Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = 3D droplet printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4894 KB  
Article
Study on Microdroplets Generation and Detection Method in Four-Way Microfluid Structure (FWMS) by Double Photoresist Method Pulses
by Lele Luo and Lu Zhang
Micromachines 2025, 16(11), 1205; https://doi.org/10.3390/mi16111205 - 23 Oct 2025
Viewed by 124
Abstract
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and [...] Read more.
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and complex systems for capacitance detection, and high-throughput imaging detections are challenging. In this study, four-way microfluid structure (FWMS) is proposed for microdroplets generation and detection. FWMS, fixed on a 3D-printed holder, is designed to generate microdroplets (100–500 µm), with optical fibers embedded to collect double photoresist method pulses of scattering light by fast-moving microdroplets. The size and volume of the microdroplets are retrieved by tracking the double pulse signal in the time sequence. In the experiments, 50 groups of microdroplets (a total of 105 microdroplets) with size ranging from 100 to 450 µm were generated and detected. Compared with traditional imaging detection, this method has a better sampling rate and detection error of less than 1.42%, which can provide a simple and accurate integrated microfluid system for microdroplet generation and synchronous detection. Full article
Show Figures

Figure 1

17 pages, 5751 KB  
Article
Laser-Induced Forward Transfer in Organ-on-Chip Devices
by Maria Anna Chliara, Antonios Hatziapostolou and Ioanna Zergioti
Photonics 2025, 12(9), 877; https://doi.org/10.3390/photonics12090877 - 30 Aug 2025
Viewed by 820
Abstract
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of [...] Read more.
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of 4 × 4 spot arrays. Droplet velocity was quantified and jet trajectory characterized, revealing that increased distances reduced spatial resolution, with significant shape deterioration observed beyond 2.0 mm. Thus, a maximum 2.0 mm donor–receiver gap was determined as optimal for acceptable printing resolution. As an application, a microfluidic device was fabricated using LCD 3D printing with a biocompatible resin and glass-bottomed configuration. The chamber height was matched to the validated 2.0 mm distance, ensuring compatibility with LIFT printing. Computational fluid dynamics simulations were conducted to model fluid flow conditions within the device. Subsequently, LLC cells were successfully printed inside the microfluidic chamber, cultured under continuous flow for 24 h, and demonstrated normal proliferation. This work highlights LIFT bioprinting’s viability and precision for integrating cells within microfluidic platforms, presenting promising potential for organ-on-chip applications and future biomedical advancements. Full article
Show Figures

Figure 1

14 pages, 3743 KB  
Article
Three-Dimensional-Printed Lateral Extraction Enhanced Desorption Electrospray Ionization Source for Mass Spectrometry
by Jilin Liu and Xiang Qian
Appl. Sci. 2025, 15(17), 9468; https://doi.org/10.3390/app15179468 - 28 Aug 2025
Cited by 1 | Viewed by 590
Abstract
This paper introduces a novel Lateral Extraction Enhanced Desorption Electrospray Ionization (LEE-DESI) source. This source is specifically designed to tackle the crucial issue of electric field interference in dual-channel ambient ionization mass spectrometry (AIMS). By incorporating dual-channel spraying-based desorption and extraction into a [...] Read more.
This paper introduces a novel Lateral Extraction Enhanced Desorption Electrospray Ionization (LEE-DESI) source. This source is specifically designed to tackle the crucial issue of electric field interference in dual-channel ambient ionization mass spectrometry (AIMS). By incorporating dual-channel spraying-based desorption and extraction into a 3D-printed chamber with optimized spatial parameters, the system effectively reduces cross-channel interference while boosting ionization efficiency. The desorption spray is responsible for desorbing analytes from untreated samples, and the extraction spray further ionizes more neutral droplets through charge transfer, which substantially enhances sensitivity. Compared with traditional DESI, the LEE-DESI source demonstrates improved detection limits, reproducibility, and operational simplicity, as validated using Rhodamine B, L-arginine, and Angiotensin I, as well as drug standards including methadone, ketamine, and fentanyl. This highlights its potential for high-throughput analysis of complex matrices in proteomics, metabolomics, and biomedical applications. Full article
(This article belongs to the Special Issue Analytical Chemistry: Techniques and Applications)
Show Figures

