Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = 4-methylcoumarins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2687 KiB  
Article
Isomeric 3-Pyridinylmethylcoumarins Differ in Erk1/2-Inhibition and Modulation of BV2 Microglia-Mediated Neuroinflammation
by Rami Schulzki, Matthias Apweiler, Caroline Röttger, Christoph W. Grathwol, Nora Struchtrup, Sophia Abou El Mirate, Claus Normann, Stefan Bräse and Bernd L. Fiebich
Molecules 2025, 30(11), 2452; https://doi.org/10.3390/molecules30112452 - 3 Jun 2025
Viewed by 608
Abstract
Coumarins are known for their multiple biological effects and have been established as anti-coagulative drugs for years. Furthermore, some coumarins can promote anti-inflammatory effects via the GPR55 receptor, and dual target coumarins have been synthesized. Anti-inflammatory drugs might be beneficial in the treatment [...] Read more.
Coumarins are known for their multiple biological effects and have been established as anti-coagulative drugs for years. Furthermore, some coumarins can promote anti-inflammatory effects via the GPR55 receptor, and dual target coumarins have been synthesized. Anti-inflammatory drugs might be beneficial in the treatment of neuropsychiatric disorders, as the inflammatory hypothesis suggests. For the current study, we compared isomeric 3-pyridinylmethylcoumarins with altered N-atom position regarding their effects on cytokine and chemokine synthesis and expression in LPS-stimulated BV2 microglial cells. The 3-pyridin-4-yl-methylcoumarin showed the most potent anti-inflammatory effects, followed by the 3-pyridin-2-ylmethylcoumarin analog. The observed effects might be mediated by an inhibition of ERK phosphorylation. Full article
Show Figures

Graphical abstract

18 pages, 3099 KiB  
Article
Structural Features of Coumarin-1,2,4-Triazole Hybrids Important for Insecticidal Effects Against Drosophila melanogaster and Orius laevigatus (Fieber)
by Domagoj Šubarić, Vesna Rastija, Maja Karnaš Babić, Dejan Agić and Ivana Majić
Molecules 2025, 30(8), 1662; https://doi.org/10.3390/molecules30081662 - 8 Apr 2025
Cited by 1 | Viewed by 608
Abstract
Although the present use of pesticides in plant protection has limited the occurrence and development of plant diseases and pests, resistance to pesticides and their environmental and health hazards indicates an urgent need for new active ingredients in plant protection products. Recently synthesized [...] Read more.
Although the present use of pesticides in plant protection has limited the occurrence and development of plant diseases and pests, resistance to pesticides and their environmental and health hazards indicates an urgent need for new active ingredients in plant protection products. Recently synthesized coumarin-1,2,4-triazole hybrid compounds have been proven effective against plant pathogenic fungi and safe for soil-beneficial bacteria. Drosophila melanogaster, the common fruit fly, has been used as a model organism for scientific research. Additionally, it is considered a pest since it damages fruits and serves as a carrier for various plant diseases. On the contrary, Orius laevigatus is a beneficial true bug that biologically controls harmful arthropods in agricultural production. In the present study, we performed an adulticidal bioassay against D. melanogaster and O. laevigatus using coumarin-1,2,4-triazole hybrids. Quantitative structure–activity relationship studies (QSARs) and in silico ecotoxicity evaluation elucidated the structural features underlying the compounds’ insecticidal activity. The derivative of 4-methylcoumarin-1,2,4-triazole with a 3-bromophenyl group showed great insecticidal potential. A molecular docking study indicated that the most active compound probably binds to glutamate-gated chloride channels. Full article
Show Figures

Graphical abstract

20 pages, 2061 KiB  
Article
5,7-Dihydroxy-4-Methylcoumarin as a Functional Compound for Skin Pigmentation and Human Skin Safety
by Ye-Jin Lee, Yang Xu and Chang-Gu Hyun
Pharmaceuticals 2025, 18(4), 463; https://doi.org/10.3390/ph18040463 - 25 Mar 2025
Viewed by 707
Abstract
Background/Objectives: This study aims to investigate the effects of 5,7-dihydroxy-4-methylcoumarin (5,7D-4MC) on melanogenesis in B16F10 murine melanoma cells and to evaluate its safety as a potential ingredient for functional cosmetics and therapeutic agents targeting pigmentation-related disorders. Method: The cytotoxicity of 5,7D-4MC was assessed [...] Read more.
Background/Objectives: This study aims to investigate the effects of 5,7-dihydroxy-4-methylcoumarin (5,7D-4MC) on melanogenesis in B16F10 murine melanoma cells and to evaluate its safety as a potential ingredient for functional cosmetics and therapeutic agents targeting pigmentation-related disorders. Method: The cytotoxicity of 5,7D-4MC was assessed using an MTT assay, and melanin content and tyrosinase activity were measured at different concentrations (25, 50, 100 µM). Western blot analyses were conducted to evaluate the expression of key melanogenesis-related proteins (TYR, TRP-1, TRP-2, and MITF) and to investigate the regulation of major signaling pathways, including PKA/cAMP, GSK3β, and PI3K/AKT. Additionally, a human primary skin irritation test was performed on 32 participants to assess the dermatological safety of 5,7D-4MC. Results: 5,7D-4MC did not affect cell viability at concentrations below 100 µM and significantly promoted melanin production in a dose-dependent manner. Tyrosinase activity and the expression levels of melanogenic proteins increased significantly following 5,7D-4MC treatment. PKA and GSK3β pathways were activated, while the PI3K/AKT pathway was downregulated. The skin irritation test showed that 5,7D-4MC exhibited low irritation potential at concentrations of 50 µM and 100 µM. Conclusions: 5,7D-4MC enhances melanogenesis and demonstrates low skin irritation, making it a promising candidate for therapeutic applications in treating hypopigmentation disorders, such as vitiligo, as well as a functional cosmetic ingredient. However, further studies involving human melanocytes and clinical trials are required to validate their efficacy. Full article
Show Figures

Figure 1

26 pages, 3074 KiB  
Article
Enhancing the Growth of Artemisia abrotanum by Magnesium and Tropaeolum majus Extract in a Field Experiment Along with the Antibacterial Activity of the Isolated Essential Oils
by Mervat EL-Hefny and Abeer A. Mohamed
Horticulturae 2025, 11(3), 328; https://doi.org/10.3390/horticulturae11030328 - 17 Mar 2025
Viewed by 475
Abstract
Enhancing the growth and productivity of ornamental and horticultural plants is a major function of plant extracts and macronutrient elements. The growth properties of Artemisia abrotanum plants were evaluated in two successive seasons as affected by the magnesium (Mg) fertilizer added to the [...] Read more.
Enhancing the growth and productivity of ornamental and horticultural plants is a major function of plant extracts and macronutrient elements. The growth properties of Artemisia abrotanum plants were evaluated in two successive seasons as affected by the magnesium (Mg) fertilizer added to the soil in the form of magnesium sulfate at four concentrations of 0 (as a control), 4, 6, and 8 g/L as well as Tropaeolum majus aqueous leaf extract (ALE) at concentrations of 0 (as a control), 4, 6, and 8 g/L as a foliar application. The chemical components of A. abrotanum essential oils (EOs) were analyzed using the gas chromatography–mass spectrometry (GC-MS) apparatus. The studied parameters, including plant height, total fresh weight, number of branches/plant, EO percentages, chlorophyll-a content, chlorophyll-b content, and carotenoid content, were enhanced by the application of Mg or T. majus ALE or their combinations. The highest plant heights, 48.83 cm, and 48.5 cm, were observed in the plants treated with Mg (8 g/L)+T. majus ALE (8 g/L) and Mg (6 g/L)+T. majus ALE (4 g/L), in both seasons, respectively. The highest values of total fresh weight, 54.80 and 60.59 g, were recorded in plants treated with Mg (8 g/L)+T. majus ALE (4 g/L) and Mg (8 g/L)+T. majus ALE (4 g/L), in both seasons, respectively. The highest number of branches/plant, 60.33 and 73.33, were measured in plants treated with Mg (8 g/L)+T. majus LAE (8 g/L), in both seasons, respectively. The highest EO percentages, 0.477% and 0.64%, were measured in plants treated with Mg (8 g/L)+T. majus ALE (8 g/L), in both seasons, respectively. The total fresh weight in both seasons (r = 0.96), the number of branches/plant in both seasons (r = 0.97), the number of branches/plant in the first season, and the number of branches/plant in both seasons (r = 0.96), the total fresh weight in the second season and the number of branches/plant in the first season (r = 0.95) and the second season (r = 0.94), and the number of branches/plant and the carotenoids in the first season (r = 0.90) were all found to be significantly and positively correlated. The major compounds in the EOs were 7-methoxy-4-methylcoumarin (4-methylherniarin), cedrol, endo-borneol, and 7-epi-silphiperfol-5-ene. The antibacterial activity of the EOs was evaluated against the growth of Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum, which causes soft rot of potato tubers. The EOs were found to be effective against P. carotovorum subsp. carotovorum with the inhibition zones ranging from 1 to 5 mm at the concentration of 100 μg/mL, and no inhibitions were found against P. atrosepticum at the studied concentrations. The minimum inhibitory concentration against P. carotovorum subsp. carotovorum was found at 75 μg/mL. In conclusion, using the combination treatments of Mg and T. majus ALE is highly suggested to enhance the growth of A. abrotanum plants. Full article
Show Figures

Figure 1

11 pages, 902 KiB  
Article
Occurrence, Bioaccumulation, and Human Exposure Risk of the Antiandrogenic Fluorescent Dye 7-(Dimethylamino)-4-methylcoumarin and 7-(Diethylamino)-4-methylcoumarin in the Dongjiang River Basin, South China
by Yufeng Lai, Yin Huang, Danlin Yang, Jingchuan Xue, Runlin Chen, Rundong Peng, Siying Zhang, Yufei Li, Guochun Yang and Yuxian Liu
Toxics 2024, 12(12), 925; https://doi.org/10.3390/toxics12120925 - 20 Dec 2024
Viewed by 901
Abstract
Recently, 7-diethylamino-4-methylcoumarin (DEAMC) has been identified as a potent antiandrogenic compound in the surface water; however, little is known about the antiandrogenic potentials of other synthetic coumarins and their occurrence in the aquatic ecosystem. In this study, for the first time, we observed [...] Read more.
Recently, 7-diethylamino-4-methylcoumarin (DEAMC) has been identified as a potent antiandrogenic compound in the surface water; however, little is known about the antiandrogenic potentials of other synthetic coumarins and their occurrence in the aquatic ecosystem. In this study, for the first time, we observed that 7-dimethylamino-4-methylcoumarin (DAMC) elicited androgen receptor (AR) antagonistic activity with a 50% inhibitory concentration (IC50) of 1.46 µM, which is 14.3 times more potent than that observed for DEAMC (IC50 = 20.92 µM). We further collected abiotic (water and sediment) and biotic (plant, plankton, and fish) samples (n = 208) from a subtropical freshwater ecosystem, the Dongjiang River basin, in southern China, and determined the concentrations of the two coumarins in these samples. Overall, DAMC was the predominant compound found in the sediment, plant, algae, zooplankton, and fish muscle samples, with median concentrations at 0.189, 0.421, 0.832, 0.798, and 0.335 ng/g dry wt. (DW), respectively, although it was not detected in any surface water sample. For DEAMC, the median concentrations observed in the surface water, sediment, plant, algae, zooplankton, and fish muscle samples were 0.105 ng/L, 0.012, 0.051, 0.009, 0.008, and 0.181 ng/g DW, respectively. The bioaccumulation factor (BAF) values of DAMC and DEAMC in the algae, zooplankton, and fish muscle exceeded 5000 L/kg, suggesting that the two coumarins may have significant bioaccumulation potentials in aquatic biota. Additionally, the mean daily intake (EDI) of coumarins through fish consumption was estimated as 0.19 ng/kg BW/day for male toddlers. This is the first field study to illustrate the antiandrogenic potential of DAMC and document the widespread occurrence of the two synthetic coumarins in aquatic ecosystems. Full article
Show Figures

Figure 1

25 pages, 10386 KiB  
Article
Coumarin Derivative Hybrids: Novel Dual Inhibitors Targeting Acetylcholinesterase and Monoamine Oxidases for Alzheimer’s Therapy
by Teresa Żołek, Rosa Purgatorio, Łukasz Kłopotowski, Marco Catto and Kinga Ostrowska
Int. J. Mol. Sci. 2024, 25(23), 12803; https://doi.org/10.3390/ijms252312803 - 28 Nov 2024
Cited by 4 | Viewed by 1688
Abstract
Multi-target-directed ligands (MTDLs) represent a promising frontier in tackling the complexity of multifactorial pathologies like Alzheimer’s disease (AD). The synergistic inhibition of MAO-B, MAO-A, and AChE is believed to enhance treatment efficacy. A novel coumarin-based molecule substituted with O-phenylpiperazine via three- and [...] Read more.
Multi-target-directed ligands (MTDLs) represent a promising frontier in tackling the complexity of multifactorial pathologies like Alzheimer’s disease (AD). The synergistic inhibition of MAO-B, MAO-A, and AChE is believed to enhance treatment efficacy. A novel coumarin-based molecule substituted with O-phenylpiperazine via three- and four-carbon linkers at the 5- and 7-positions, has been identified as an effective MTDL against AD. Employing a medicinal chemistry approach, combined with molecular docking, molecular dynamic simulation, and ΔGbind estimation, two series of derivatives emerged as potent MTDLs: 8-acetyl-7-hydroxy-4-methylcoumarin (IC50: 1.52–4.95 μM for hAChE, 6.97–7.65 μM for hMAO-A) and 4,7-dimethyl-5-hydroxycoumarin (IC50: 1.88–4.76 μM for hMAO-B). They displayed binding free energy (ΔGbind) of −76.32 kcal/mol (11) and −70.12 kcal/mol (12) against AChE and −66.27 kcal/mol (11) and −62.89 kcal/mol (12) against MAO-A. It is noteworthy that compounds 11 and 12 demonstrated efficient binding to both AChE and MAO-A, while compounds 3 and 10 significantly reduced MAO-B and AChE aggregation in vitro. These findings provide structural templates for the development of dual MAO and AChE inhibitors for the treatment of neurodegenerative diseases. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

16 pages, 2666 KiB  
Article
Mechanistic Insights into the Stimulatory Effect of Melanogenesis of 4-Methylcoumarin Derivatives in B16F10 Melanoma Cells
by Ye-Jin Lee and Chang-Gu Hyun
Int. J. Mol. Sci. 2024, 25(22), 12421; https://doi.org/10.3390/ijms252212421 - 19 Nov 2024
Cited by 6 | Viewed by 1382
Abstract
Vitiligo is a skin condition characterized by the loss of pigment, resulting in white patches on various parts of the body. It occurs when melanocytes, the cells that are responsible for producing skin pigment, are destroyed or stop functioning. This study aimed to [...] Read more.
Vitiligo is a skin condition characterized by the loss of pigment, resulting in white patches on various parts of the body. It occurs when melanocytes, the cells that are responsible for producing skin pigment, are destroyed or stop functioning. This study aimed to investigate the melanogenic potential of various 4-methylcoumarin (4MC) derivatives, including 6-methoxy-4-methylcoumarin (6M-4MC), 7-methoxy-4-methylcoumarin (7M-4MC), 7-amino-4-methylcoumarin (7A-4MC), 6,7-dihydroxy-4-methylcoumarin (6,7DH-4MC), 7,8-dihydroxy-4-methylcoumarin (7,8DH-4MC), and 6,7-dimethoxy-4-methylcoumarin (6,7DM-4MC), in B16F10 melanoma cells. Our findings revealed that, while 4MC, 7A-4MC, 6,7DH-4MC, and 7,8DH-4MC did not exhibit any effect on melanin production, significant stimulation of melanogenesis was observed with 6M-4MC, 7M-4MC, and 6,7DM-4MC, with 6M-4MC demonstrating the most pronounced effect. 6M-4MC significantly stimulated melanin production and tyrosinase activity in a concentration-dependent manner in B16F10 cells. A Western blot analysis revealed that 6M-4MC increased the expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Further mechanistic studies showed that 6M-4MC inhibited extracellular signal-regulated kinase (ERK) and protein kinase B (AKT), which led to the upregulation of MITF and TRP proteins and subsequent activation of melanin synthesis. Additionally, 6M-4MC activated GSK3β phosphorylation, reduced β-catenin phosphorylation, and stimulated melanogenesis via the GSK3β/β-catenin pathway. Moreover, a primary skin irritation test was conducted on the upper backs of 32 healthy female volunteers to assess the potential irritation or sensitization from 6M-4MC when applied topically at concentrations of 50 µM and 100 µM. The test results showed no adverse effects on the skin. Collectively, these findings suggest that 6M-4MC may be a promising pigmentation stimulator for use in cosmetics and in the medical treatment of hypopigmentation disorders, particularly in the treatment of skin conditions such as vitiligo. Full article
Show Figures

Figure 1

19 pages, 5916 KiB  
Article
A Ligand-Free Approach towards Coumarin Analogs via Natural Deep Eutectic Solvent-Mediated Suzuki–Miyaura Coupling
by Annita Katopodi, Nikolaos Nikolaou, Vasiliki Kakokefalou, Eleni Alexandratou, Manolis Matzapetakis, Maria Zervou and Anastasia Detsi
Molecules 2024, 29(18), 4398; https://doi.org/10.3390/molecules29184398 - 16 Sep 2024
Cited by 2 | Viewed by 1800
Abstract
A ligand-free approach for the Suzuki-Miyaura cross coupling reaction using Natural Deep Eutectic Solvents (NaDES) towards coumarin analogs is described. A model reaction between the synthetically prepared 3-(4-acetyloxy-phenyl)-6-bromo-4-methyl-coumarin (3b) and phenylboronic acid was performed in five different NaDES as well as [...] Read more.
A ligand-free approach for the Suzuki-Miyaura cross coupling reaction using Natural Deep Eutectic Solvents (NaDES) towards coumarin analogs is described. A model reaction between the synthetically prepared 3-(4-acetyloxy-phenyl)-6-bromo-4-methyl-coumarin (3b) and phenylboronic acid was performed in five different NaDES as well as in pure glycerol, using two inorganic bases and palladium catalysts. The reaction proceeded smoothly in Choline Chloride/Glycerol (ChCl/Gly) and Betaine/Glycerol (Bet/Gly) NaDES at 90 °C in 24 h, affording the desired product in high yields up to 95%. The combination of K2CO3, Pd(OAc)2 and ChCl/Gly NaDES provided optimum yields and high purity of the desired compounds, while the solvent was successfully recycled and reused up to two times. The developed methodology is applicable to boronic acids bearing various substituents. The formation of palladium nanoparticles in the reaction mixture was observed, and the size of the nanoparticles was associated with the reaction yield. In addition, in all the glycerol-based NaDES, an effective removal of the acetyl group of the acetyloxy–coumarin analogs was observed; thus, it is noteworthy that the Suzuki–Miyaura coupling and the deacetylation reaction were achieved in one pot. The ten novel coumarin derivatives synthesized were structurally characterized using 1D and 2D NMR spectroscopy and were tested for their cytotoxicity against the A431 squamous cancer cell line, presenting significant activity. Full article
(This article belongs to the Special Issue Recent Advances in Organic Synthesis Related to Natural Compounds)
Show Figures

Graphical abstract

13 pages, 4872 KiB  
Article
Dual-Mode Sensing of Fe(III) Based on Etching Induced Modulation of Localized Surface Plasmon Resonance and Surface Enhanced Raman Spectroscopy
by Miriam Parmigiani, Benedetta Albini, Pietro Galinetto and Angelo Taglietti
Nanomaterials 2024, 14(18), 1467; https://doi.org/10.3390/nano14181467 - 10 Sep 2024
Viewed by 1290
Abstract
Convenient, rapid, highly sensitive and on-site iron determination is important for environmental safety and human health. We developed a sensing system for the detection of Fe(III) in water based on 7-mercapto-4-methylcoumarine (MMC)-stabilized silver-coated gold nanostars (GNS@Ag@MMC), exploiting a redox reaction between the Fe(III) [...] Read more.
Convenient, rapid, highly sensitive and on-site iron determination is important for environmental safety and human health. We developed a sensing system for the detection of Fe(III) in water based on 7-mercapto-4-methylcoumarine (MMC)-stabilized silver-coated gold nanostars (GNS@Ag@MMC), exploiting a redox reaction between the Fe(III) cation and the silver shell of the nanoparticles, which causes a severe transformation of the nanomaterial structure, reverting it to pristine GNSs. This system works by simultaneously monitoring changes in the Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Spectroscopy (SERS) spectra as a function of added Fe(III). The proposed sensing system is able to detect the Fe(III) cation in the 1.0 × 10−5–1.5 × 10−4 M range, and its selectivity of the GNS@Ag@MMC sensor toward iron has been verified monitoring the LSPR and the SERS response to other cations with a clear selectivity toward Fe(III). Full article
Show Figures

Figure 1

17 pages, 12208 KiB  
Article
Metabolomics Analysis of Phenolic Composition and Content in Five Pear Cultivars Leaves
by Huijun Jiao, Qiuzhu Guan, Ran Dong, Kun Ran, Hongwei Wang, Xiaochang Dong and Shuwei Wei
Plants 2024, 13(17), 2513; https://doi.org/10.3390/plants13172513 - 7 Sep 2024
Cited by 2 | Viewed by 1631
Abstract
Phenolic compounds are the predominant chemical constituents in the secondary metabolites of plants and are commonly found in pears. In this study, we focused on the analysis of the phenolic composition and antioxidant activity of leaves from five pear cultivars (Cuiguan, Chaohong, Kuerle, [...] Read more.
Phenolic compounds are the predominant chemical constituents in the secondary metabolites of plants and are commonly found in pears. In this study, we focused on the analysis of the phenolic composition and antioxidant activity of leaves from five pear cultivars (Cuiguan, Chaohong, Kuerle, Nanguoli, and Yali) and tea leaves (Fudingdabai as the control) using ultra-performance liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry. The results indicated significant differences in the amount and composition of phenolic metabolites between tea and pear leaves, as well as among the five pear varieties. Only approximately one-third of the metabolites exhibited higher levels in pear leaves compared to that in tea leaves. The total phenol content in the Yali cultivar was higher than that in the other pear cultivars. Furthermore, specific phenolic metabolites with high expression were identified in the leaves of different groups. The levels of delphinidin 3-glucoside, aesculin, prunin, cosmosiin, quercetin 3-galactoside, isorhamnetin-3-O-glucoside, nicotiflorin, narcissin, chlorogenic acid, and cryptochlorogenic acid were relatively high among the five pear cultivars. (-)-Gallocatechin gallate, 6-methylcoumarin, aesculetin, hesperidin, kaempferol, and caftaric acid were identified as specific metabolic substances unique to each type of pear leaf. Most of the differential metabolites showed positive correlations and were primarily enriched in the flavonoid biosynthesis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis pathways. DPPH (1,1-Diphenyl-2-picrylhydrazyl radical) analysis indicated that the Yali cultivar exhibited the highest antioxidant activity compared to other varieties. This systematic analysis of the differences in phenolic metabolite composition and antioxidant activity between pear and tea leaves provides a theoretical foundation for the development and utilization of pear leaf resources. Full article
Show Figures

Figure 1

13 pages, 2279 KiB  
Article
New Members of the Centrapalus Coumarin and Pauciflorin Series from Centrapalus pauciflorus
by Muhammad Bello Saidu, Gordana Krstić, Petra Bombicz, Sourav De, Anita Barta, Hazhmat Ali, István Zupkó, Róbert Berkecz, Umar Shehu Gallah, Dóra Rédei and Judit Hohmann
Pharmaceutics 2024, 16(7), 907; https://doi.org/10.3390/pharmaceutics16070907 - 6 Jul 2024
Cited by 1 | Viewed by 1921
Abstract
Monoterpene and 5-methylcoumarin- or 5-methylchromone-coupled meroterpenoids occurring mainly in the Asteraceae species proved to have high potency against protozoans, worms, and various tumor cells, which make them interesting targets for searching for new bioactive compounds. The African plant Centrapalus pauciflorus was applied in [...] Read more.
Monoterpene and 5-methylcoumarin- or 5-methylchromone-coupled meroterpenoids occurring mainly in the Asteraceae species proved to have high potency against protozoans, worms, and various tumor cells, which make them interesting targets for searching for new bioactive compounds. The African plant Centrapalus pauciflorus was applied in traditional medicine for healing chest pain and stomach aches. Three new meroterpenoids named centrapalus coumarin N (2), pauciflorins P (3), and Q (4), and the already known cyclohoehnelia coumarin (1), were isolated from the chloroform extract of C. pauciflorus, together with centrapalus coumarin O (5), which was obtained for the first time from a natural source. The structures were established from HRESIMS, 1D (1H NMR, 13C NMR JMOD) and 2D NMR (HSQC, HMBC, 1H-1H COSY, NOESY) spectroscopies, and the absolute stereochemistry of 5 was determined by single-crystal X-ray diffraction. Compounds 1, 2, and 5 are hybrid molecules of 5-methylcoumarin–monoterpene origin. Centrapalus coumarin N is the first example of meroterpenoids, where a monoterpene is fused with a coumarin and an acetophenone unit. Pauciflorins P and Q are dimeric meroterpenoid isomers. Centrapalus coumarins N and O were tested for antiproliferative activity against human adherent breast (MCF-7, MDA-MB-231), cervical (HeLa, SiHa), and ovarian (A2780) cancer cell lines, and were additionally included to obtain data concerning cancer selectivity. Both compounds exhibited moderate (IC50 > 10 µM) but selective activity against A2780 cells. Full article
Show Figures

Graphical abstract

17 pages, 6082 KiB  
Article
Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells
by Igor D. Zlotnikov, Alexander A. Ezhov and Elena V. Kudryashova
Biophysica 2024, 4(3), 340-356; https://doi.org/10.3390/biophysica4030024 - 1 Jul 2024
Cited by 5 | Viewed by 1616
Abstract
Herein, we propose an analytical approach based on intermolecular fluorescent resonant energy transfer (FRET) pairs for the visualization of specific enzyme activity in model biomembranes and in living cells. Cell visualizations with fluorescent confocal laser microscopy usually rely on fluorescent probes, such as [...] Read more.
Herein, we propose an analytical approach based on intermolecular fluorescent resonant energy transfer (FRET) pairs for the visualization of specific enzyme activity in model biomembranes and in living cells. Cell visualizations with fluorescent confocal laser microscopy usually rely on fluorescent probes, such as Fluorescein isothiocyanate (FITC), Alexa488, Tetramethylrhodamine isothiocyanate (TRITC) and many others. However, for more specific tasks, such as the detection of certain enzymatic activity inside the living cell, the toolbox is quite limited. In the case of enzyme-hydrolases for example, the choice is limited to organic molecules comprising a fluorescent dye (typically, 4-methylumbelliferone (MUmb) or 7-amino-4-methylcoumarin (AMC) derivatives) and a fluorescence quencher, bound via an enzyme-sensitive linker—so that when the linker is degraded, the fluorescent signal increases. Unfortunately, both MUmb and AMC are quenched and have a relatively low quantum yield in cells, and their excitation and emission ranges overlap with that of intracellular fluorophores, often producing a strong background noise. R6G, on the other hand, has excellent quantum yield apart from intracellular fluorophores, but there are no efficient quenchers that could be chemically linked to R6G. Herein, we show that R6G is able to form intermolecular FRET pairs with MUmb or AMC, with the latter serving as fluorescence donors. This yields a combination of R6G’s excellent fluorescence properties with a possibility to use an enzyme-sensitive linker in MUTMAC or AMC derivatives. This phenomenon was initially discovered in a model system, reversed micelles, where the donor, the acceptor, and the enzyme are forced to be in close proximity to each other, so that proximity could serve as an explanation for the intermolecular FRET effect. Surprisingly enough, the phenomenon has been reproduced in living cells. Moreover, we were able to create working intermolecular donor–acceptor FRET pairs for several different enzymes, including chymotrypsin, phosphatase, and asparaginase. This appears counterintuitive, as besides the overlap of the emission spectra of the donor and the absorption spectra of the acceptor, there are other criteria for the FRET effect, including the convergence of two fluorophores at a distance of about 1–10 nm, and the orientation of their dipoles at a certain angle, which is difficult to imagine in a bulk system like a living cell. We hypothesize that FRET-enabling donor–acceptor interaction may be taking place at the inner surface of the lipid bilayer, to which both donor and acceptor molecules would likely have an affinity. This hypothesis would require a more detailed investigation. Therefore, we have shown that the method suggested has good potential in the visualization of enzyme functioning inside living cells, which is often a challenging task. Shifting of the fluorescence signal to the long-wavelength region would increase the signal selectivity, making it easily distinguishable from autofluorescence. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

13 pages, 3043 KiB  
Article
Biocatalytic Synthesis of Coumarin S-Glycosides: Towards Non-Cytotoxic Probes for Biomedical Imaging and Sensing
by Nastassja Burrini, Arnaud Pâris, Guillaume Collet, Pierre Lafite and Richard Daniellou
Molecules 2024, 29(6), 1322; https://doi.org/10.3390/molecules29061322 - 16 Mar 2024
Cited by 2 | Viewed by 2136
Abstract
This study unveils an innovative method for synthesizing coumarin S-glycosides, employing original biocatalysts able to graft diverse carbohydrate structures onto 7-mercapto-4-methyl-coumarin in one-pot reactions. The fluorescence properties of the generated thio-derivatives were assessed, providing valuable insights into their potential applications in biological [...] Read more.
This study unveils an innovative method for synthesizing coumarin S-glycosides, employing original biocatalysts able to graft diverse carbohydrate structures onto 7-mercapto-4-methyl-coumarin in one-pot reactions. The fluorescence properties of the generated thio-derivatives were assessed, providing valuable insights into their potential applications in biological imaging or sensing. In addition, the synthesized compounds exhibited no cytotoxicity across various human cell lines. This research presents a promising avenue for the development of coumarin S-glycosides, paving the way for their application in diverse biomedical research areas. Full article
(This article belongs to the Special Issue Carbohydrate Chemistry II)
Show Figures

Figure 1

14 pages, 1609 KiB  
Article
The Application of Pipette-Tip and Magnetic Dummy-Template Molecularly Imprinted Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography with Diode Array and Spectrofluorimetric Detection for the Determination of Coumarins in Cosmetic Samples
by Andrea Špačková, Katarína Hroboňová and Michal Jablonský
Processes 2024, 12(3), 582; https://doi.org/10.3390/pr12030582 - 14 Mar 2024
Cited by 1 | Viewed by 1456
Abstract
In this study, adsorbents based on molecularly imprinted polymers (MIPs) in two solid-phase extraction application forms, pipette tip and magnetic extraction, were used for the selective extraction of coumarins. The pipette-tip solid-phase extraction reduced solvent volumes; the magnetic MIP extraction was simple and [...] Read more.
In this study, adsorbents based on molecularly imprinted polymers (MIPs) in two solid-phase extraction application forms, pipette tip and magnetic extraction, were used for the selective extraction of coumarins. The pipette-tip solid-phase extraction reduced solvent volumes; the magnetic MIP extraction was simple and effective for phase separation. Parameters affecting extraction, such as the amount of adsorbent, type of washing solvent, volume of the elution solvent, and extraction times for magnetic extraction, were optimized. The MIP-based adsorbents displayed high selectivity and extraction efficiency, resulting in recoveries ranging from 70.3 to 102.0% (RSD % less than 5.5%) for five coumarins under study, 6,7-dihydroxycoumarin-6-β-D-glucoside, coumarin, 7-methoxycoumarin, 6-methylcoumarin, and dicoumarol. The extracts were analyzed by high-performance liquid chromatography with diode array (DAD) and fluorescence (FLD) detectors, reaching limits of quantification of 0.5 and 0.9 µg·mL−1 for coumarin and dicoumarol detected by DAD and 0.001–0.012 µg·mL−1 for the other prohibited simple coumarins when used as a fragrance (detected by FLD). The proposed method was validated and its applicability was shown for the analysis of cosmetic samples like shower gel and perfume. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 3798 KiB  
Article
Ground-State Tautomerism and Excited-State Proton Transfer in 7-Hydroxy-4-methyl-8-((phenylimino)methyl)-2H-chromen-2-one as a Potential Proton Crane
by Daniela Nedeltcheva-Antonova and Liudmil Antonov
Physchem 2024, 4(1), 91-105; https://doi.org/10.3390/physchem4010007 - 11 Mar 2024
Cited by 7 | Viewed by 3134
Abstract
The tautomerism in the title compound as a potential long-range proton transfer (PT) switch has been studied by using the DFT and TD-DFT approaches. The data show that in aprotic solvents, the enol tautomer dominates, while the increase in the content of the [...] Read more.
The tautomerism in the title compound as a potential long-range proton transfer (PT) switch has been studied by using the DFT and TD-DFT approaches. The data show that in aprotic solvents, the enol tautomer dominates, while the increase in the content of the keto tautomer (short-range PT) rises as a function of polarity of the solvent. In ethanol, due to specific solute–solvent stabilization through intermolecular hydrogen bonding, a substantial amount of the keto forms exists in solution. The irradiation leads to two competitive processes in the excited state, namely ESIPT and trans/cis isomerization around the azomethine bond as in other structurally similar Schiff bases. The studied compound is not suitable for bistable tautomeric switching, where long-range PT occurs, due to the difficult enolization of the coumarin carbonyl group. Full article
(This article belongs to the Section Experimental and Computational Spectroscopy)
Show Figures

Figure 1

Back to TopTop