns are well-documented, the transition to chronic pulmonary changes—and their implications for long COVID symptoms—require systematic investigation. Methods: Our study included 93 patients with moderate to severe COVID-19 pneumonia who were admitted to Istanbul Medical Faculty Hospital, each having one follow-up CT scan over a ten-month period. Two thoracic radiologists independently calculated semi-quantitative initial chest CT scores to evaluate lung involvement in pneumonia (0–5 per lobe, total score 0–25). Two radiologists and one pulmonologist retrospectively examined the persistence of follow-up imaging findings, interpreting them alongside the relevant clinical and laboratory data. Additionally, in a subcohort (n = 46), mid-term (5–7 months) and long-term (≥10 months) scans were compared to assess temporal trajectories. Results: Among the 93 patients with long-term follow-up imaging, non-fibrotic changes persisted in 34 scans (36.6%), while fibrotic-like changes were observed in 70 scans (75.3%). The most common persistent non-fibrotic changes were heterogeneous attenuation (29%, n = 27) and ground-glass opacities (17.2%, n = 16), and the persistent fibrotic-like changes were pleuroparenchymal bands or linear atelectasis (58%, n = 54), fine reticulation (52.6%, n = 49), and subpleural curvilinear lines (34.4%, n = 32). Both persistent non-fibrotic and fibrotic-like changes were statistically correlated with the initial CT score (p < 0.001), LDH (p < 0.001), and ferritin levels (p = 0.008 and p = 0.003, respectively). Fatigue (p = 0.025) and chest pain (p < 0.001) were reported more frequently in patients with persistent non-fibrotic changes, while chest pain (p = 0.033) was reported more frequently among those with persistent fibrotic-like changes. Among the 46 patients who underwent both mid- and long-term follow-up imaging, 47.2% of those with non-fibrotic changes (17 out of 36) and 10% of those with fibrotic-like changes (4 out of 40) exhibited regression over the long term. Conclusions: Initial imaging and laboratory findings may indicate persistent imaging findings related to long-term sequelae of COVID-19 pneumonia. Many of these persistent imaging abnormalities, particularly non-fibrotic changes seen in the mid-term, tend to lessen over the long term. A correlation exists between persistent imaging findings and clinical outcomes of long COVID-19, underscoring the need for further research. Full article
(This article belongs to the Special Issue Post-COVID Symptoms and Causes, 3rd Edition)
Show Figures

Figure 1

11 pages, 8421 KB  
Article
A Metalless and Fungicide-Free Material Against Candida: Glass-Loaded Hydrogels
by Gabrielle Caroline Peiter, Elane da Silva Salvador, Fabián Ccahuana Ayma, Kádima Nayara Teixeira, Silvia Jaerger, Rafael A. Bini, Cleverson Busso, Rodrigo José de Oliveira and Ricardo Schneider
Pharmaceutics 2025, 17(7), 836; https://doi.org/10.3390/pharmaceutics17070836 - 26 Jun 2025
Viewed by 797
Abstract
Background/Objectives: We report the antifungal potential of transition metal-free borophosphate glass-loaded hydrogels (BGHs) with different phosphorus/boron molar ratios (P/B = 2, 1, and 0.5) against Candida species. Candida yeasts pose a significant health risk as they can cause infections, systemic diseases, and even [...] Read more.
Background/Objectives: We report the antifungal potential of transition metal-free borophosphate glass-loaded hydrogels (BGHs) with different phosphorus/boron molar ratios (P/B = 2, 1, and 0.5) against Candida species. Candida yeasts pose a significant health risk as they can cause infections, systemic diseases, and even potentially fatal complications in immunocompromised individuals. Methods: The antifungal activity of BGH was evaluated against Candida albicans, Candida tropicalis, Candida krusei, and Candida glabrata using kinetic growth analysis, the agar well diffusion method, the minimum inhibitory concentration, the minimum fungicidal concentration, and scanning electron microscopy. Results: All BGH formulations effectively inhibited yeast growth at various concentrations, with results comparable to commercial miconazole gel (CMG). Hydrogels with P/B ratios of 0.5 and 1 produced larger inhibition zones than CMG, except against C. glabrata. However, BGHs with a P/B ratio of 0.5 at 3% and 5% (w/w) demonstrated relevant antifungal activity, especially against C. albicans and C. tropicalis. Conclusions: These findings highlight the promising antifungal potential of borophosphate glass-based hydrogels, particularly those with high boron content. Their efficacy against multiple Candida species suggests they could serve as an alternative to conventional antifungal agents. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