Figure 1

39 pages, 27477 KB  
Review
Three-Dimensional Printing and Bioprinting Strategies for Cardiovascular Constructs: From Printing Inks to Vascularization
by Min Suk Kim, Yuri Choi and Keel Yong Lee
Polymers 2025, 17(17), 2337; https://doi.org/10.3390/polym17172337 - 28 Aug 2025
Cited by 1 | Viewed by 1767
Abstract
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that [...] Read more.
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that support surgical planning and biomedical applications. In contrast, 3D bioprinting has emerged as a transformative biofabrication technology that allows for the spatially controlled deposition of living cells and biomaterials to construct functional tissues in vitro. Bioinks—derived from natural biomaterials such as collagen and decellularized matrix, synthetic polymers such as polyethylene glycol (PEG) and polycaprolactone (PCL), or hybrid combinations—have been engineered to replicate extracellular environments while offering tunable mechanical properties. These formulations ensure biocompatibility, appropriate mechanical strength, and high printing fidelity, thereby maintaining cell viability, structural integrity, and precise architectural resolution in the printed constructs. Advanced bioprinting modalities, including extrusion-based bioprinting (such as the FRESH technique), droplet/inkjet bioprinting, digital light processing (DLP), two-photon polymerization (TPP), and melt electrowriting (MEW), enable the fabrication of complex cardiovascular structures such as vascular patches, ventricle-like heart pumps, and perfusable vascular networks, demonstrating the feasibility of constructing functional cardiac tissues in vitro. This review highlights the respective strengths of these technologies—for example, extrusion’s ability to print high-cell-density bioinks and MEW’s ultrafine fiber resolution—as well as their limitations, including shear-induced cell stress in extrusion and limited throughput in TPP. The integration of optimized bioink formulations with appropriate printing and bioprinting platforms has significantly enhanced the replication of native cardiac and vascular architectures, thereby advancing the functional maturation of engineered cardiovascular constructs. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

24 pages, 4225 KB  
Review
Recent Advances in Plant-Based Emulsion Gels: Preparation, Characterization, Applications, and Future Perspectives
by Yunfei Huang, Chunmei Li and David Julian McClements
Gels 2025, 11(8), 641; https://doi.org/10.3390/gels11080641 - 13 Aug 2025
Viewed by 1999
Abstract
Plant-based foods have emerged as a major focus of the modern food industry as it tries to create more sustainable, environmentally friendly, and healthy products. Plant-based emulsion gels (PBEGs) can be used to provide valuable structures, textures, and functions in many plant-based food [...] Read more.
Plant-based foods have emerged as a major focus of the modern food industry as it tries to create more sustainable, environmentally friendly, and healthy products. Plant-based emulsion gels (PBEGs) can be used to provide valuable structures, textures, and functions in many plant-based food applications. For instance, they can be used as a matrix to form semi-solid plant-based meat, fish, egg, or dairy analogs, delivery systems for bioactive compounds in functional foods, and edible inks in 3D food printing. The most common PBEGs used in the food industry consist of oil droplets embedded within an aqueous phase containing a biopolymer network. However, PBEGs may also be formed from high-internal-phase emulsions (HIPEs) or aggregated emulsions. PBEGs combine the benefits of emulsions and gels, such as the ability to encapsulate both polar and non-polar functional ingredients, as well as to create desirable textural attributes. This review summarizes recent advances (2017–2025) in the development and application of PBEGs in the food sector, with a focus on their preparation methods, characterization techniques, and potential applications. The future perspectives and challenges associated with PBEGs are also discussed. Overall, this review provides a useful platform for directing future research efforts and for the practical implementation of PBEGs in plant-based food systems. Full article
Show Figures

Figure 1

15 pages, 6688 KB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 - 2 Aug 2025
Viewed by 743
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

18 pages, 7553 KB  
Article
Investigating Experimental and Computational Fluid Dynamics of 3D-Printed TPMS and Lattice Porous Structures
by Guru Varun Penubarthi, Kishore Bhaskar Suresh Babu, Senthilkumar Sundararaj and Shung Wen Kang
Micromachines 2025, 16(8), 883; https://doi.org/10.3390/mi16080883 - 29 Jul 2025
Viewed by 898
Abstract
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with [...] Read more.
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with 16 μL water droplets dropping from 30 mm at 0.77 m/s. Results showed variable contact angles, with Isotruss and Octet having higher angles, while Diamond faced measurement challenges due to surface roughness. Numerical simulations of TPMS-Gyroid of 2 mm3 unit cells validated the experimental results, and Diamond, Octet, and Isotruss structures were simulated. Capillary performance was assessed through deionized (DI) water weight–time (w-t) measurements, identifying that the TPMS-Gyroid structure performed adequately. Structures with 4 mm3 unit cells had low capillary performance, excluding them from permeability testing, whereas smaller 2 mm3 structures demonstrated capillary effects but had printability and cleaning issues. Permeability results indicated that Octet performed best, followed by Isotruss, Diamond, and TPMS-Gyroid. Findings emphasize unit cell size, beam thickness, and droplet positioning as key factors in optimizing fluid dynamics for cooling, filtration, and fluid management. Full article
(This article belongs to the Special Issue Micro Thermal Devices and Their Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 2767 KB  
Article
Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer
by Zihan Cao, Yu Xing, Shasha Zhou, Feifan Li, Lixin Wang, Juanjuan Zhang, Xiaoxi Yang and Yumiao Lang
Foods 2025, 14(14), 2518; https://doi.org/10.3390/foods14142518 - 18 Jul 2025
Viewed by 553
Abstract
Due to the health-driven demand for fat replacers in meat products, Lycopene (Lyc)-loaded yeast protein (YP) high internal phase Pickering emulsions (HIPPEs) were explored as fat replacers for 3D-printed meat products. HIPPEs with varying Lyc concentrations were formulated, and their encapsulation efficiency and [...] Read more.
Due to the health-driven demand for fat replacers in meat products, Lycopene (Lyc)-loaded yeast protein (YP) high internal phase Pickering emulsions (HIPPEs) were explored as fat replacers for 3D-printed meat products. HIPPEs with varying Lyc concentrations were formulated, and their encapsulation efficiency and antioxidant activity (DPPH and ABTS assays) were evaluated. The encapsulation efficiency of Lyc exceeded 90% for all samples. Microscopic analysis revealed significant droplet enlargement in emulsions containing Lyc concentrations of 1.25 mg/mL and 1.50 mg/mL. Antioxidant activity peaked at a Lyc concentration of 1.00 mg/mL. Three-dimensional-printed meat products with different fat replacement ratios (0%, 25%, 50%, 75% and 100%) were prepared using both Lyc-loaded and non-loaded emulsions, and their printing precision, cooking loss, color, pH, texture, and lipid oxidation were assessed. The replacement ratio had no significant impact on printing precision, while cooking yield improved with higher fat replacement levels. Lyc emulsions notably influenced meat color, resulting in lower lightness and higher redness and yellowness. pH values remained stable across formulations. Lipid oxidation decreased with increasing fat replacement levels. The results indicate that Lyc-loaded YP Pickering emulsions have great potential as effective fat replacers for 3D-printed meat products, enhancing antioxidant performance while preserving product quality. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 4994 KB  
Article
3D Printability of Lysine-Modified Myofibrillar Protein Emulsions
by Lin Liao, Zilan Feng, Yoon-Yen Yow, Yajie Song, Yuxiao Liu, Lixiang Qin, Xiaofei Wu, Zhisheng Pei and Changfeng Xue
Foods 2025, 14(12), 2138; https://doi.org/10.3390/foods14122138 - 19 Jun 2025
Viewed by 638
Abstract
This study explores the potential of lysine (Lys) and tilapia myofibrillar protein (MP) composite particles in the formulation of highly inwardly directed emulsions (HIPEs). Infrared spectroscopy, potentiometric analysis, and molecular docking studies revealed that the interaction between Lys and MP is primarily governed [...] Read more.
This study explores the potential of lysine (Lys) and tilapia myofibrillar protein (MP) composite particles in the formulation of highly inwardly directed emulsions (HIPEs). Infrared spectroscopy, potentiometric analysis, and molecular docking studies revealed that the interaction between Lys and MP is primarily governed by hydrogen bonding and electrostatic forces. The incorporation of Lys significantly influenced the particle size, secondary and tertiary structures, solubility, and turbidity of MP. Lys-MP-stabilized HIPEs can form highly stable denser self-supporting gel network structures. Rheological analysis of HIPEs stabilized by MP showed a low energy storage modulus (G’ 110.66 Pa) and water–oil separation, therefore preventing 3D printing. However, HIPEs stabilized by Lys (especially 1.5 wt%) significantly improved the energy storage modulus (G’ 1002.10 Pa), increased viscoelasticity and thixotropic recovery, and reduced droplet size (10.84 μm), facilitating the use of HIPE inks for 3D printing. Furthermore, HIPEs stabilized with 1.5 wt% Lys-MP demonstrated superior print accuracy (91.36%), resolution, and clarity in 3D printing applications. Overall, these findings offer a promising strategy for developing Lys-MP composite particle-stabilized HIPEs tailored for advanced 3D printing technologies. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 2569 KB  
Article
Simulation Study of Ink Droplet Spraying Based on Sand 3D Printing
by Hailong Song, Ran Yan, Lei Xia, Qing Zhao and Qing Qiu
Micromachines 2025, 16(6), 621; https://doi.org/10.3390/mi16060621 - 25 May 2025
Viewed by 638
Abstract
To address the challenge of imprecise micro-droplet formation control in piezoelectric jetting devices used in sand mold 3D printing and apply on-demand inkjet printing technology to sand mold manufacturing, this study first explains the working principle of a piezoelectric shear-mode printhead. A mathematical [...] Read more.
To address the challenge of imprecise micro-droplet formation control in piezoelectric jetting devices used in sand mold 3D printing and apply on-demand inkjet printing technology to sand mold manufacturing, this study first explains the working principle of a piezoelectric shear-mode printhead. A mathematical model of the droplet ejection process is then established based on Computational Fluid Dynamics (CFD). Building upon this model, numerical simulations of droplet generation, breakup, and flight are conducted by using the Volume of Fluid (VOF) model within the Fluent module of the Workbench 2020 R2 platform. Finally, under consistent driving conditions, the effects of key parameters—viscosity, surface tension, and inlet velocity—on the ejection process are investigated through simulation. Based on the results, appropriate ranges and recommended values for ink properties are determined. This study provides significant engineering value for improving the stability and precision of droplet formation in industrial sand mold 3D printing. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

23 pages, 2587 KB  
Article
Enhancing Physiological Realism in Nasal Spray Deposition Studies: Synthetic Mucus Properties and Interactions with Saline Solutions and Stereolithography Resin
by Amr Seifelnasr, Farhad Zare, Xiuhua Si and Jinxiang Xi
Liquids 2025, 5(2), 11; https://doi.org/10.3390/liquids5020011 - 7 Apr 2025
Cited by 3 | Viewed by 2912
Abstract
This study investigated the role of synthetic mucus coatings in enhancing the physiological relevance of in vitro nasal spray deposition assessments using 3D-printed nasal cavity models. Synthetic mucus solutions, representing normal (0.25% w/v xanthan gum) and diseased (1% w/v [...] Read more.
This study investigated the role of synthetic mucus coatings in enhancing the physiological relevance of in vitro nasal spray deposition assessments using 3D-printed nasal cavity models. Synthetic mucus solutions, representing normal (0.25% w/v xanthan gum) and diseased (1% w/v xanthan gum) nasal conditions, were developed to mimic the viscoelastic properties of human nasal mucus. Their physical properties, including viscosity, surface tension, contact angle, and adhesivity on dry and synthetic mucus-coated stereolithography (SLA) surfaces, were systematically characterized. Comparative experiments evaluated the behavior of saline drops and liquid films on dry versus synthetic mucus-coated SLA surfaces at inclinations of 30°, 45°, and 60°. Observational deposition experiments using anatomically accurate nasal models were conducted under a 45° backward-tilted head position with gentle sniff airflow across uncoated, 0.25% w/v mucus-coated, and 1% w/v mucus-coated surfaces. Synthetic mucus coatings significantly influenced saline spray deposition patterns. On uncoated surfaces, deposition consisted of scattered droplets and limited film formation, mainly in the anterior and turbinate regions. In contrast, synthetic mucus coatings facilitated broader and more uniform liquid distribution due to diffusion and lubrication effects. These findings highlight the value of synthetic mucus coatings for better simulating nasal environments, offering insights to optimize nasal spray formulations and delivery devices. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

18 pages, 6473 KB  
Article
Fluid and Electric Field Simulation and Optimization of the Multi-Vane and Multi-Slit Electrospinning Nozzle
by Jian Liu, Shoujun Dong, Yongru Liu, Shanshan Pan and Zhaosong Yin
Nanomaterials 2025, 15(6), 461; https://doi.org/10.3390/nano15060461 - 19 Mar 2025
Cited by 1 | Viewed by 746
Abstract
A multi-vane and multi-slit electrospinning nozzle for diversion was proposed to respond to the issues of easiness of clogging, existing End Effect among needles in current multi-needle electrospinning, and uncontrollable Taylor cone position in needleless electrospinning. The upper part of the novel nozzle [...] Read more.
A multi-vane and multi-slit electrospinning nozzle for diversion was proposed to respond to the issues of easiness of clogging, existing End Effect among needles in current multi-needle electrospinning, and uncontrollable Taylor cone position in needleless electrospinning. The upper part of the novel nozzle is a cylindrical straight pipe, and the lower part is a flow channel expansion structure composed of multiple vane components that spread outward at an angle. Ansys software was used to study the effect of different opening angles of the vanes on the spreading of the electrospinning solution. In the fluid simulation, for the novel nozzle with a central slit and a support structure, when the vanes have an opening angle of 35° and a length of 11 mm, the droplet holding time is 16 s, twice as long as the nozzle without support (8 s). This result corresponds to the subsequent droplet holding experiment, showing that the support structure aids droplet holding and enhances electrospinning stability. Comsol Multiphysics software was used to investigate the effect of the vanes’ parameters on the uniformity of the electric field. The results indicate that when the vanes of the new electrospinning nozzle are set at an opening angle of 35°, with four vanes each 11 mm in length, a receiving distance of 200 mm, and a voltage of 30 kV, the novel nozzle achieves an average electric field intensity of 5.26 × 10⁶ V/m with a CV value of 6.93%. Metal 3D printing was used to create a new nozzle for electrospinning, which successfully produced stable multiple jets and increased nanofiber output. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

24 pages, 8122 KB  
Review
Medical 3D Printing Using Material Jetting: Technology Overview, Medical Applications, and Challenges
by Shivum Chokshi, Raghav Gangatirkar, Anish Kandi, Maria DeLeonibus, Mohamed Kamel, Seetharam Chadalavada, Rajul Gupta, Harshitha Munigala, Karthik Tappa, Shayne Kondor, Michael B. Burch and Prashanth Ravi
Bioengineering 2025, 12(3), 249; https://doi.org/10.3390/bioengineering12030249 - 28 Feb 2025
Cited by 4 | Viewed by 3189
Abstract
Material Jetting (MJT) 3D printing (3DP) is a specific technology that deposits photocurable droplets of material and colored inks to fabricate objects layer-by-layer. The high resolution and full color capability render MJT 3DP an ideal technology for 3DP in medicine as evidenced by [...] Read more.
Material Jetting (MJT) 3D printing (3DP) is a specific technology that deposits photocurable droplets of material and colored inks to fabricate objects layer-by-layer. The high resolution and full color capability render MJT 3DP an ideal technology for 3DP in medicine as evidenced by the 3DP literature. The technology has been adopted globally across the Americas, Europe, Asia, and Australia. While MJT 3D printers can be expensive, their ability to fabricate highly accurate and multi-color parts provides a lucrative opportunity in the creation of advanced prototypes and medical models. The literature on MJT 3DP has expanded greatly as of late, in part aided by the lowering costs of the technology, and this report is the first review to document the applications of MJT in medicine. Additionally, this report portrays the technological information behind MJT 3DP, cases involving fabricated MJT 3DP models from the University of Cincinnati 3DP lab, as well as the challenges of MJT in a clinical setting, including cost, expertise in managing the machines, and scalability issues. It is expected that MJT 3DP, as imaging and segmentation technologies undergo future improvement, will be best poised with representing the voxel-level-variations captured by radiologic-image-sets due to its capacity for voxel-level-control. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

21 pages, 6542 KB  
Article
An Automated System for Constructing a Database of Leidenfrost Evaporation Curves Using Image Processing Techniques
by Chun-Yu Tsai, Hsiu-Ju Cheng, Po-Lun Lai and Chen-Kang Huang
Processes 2025, 13(2), 586; https://doi.org/10.3390/pr13020586 - 19 Feb 2025
Viewed by 772
Abstract
To analyze the progression of Leidenfrost evaporation, traditional experiments were conducted manually to generate a complete evaporation curve. However, physical constraints render Leidenfrost evaporation experiments inherently time-consuming and susceptible to uncertainty. To address these challenges, this study aimed to develop an automated system [...] Read more.
To analyze the progression of Leidenfrost evaporation, traditional experiments were conducted manually to generate a complete evaporation curve. However, physical constraints render Leidenfrost evaporation experiments inherently time-consuming and susceptible to uncertainty. To address these challenges, this study aimed to develop an automated system using webcams for real-time image acquisition and processing, as well as a syringe pump constructed using an Arduino microcontroller, a stepper motor, and 3D-printed components. In the domain of real-time image processing, the radii of levitated droplets were determined using circular detection techniques. By fitting the droplet radii over hundreds of consecutive frames, it was concluded that the shrinking rate of levitated droplet radii remain constant when the radius exceeds 0.6 mm, and the evaporation time is accurately derived. A moving average algorithm was employed to identify the heat transfer area as well as the evaporation time between the boiling droplet and the hot surface, enabling simultaneous calculation of the heat flux. The automated system was then used to perform Leidenfrost experiments under varying experimental parameters, and was compared to manual methods to demonstrate its superior precision in both the film boiling and nucleate boiling regimes. For example, the automated system was utilized to perform a series of experiments as the Weber number increased from 7.01 to 23.18. The detected Leidenfrost temperature rose from 154 °C to 192 °C, while the evaporation time decreased from 85.2 s to 78.9 s. These findings were consistent with previous studies and aligned with physical expectations, reinforcing the reliability of the system and its results. Full article
Show Figures

Figure 1

24 pages, 6687 KB  
Article
Pea Protein—ĸ-Carrageenan Nanoparticles for Edible Pickering Emulsions
by Galia Hendel, Noy Hen, Shulamit Levenberg and Havazelet Bianco-Peled
Polysaccharides 2025, 6(1), 14; https://doi.org/10.3390/polysaccharides6010014 - 17 Feb 2025
Cited by 1 | Viewed by 1184
Abstract
Pickering emulsions (PEs) can be utilized as inks for 3D food printing owing to their extensive stability and appropriate viscoelastic properties. This research explores food-grade PEs stabilized with nanoparticles (NPs) based on modified pea protein (PP) isolate and k-carrageenan (KC). NPs are fabricated [...] Read more.
Pickering emulsions (PEs) can be utilized as inks for 3D food printing owing to their extensive stability and appropriate viscoelastic properties. This research explores food-grade PEs stabilized with nanoparticles (NPs) based on modified pea protein (PP) isolate and k-carrageenan (KC). NPs are fabricated from solutions with different concentrations of protein and polysaccharide and characterized in terms of size, zeta potential, and wetting properties. The composition of the emulsion is 60% sunflower oil and 40% aqueous phase. Nine emulsion formulations with varying PP and KC concentrations are investigated. The formation of hollow NPs with a hydrodynamic diameter of 120–250 nm is observed. Microscope imaging shows oil droplets surrounded by a continuous aqueous phase, forming homogenous PEs in all formulations that are stable for over 30 days. Further, the oil droplet size decreases with increasing NP concentration while the viscosity increases. Rheologic experiments portray elastic emulsion gels with thixotropic qualities ascribed to the presence of the polysaccharide. The emulsions are subjected to centrifugation in order to compare the original emulsions to concentrated PEs that possess improved capabilities. These emulsions may serve as sustainable and printable saturated fat alternatives due to their composition, texture, stability, and rheological properties. Lastly, PEs are printed smoothly and precisely while maintaining a self-supported structure. Full article
Show Figures

Figure 1

Back to TopTop