Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Glass Ceramics
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Shen, B.; Hao, H.; Zhai, J. Glass-ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications. J. Mater. Chem. C 2019, 7, 15118–15135. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Jin, L.; Poelman, D. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges. J. Mater. Chem. A 2021, 9, 18026–18085. [Google Scholar] [CrossRef]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef] [PubMed]
- Xiu, S.; Xiao, S.; Xue, S.; Shen, B.; Zhai, J. Crystallization kinetics behaviour and dielectric properties of strontium barium niobate-based glass–ceramics. J. Mater. Sci. Mater. Electron. 2016, 27, 5324–5330. [Google Scholar] [CrossRef]
- Xiu, S.; Xiao, S.; Zhang, W.; Xue, S.; Shen, B.; Zhai, J. Effect of rare-earth additions on the structure and dielectric energy storage properties of BaxSr1-xTiO3-based barium boronaluminosilicate glass-ceramics. J. Alloys Compd. 2016, 670, 217–221. [Google Scholar] [CrossRef]
- Chen, G.H.; Zheng, J.; Yuan, C.L.; Zhou, C.R.; Kang, X.L.; Xu, J.W.; Yang, Y. Enhanced energy storage properties of P2O5 modified niobate-based B2O3 system glass ceramic composites. Mater. Lett. 2016, 176, 46–48. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, T.L.; Zhu, X.L.; Liu, L.; Chen, X.M. Ferroelectric transition and structural modulation in Sr2Na (Nb1−xTax)5O15 tungsten bronze ceramics. J. Appl. Phys. 2021, 129, 244107. [Google Scholar] [CrossRef]
- Kundu, S.; Varma, K.B.R. Evolution of nanocrystalline Ba2NaNb5O15 in 2BaO-0.5Na2O-2.5Nb2O5-4.5B2O3 glass system and its refractive index and band gap tunability. Cryst. Growth Des. 2013, 14, 585–592. [Google Scholar]
- Oliver, J.R.; Neurgaonkar, R.R. Ferroelectric properties of tungsten bronze morphotropic phase bounary systems. J. Am. Ceram. Soc. 1989, 72, 202–211. [Google Scholar] [CrossRef]
- Lin, K.; Zhou, Z.; Liu, L.; Ma, H.; Chen, J.; Deng, J.; Sun, J.; You, L.; Kasai, H.; Kato, K.; et al. Unusual strong incommensurate modulation in a Tungsten-Bronze-Type relaxor PbBiNb5O15. J. Am. Chem. Soc. 2015, 137, 13468–13471. [Google Scholar] [CrossRef]
- Yang, Z.; Gu, R.; Wei, L.; Ren, H. Phase formation, microstructure and dielectric properties of Sr0. 53Ba0. 47Nb2−xTaxO6 ceramics. J. Alloys Compd. 2010, 504, 211–216. [Google Scholar] [CrossRef]
- Yang, Z.J.; Liu, X.Q.; Zhu, X.L.; Chen, X.M. Crossover from normal to relaxor ferroelectric in Sr0. 25Ba0. 75 (Nb1−xTax)2O6 ceramics with tungsten bronze structure. Appl. Phys. Lett. 2020, 117, 122902. [Google Scholar] [CrossRef]
- Feng, W.B.; Zhu, X.L.; Liu, X.Q.; Chen, X.M. Effects of B site ions on the relaxor to normal ferroelectric transition crossover in Ba4Sm2Zr4(NbxTa1−x)6O30 tungsten bronze ceramics. Appl. Phys. Lett. 2018, 112, 262904. [Google Scholar] [CrossRef]
- Xu, S.; Deng, Z.; Shen, S.; Wei, L.; Yang, Z. Structural and electrical effects of Ag substitution in tungsten bronze Sr2AgxNa1− xNb5O15 ceramics. Ceram. Int. 2020, 46, 13997–14004. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, W.; Bu, X.; Zheng, P.; Li, L.; Wen, F.; Bai, W.; Zheng, L.; Zhang, Y. Remarkable capacitive performance in novel tungsten bronze ceramics. Dalton Trans. 2021, 50, 124–130. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, Y.; Meng, X.; Li, E.; Tang, B. Ferroelectric-relaxor crossover and energy storage properties in Sr2NaNb5O15-based tungsten bronze ceramics. ACS Appl. Mater. Interfaces 2022, 14, 9318–9329. [Google Scholar] [CrossRef]
- Wang, H.; Bu, X.; Zhang, X.; Zheng, P.; Li, L.; Wen, F.; Bai, W.; Zhang, J.; Zheng, L.; Zhang, Y. Pb/Bi-free tungsten bronze-based relaxor ferroelectric ceramics with remarkable energy storage performance. ACS Appl. Energy Mater. 2021, 4, 9066–9076. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Kandula, K.R.; Li, W.; Meng, S.; Qin, Y.; Zhang, H.; Zhang, G. Achieving excellent energy storage density of Pb0. 97La0.02 (ZrxSn0. 05Ti0. 95-x) O3 ceramics by the B-site modification. J. Eur. Ceram. Soc. 2021, 41, 360–367. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Cabral, M.J.; Liao, X.; Zhang, S.; Liao, C.; Zhang, G.; Chen, X.; Feng, Q.; Li, J.F. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 2020, 11, 4824. [Google Scholar] [CrossRef]
- Ge, P.Z.; Tang, X.G.; Meng, K.; Huang, X.X.; Li, S.F.; Liu, Q.X.; Jiang, Y.P. Energy storage density and charge-discharge properties of PbHf1− xSnxO3 antiferroelectric ceramics. Chem. Eng. J. 2022, 429, 132540. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Q.; Luo, C.; Lan, Y.; Yuan, C.; Luo, N.; Zhou, C.; Fujita, T.; Xu, J.; Chen, G.; et al. Ultrahigh energy storage density and efficiency in Bi0.5Na0.5TiO3-based ceramics via the domain and bandgap engineering. ACS Appl. Mater. Interfaces 2021, 13, 51218–51229. [Google Scholar] [CrossRef]
- Qin, Y.; Shang, F.; Chen, G.; Xu, J.; Wang, Y.; Li, Z.; Zhai, J. Achieving ultrahigh discharge energy and power density in niobate-based glass ceramics via A-site substitution modulation during crystallization. J. Mater. Chem. A 2022, 10, 11535–11541. [Google Scholar] [CrossRef]
- Li, R.; Pu, Y.; Zhang, Q.; Wang, W.; Li, J.; Du, X.; Chen, M.; Zhang, X.; Sun, Z. The relationship between enhanced dielectric property and structural distortion in Ca doped Ba2NaNb5O15 tungsten bronze ceramics. J. Eur. Ceram. Soc. 2020, 40, 4509–4516. [Google Scholar] [CrossRef]
- Yang, B.; Hao, S.; Yang, P.; Wei, L.; Yang, Z. Relaxor behavior and energy storage density induced by B-sites substitutions in (Ca0. 28Ba0. 72) 2.1 Na0. 8Nb5O15 tungsten bronze ceramics. Ceram. Int. 2018, 44, 8832–8841. [Google Scholar] [CrossRef]
- Yao, Y.B.; Mak, C.L.; Ploss, B. Phase transitions and electrical characterizations of (K0.5Na0.5)2x(Sr0.6Ba0.4)5−xNb10O30 (KNSBN) ceramics with ‘unfilled’ and ‘filled’ tetragonal tungsten–bronze (TTB) crystal structure. J. Eur. Ceram. Soc. 2012, 32, 4353–4361. [Google Scholar] [CrossRef]
- Li, D.; Zhou, D.; Wang, D.; Zhao, W.; Guo, Y.; Shi, Z. Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy. Adv. Funct. Mater. 2021, 32, 2111776. [Google Scholar] [CrossRef]
- Xie, A.; Zuo, R.; Qiao, Z.; Fu, Z.; Hu, T.; Fei, L. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv. Energy Mater. 2021, 11, 2101378. [Google Scholar] [CrossRef]
- Chen, H.; Shi, J.; Chen, X.; Sun, C.; Pang, F.; Dong, X.; Zhang, H.; Zhou, H. Excellent energy storage properties and stability of NaNbO3-Bi (Mg0.5 Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3. J. Mater. Chem. A 2021, 9, 4789–4799. [Google Scholar] [CrossRef]
- Wu, L.; Tang, L.; Zhai, Y.; Zhang, Y.; Sun, J.; Hu, D.; Pan, Z.; Su, Z.; Zhang, Y.; Liu, J. Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0. 875Nb0. 1O3. J. Mater. 2022, 8, 537–544. [Google Scholar]
- Kim, C.; Pilania, G.; Ramprasad, R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J. Phys. Chem. C 2016, 120, 14575–14580. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, K.; Shen, B.; Zhai, J. Excellent energy storage and charge-discharge performances in sodium-barium-niobium based glass ceramics. Ceram. Int. 2019, 45, 19429–19434. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, T.; Shen, B.; Zhai, J. Effects of crystalline temperature on microstructures and dielectric properties in BaO-Na2O-Bi2O3-Nb2O5-Al2O3-SiO2 glass-ceramics. Mater. Sci. Eng. B 2021, 263, 114885. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhai, J.; Pan, Z.; Shen, B. Effects of Sr substitution for Ba on dielectric and energy-storage properties of SrO-BaO-K2O-Nb2O5-SiO2 glass-ceramics. J. Eur. Ceram. Soc. 2017, 37, 3917–3925. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, K.; Shen, B.; Zhai, J. Enhanced energy-storage density in sodium-barium-niobate based glass-ceramics realized by doping CaF2 nucleating agent. J. Mater. Sci. Mater. Electron. 2019, 30, 15277–15284. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhai, J.; Shen, B.; Xiu, S.; Xiao, S.; Pan, Z. Enhanced energy storage density and discharge efficiency in the strontium sodium niobate-based glass-ceramics. J. Alloys Compd. 2016, 687, 280–285. [Google Scholar] [CrossRef]
- Jiang, D.; Shang, F.; Chen, G. Crystallization behavior, ultrahigh power density and high actual discharge energy density of lead-free borate glass-ceramics containing TiO2. Ceram. Int. 2021, 47, 27142–27150. [Google Scholar] [CrossRef]
- Xue, S.; Liu, S.; Zhang, W.; Shen, B.; Zhai, J. Correlation of energy conversion efficiency and interface polarization in niobate glass-ceramic for energy-storage applications. Appl. Phys. Lett. 2015, 106, 162903. [Google Scholar] [CrossRef]
- Jiang, D.; Zhong, Y.; Shang, F.; Chen, G. Crystallization, microstructure and energy storage behavior of borate glass-ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 12074–12082. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhai, J.; Shen, B.; Cain, M. Ultra high energy-storage density in the barium potassium niobate-based glass-ceramics for energy-storage applications. J. Am. Ceram. Soc. 2016, 99, 2909–2912. [Google Scholar] [CrossRef]
- Pan, Z.; Hu, D.; Zhang, Y.; Liu, J.; Shen, B.; Zhai, J. Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C 2019, 7, 4072–4078. [Google Scholar] [CrossRef]
- Zhou, M.; Liang, R.; Zhou, Z.; Dong, X. Achieving ultrahigh energy storage density and energy efficiency simultaneously in sodium niobate-based lead-free dielectric capacitors via microstructure modulation. Inorg. Chem. Front. 2019, 6, 2148–2157. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Z.; Chen, T.; Luo, H.; Zhang, H.; Khanom, T.; Zhang, D.; Abrahams, I.; Yan, H. Tunable phase transitions in NaNbO3 ceramics through bismuth/vacancy modification. J. Mater. Chem. C 2021, 9, 4289–4299. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Zhuo, F.; Xu, C.; Zhang, G.; Liu, L.; Chen, X.; Hu, C.; Zhou, H.; Wei, Y. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 2019, 7, 14118–14128. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Ye, J.; Wang, G.; Dong, X.; Withers, R.; Liu, Y. Antiferroelectrics for energy storage applications: A review. Adv. Mater. Technol. 2018, 3, 1800111. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, J.; Li, C.; Bai, W.; Wu, S.; Zheng, P.; Zhang, J.; Zhai, J. High capacitive performance at moderate operating field in (Bi0. 5Na0. 5) TiO3-based dielectric ceramics via synergistic effect of site engineering strategy. Chem. Eng. J. 2021, 426, 130811. [Google Scholar] [CrossRef]
- Wang, S.; Tian, J.; Liu, J.; Yang, K.; Shen, B.; Zhai, J. Ultrahigh energy storage density and instantaneous discharge power density in BaO-PbO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics. J. Mater. Chem. C 2018, 6, 12608–12614. [Google Scholar] [CrossRef]
- Chen, K.K.; Bai, H.R.; Yan, F.; He, X.; Liu, C.S.; Xie, S.F.; Shen, B.; Zhai, J.W. Achieving superior energy storage properties and ultrafast discharge speed in environment-friendly niobate-based glass ceramics. ACS Appl. Mater. Interfaces 2021, 13, 4236–4243. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Cao, F.; Wang, G.; Dong, X.; Hu, Z.; Du, T. Charge-discharge properties of an antiferroelectric ceramics capacitor under different electric fields. J. Am. Ceram. Soc. 2010, 93, 4015–4017. [Google Scholar] [CrossRef]
- Liu, C.S.; Xie, S.F.; Bai, H.R.; Yan, F.; Fu, T.T.; Shen, B.; Zhai, J.W. Excellent energy storage performance of niobate-based glass-ceramics via introduction of nucleating agent. J. Mater. 2022, 8, 763–771. [Google Scholar] [CrossRef]
- Xie, S.; Liu, C.; Bai, H.; Fu, T.; Shen, B.; Zhai, J. Crystallization-temperature controlled alkali-free niobate glass-ceramics with high energy storage density and actual discharge energy density. J. Alloys Compd. 2022, 910, 164923. [Google Scholar] [CrossRef]
- Luo, F.; Xing, J.; Qin, Y.; Zhong, Y.; Shang, F.; Chen, G. Up-conversion luminescence, temperature sensitive and energy storage performance of lead-free transparent Yb3+/Er3+ co-doped Ba2NaNb5O15 glass-ceramics. J. Alloys Compd. 2022, 910, 164859. [Google Scholar] [CrossRef]
- Luo, F.; Qin, Y.; Shang, F.; Chen, G. Crystallization temperature dependence of structure, electrical and energy storage properties in BaO-Na2O-Nb2O5-Al2O3-B2O3 glass ceramics. Ceram. Int. 2022, 48, 30661–30669. [Google Scholar] [CrossRef]
- Peng, X.; Pu, Y.; Du, X.; Ji, J.; Gao, P.; Zhang, L.; Sun, Z. Tailoring of ferroelectrics in (Na2O, K2O)-Nb2O5-SiO2 glass-ceramics via control the crystallization kinetics. Chem. Eng. J. 2021, 422, 130027. [Google Scholar] [CrossRef]
- Wang, S.; Tian, J.; Jiang, T.; Zhai, J.; Shen, B. Effect of phase structures on dielectric properties and energy storage performances in Na2O-BaO-PbO-Nb2O5-SiO2-Al2O3 glass-ceramics. Ceram. Int. 2018, 44, 23109–23115. [Google Scholar] [CrossRef]
- Cheng, S.; Zhou, Y.; Li, Y.; Yuan, C.; Yang, M.; Fu, J.; Li, Q. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 2021, 42, 445–453. [Google Scholar] [CrossRef]
- Yin, P.; Xie, P.; Tang, Q.; He, Q.; Wei, S.; Fan, R.; Shi, Z. Enhanced dielectric energy storage properties in linear/nonlinear composites with hybrid-core satellite C/SiO2@TiO2 nanoparticles. Appl. Phys. Lett. 2023, 122, 132905. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Z.; Zhao, Y.; Liu, Z.; Pang, H.; Dang, Z.M. Unifying and suppressing conduction losses of polymer dielectrics for superior high-temperature capacitive energy storage. Adv. Mater. 2024, 36, 2309640. [Google Scholar] [CrossRef]
- Dong, J.; Li, L.; Qiu, P.; Pan, Y.; Niu, Y.; Sun, L.; Wang, H. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv. Mater. 2023, 35, 2211487. [Google Scholar] [CrossRef]
- Fang, R.; Xu, R.; Zhang, L.; Sun, X.; Wang, Y.; Zhang, X.; Zhao, L. Polarization structural design in core–shell fillers: An approach to significantly enhance the energy storage properties of BST/PVDF composite films. ACS Appl. Electron. Mater. 2022, 4, 2534–2544. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Zhou, D.; Li, D.; Pang, L.; Liu, W.; Sun, S. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 2022, 32, 2204155. [Google Scholar] [CrossRef]
- Xie, A.; Fu, J.; Zuo, R.; Jiang, X.; Li, T.; Fu, Z.; Zhang, S. Supercritical relaxor nanograined ferroelectrics for ultrahigh-energy-storage capacitors. Adv. Mater. 2022, 34, 2204356. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Bai, H.; Ge, G.; Lin, J.; Sh, C.; Zhu, K.; Zhang, S. Composition and structure optimized BiFeO3-SrTiO3 lead-free ceramics with ultrahigh energy storage performance. Small 2022, 18, 2106515. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Li, M.D.; Tang, Z.H.; Tang, X.G. Enhanced energy storage density and efficiency in lead-free Bi(Mg1/2Hf1/2)O3-modified BaTiO3 ceramics. Chem. Eng. J. 2021, 418, 129379. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Lin, L.; Bai, W.; Wu, S.; Zheng, P.; Zhai, J. Superior energy storage capability and stability in lead-free relaxors for dielectric capacitors utilizing nanoscale polarization heterogeneous regions. Small 2023, 19, 2206662. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Li, J.H.T.; Zhu, F.; Tian, W.; Liu, X. Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl. Energy Mater. 2022, 5, 3436–3446. [Google Scholar] [CrossRef]
- Joseph, J.; Cheng, Z.; Zhang, S. NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications. J. Mater. 2022, 8, 731–738. [Google Scholar] [CrossRef]
- Li, D.; Xu, D.; Zhao, W.; Avdeev, M.; Jing, H.; Guo, Y.; Zhou, D. A high-temperature performing and near-zero energy loss lead-free ceramic capacitor. Energy Environ. Sci. 2023, 16, 4511–4521. [Google Scholar] [CrossRef]
- Ding, Y.; Que, W.; He, J.; Bai, W.; Zheng, P.; Li, P.; Zhai, J. Realizing high-performance capacitive energy storage in lead-free relaxor ferroelectrics via synergistic effect design. J. Eur. Ceram. Soc. 2022, 42, 129–139. [Google Scholar] [CrossRef]
- Ding, Y.; Li, P.; He, J.; Que, W.; Bai, W.; Zheng, P.; Zhai, J. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos. Part B Eng. 2022, 230, 109493. [Google Scholar] [CrossRef]
Ta Content | x = 0.0 | x = 1.0 | x = 2.0 | x = 4.0 | x = 8.0 |
---|---|---|---|---|---|
Space group | P4bm | P4bm | P4bm | P4/mbm | P4/mbm |
a (Å) | 12.52019 | 12.520752 | 12.517999 | 12.509094 | 12.50440 |
b (Å) | 12.52019 | 12.520752 | 12.517999 | 12.509294 | 12.50440 |
c (Å) | 3.95194 | 3.949690 | 3.950870 | 3.947899 | 3.946172 |
c/a | 0.315645 | 0.315451 | 0.315615 | 0.315597 | 0.315583 |
Rp (%) | 3.45 | 3.39 | 3.52 | 4.13 | 4.06 |
Rwp (%) | 4.32 | 4.32 | 4.42 | 5.25 | 5.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Shang, F.; Qin, Y.; Chen, G. Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy. Crystals 2025, 15, 444. https://doi.org/10.3390/cryst15050444
Gao K, Shang F, Qin Y, Chen G. Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy. Crystals. 2025; 15(5):444. https://doi.org/10.3390/cryst15050444
Chicago/Turabian StyleGao, Kexin, Fei Shang, Yaoyi Qin, and Guohua Chen. 2025. "Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy" Crystals 15, no. 5: 444. https://doi.org/10.3390/cryst15050444
APA StyleGao, K., Shang, F., Qin, Y., & Chen, G. (2025). Optimized Breakdown Strength and Crystal Structure for Boosting the Energy Storage Performance of Niobate-Based Glass Ceramics via a B-Site Substitution Strategy. Crystals, 15(5), 444. https://doi.org/10.3390/cryst15050444