11 pages, 2171 KB  
Communication
Semicontinuous Microemulsion Polymerization of Polymeric Nanoparticles of Poly(cyanoacrylates) and Poly(caprolactone)
by Gerardo León-Sánchez, Eulogio Orozco-Guareño, Oscar Guillermo Zúñiga-González, Luisa Fernanda Briones-Márquez, Raúl R. Quiñonez-López, Jesús Baudelio Campos-García and María de Jesús Palacios-Sánchez
Molecules 2025, 30(13), 2668; https://doi.org/10.3390/molecules30132668 - 20 Jun 2025
Viewed by 522
Abstract
Polymeric nanoparticles based on poly(ethyl cyanoacrylate) (PECA) and poly(ε-caprolactone) (PCL) were synthesized via semicontinuous microemulsion polymerization for potential biomedical applications. A systematic evaluation of four surfactants (Tween 80, Alkonat L70, Genapol LRO, and Brij-20) was carried out to determine their effects on micelle [...] Read more.
Polymeric nanoparticles based on poly(ethyl cyanoacrylate) (PECA) and poly(ε-caprolactone) (PCL) were synthesized via semicontinuous microemulsion polymerization for potential biomedical applications. A systematic evaluation of four surfactants (Tween 80, Alkonat L70, Genapol LRO, and Brij-20) was carried out to determine their effects on micelle formation and particle size. Brij-20 enabled the formation of nanoparticles under 100 nm, with optimal conditions identified at 4% surfactant concentration and pH 1.75. The polymerization process included acid-catalyzed ring-opening of ε-caprolactone, followed by the semicontinuous addition of ethyl-2-cyanoacrylate under an inert atmosphere. Copolymerization was confirmed through FT-IR spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and differential scanning calorimetry, revealing a glass transition temperature (Tg) of 110.9 °C, indicating PECA as the dominant phase. Thermogravimetric analysis showed two decomposition events corresponding to each polymer. Transmission electron microscope analysis revealed nanoparticles averaging 51.74 nm in diameter. These findings demonstrate the feasibility of producing PECA-PCL nanoparticles with controlled size and composition, suitable for drug delivery and other biomedical uses. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 4952 KB  
Article
Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy
by Kexin Gao, Fei Shang, Yaoyi Qin and Guohua Chen
Crystals 2025, 15(5), 444; https://doi.org/10.3390/cryst15050444 - 8 May 2025
Cited by 1 | Viewed by 706
Abstract
Based on the B-site modification strategy, excellent energy storage properties were achieved in this work by substituting Nb with Ta of the same valence in niobate-based glass ceramics. Ta substitution was found to lead to the transformation of crystal structures, and the space [...] Read more.
Based on the B-site modification strategy, excellent energy storage properties were achieved in this work by substituting Nb with Ta of the same valence in niobate-based glass ceramics. Ta substitution was found to lead to the transformation of crystal structures, and the space point group evolved from the non-centrosymmetric P4bm to the centrosymmetric P4/mbm, resulting in a transition from relaxor ferroelectric to paraelectric glass ceramics. Furthermore, the addition of Ta led to a significant decrease in grain size and interfacial activation energy, as well as an increase in the optical band gap, resulting in a dramatic increase in BDS from 800 kV/cm to 1300 kV/cm. The KBSN-4.0mol%Ta2O5 glass ceramic exhibited optimal energy storage properties, including a discharge energy density of ~5.62 J/cm3 and a superfast discharge rate of ~9.7 ns, resulting in an ultrahigh discharge power density of about ~1296.9 MW/cm3 at 1300 kV/cm. Furthermore, this KBSN-Ta glass ceramic also displayed good thermal stability over a temperature range of 20–120 °C, with the Wd decreasing by 9.0% at 600 kV/cm. B-site modification engineering in glass ceramics has proved to be an important way to effectively optimize energy storage performance. Full article
(This article belongs to the Special Issue Advances in Glass-Ceramics)
Show Figures

Graphical abstract

11 pages, 3377 KB  
Article
A Poly(Acrylamide-co-Acrylic Acid)-Encapsulated Nitrification Inhibitor with Good Soil-Loosening, Phosphorous-Solubilizing, and Nitrogen Fixation Abilities and High-Temperature Resistance
by Hui Gao, Yuli Fu, Tianyu Wang, Meijia Liu, Jianzhen Mao and Feng Xu
Polymers 2025, 17(9), 1280; https://doi.org/10.3390/polym17091280 - 7 May 2025
Viewed by 530
Abstract
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA- [...] Read more.
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA-co-AM)-e-NI) is synthesized by incorporating linear P(AM-co-AA) macromolecular structures into NI systems. The P(AA-co-AM)-e-NI demonstrates an obvious phase transition from a glassy state to a rubbery state, with a glass transition temperature of ~150 °C. Only 5 wt% of the weight loss occurs at 220 °C, meeting the temperature requirements of the high-tower melt granulation process (≥165 °C). The DMPZ content in P(AA-co-AM)-e-NI is 1.067 wt%, representing a 120% increase compared to our previous products (0.484 wt%). P(AA-co-AM)-e-NI can effectively reduce the abundance of ammonia-oxidizing bacteria and prolong the duration during which nitrogen fertilizers exist in the form of ammonium nitrogen. It can also cooperatively enhance the conversion of insoluble phosphorus into soluble phosphorus in the presence of ammonium nitrogen (NH4+-N). In addition, upon adding P(AA-co-AM)-e-NI into soils, soil bulk density and hardness decrease by 9.2% and 10.5%, respectively, and soil permeability increases by 10.5%, showing that it has a good soil-loosening ability and capacity to regulate the soil environment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop