Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = “W” shape distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3114 KB  
Article
From Waste to Thermal Barrier: Green Carbonation Synthesis of a Silica Aerogel from Coal Gangue
by Chenggang Chen, Heyu Li, Zhe Sun and Yan Cao
Appl. Sci. 2025, 15(24), 13156; https://doi.org/10.3390/app152413156 - 15 Dec 2025
Abstract
A sustainable pathway for converting low-value solid waste (Coal gangue, CG) into high-performance thermal insulation materials through a green synthesis strategy has been demonstrated. The SiO2 was successfully and efficiently extracted from CG in the form of sodium silicate. The subsequent sol–gel [...] Read more.
A sustainable pathway for converting low-value solid waste (Coal gangue, CG) into high-performance thermal insulation materials through a green synthesis strategy has been demonstrated. The SiO2 was successfully and efficiently extracted from CG in the form of sodium silicate. The subsequent sol–gel process of sodium silicate solution utilized an innovative CO2 carbonation method, which replaced the conventional use of strong acids, thereby reducing the carbon footprint and enhancing process safety. Hydrophobic SiO2 aerogel was subsequently prepared via ambient pressure drying, exhibiting a high specific surface area of 750.4 m2/g, a narrow pore size distribution ranging from 2 to 15 nm and a low thermal conductivity of 0.022 W·m−1·K−1. Furthermore, the powdered aerogel was shaped into a monolithic form using a simple molding technique, which conferred appreciable compressibility and resilience, maintaining the low thermal conductivity and hydrophobicity of the original aerogels, ensuring its functional integrity for practical applications. Practical thermal management tests including low and high temperature, conclusively demonstrated the superior performance of the prepared aerogel material. This work presents a viable and efficient waste-to-resource pathway for producing high-performance thermal insulation materials. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

19 pages, 3010 KB  
Article
Efficient mmWave PA in 90 nm CMOS: Stacked-Inverter Topology, L/T Matching, and EM-Validated Results
by Nusrat Jahan, Ramisha Anan and Jannatul Maua Nazia
Chips 2025, 4(4), 52; https://doi.org/10.3390/chips4040052 - 15 Dec 2025
Viewed by 28
Abstract
In this study, we present the design and analysis of a stacked inverter-based millimeter-wave (mmWave) power amplifier (PA) in 90 nm CMOS-targeting wideband Q-band operation. The PA employs two PMOS and two NMOS devices in a fully stacked inverter topology to distribute device [...] Read more.
In this study, we present the design and analysis of a stacked inverter-based millimeter-wave (mmWave) power amplifier (PA) in 90 nm CMOS-targeting wideband Q-band operation. The PA employs two PMOS and two NMOS devices in a fully stacked inverter topology to distribute device stress, remove the need for an RF choke, and increase effective transconductance while preserving compact layout. A resistor ladder biases the stack near VDD/4 per device, and capacitive division steers intermediate-node swings to enable class-E-like voltage shaping at the output. Closed-form models are developed for gain, output power, drain efficiency/PAE, and linearity, alongside a small-signal stacked-ladder formulation that quantifies stress sharing and the impedance presented to the matching networks; L/T network synthesis relations are provided to co-optimize bandwidth and insertion loss. Post-layout simulation in 90 nm CMOS shows |S21| = 10 dB at 39.84 GHz with 3 dB bandwidth from 36.8 to 42.4 GHz, peak PAE of 18.38% near 41 GHz, and saturated output power Psat=8.67 dBm at VDD=4 V, with S11<15 dB and reverse isolation 16 dB. The layout occupies 1.6×1.6 mm2 and draws 31.08 mW. Robustness is validated via a 200-run Monte Carlo showing tight clustering of Psat and PAE, sensitivity sweeps identifying sizing/tolerance trade-offs (±10% devices/passives), and EM co-simulation of on-chip passives indicating only minor loss/shift relative to schematic while preserving the target bandwidth and efficiency. The results demonstrate a balanced gain–efficiency–power trade-off with layout-aware resilience, positioning stacked-inverter CMOS PAs as a power- and area-efficient solution for mmWave front-ends. Full article
(This article belongs to the Special Issue IC Design Techniques for Power/Energy-Constrained Applications)
Show Figures

Figure 1

32 pages, 5910 KB  
Article
Very Flexible Weibull Reliability Modeling for Shock Environments Using Unified Censoring Plans
by Ahmed Elshahhat and Eslam Abdelhakim Seyam
Mathematics 2025, 13(24), 3896; https://doi.org/10.3390/math13243896 - 5 Dec 2025
Viewed by 177
Abstract
The very flexible Weibull (VF-W) distribution is formulated by expressing its cumulative risk function as a logarithmic composite of auxiliary cumulative risks, making the model particularly well-suited for modeling heterogeneous life behaviors. This model admits a remarkably flexible hazard structure, capable of generating [...] Read more.
The very flexible Weibull (VF-W) distribution is formulated by expressing its cumulative risk function as a logarithmic composite of auxiliary cumulative risks, making the model particularly well-suited for modeling heterogeneous life behaviors. This model admits a remarkably flexible hazard structure, capable of generating monotone increasing, unimodal (increase-then-decrease), and multi-turning-point shapes, thereby capturing complex failure behaviors far beyond those allowed by the classical Weibull distribution. This paper presents a comprehensive inferential study of the VF-W model through the unified progressive hybrid (UPH) censoring framework for modeling shock-type lifetime data. The UPH scheme integrates the advantages of Type-II, generalized hybrid, and progressive hybrid censoring mechanisms into a unified structure that ensures efficiency and adaptability in reliability testing. Classical inference is developed through maximum likelihood estimation with asymptotic interval construction, while Bayesian inference is performed using independent gamma priors and a Markov iterative algorithm. Extensive Monte Carlo experiments are conducted to evaluate the finite-sample performance of both approaches under various censoring intensities, revealing that the Bayesian MCMC-based estimators and their highest posterior density intervals provide superior precision, coverage, and robustness. The proposed VF-W model using UPH-based strategy is further validated through the analysis of a real shocks dataset, where it demonstrates a comparative performance improvement over existing models. The VF-W model exhibits stable parameter estimation under diverse censoring levels, indicating robustness in incomplete-data scenarios. Furthermore, the model maintains analytical tractability, offering closed-form expressions for key reliability measures, which facilitates practical implementation in different scenarios. The results confirm the VFW model’s strong potential as a unifying and computationally stable tool for reliability modeling, particularly in complex engineering and physical systems operating under stochastic shock environments. Full article
(This article belongs to the Special Issue Reliability Analysis and Statistical Computing)
Show Figures

Figure 1

19 pages, 335 KB  
Article
The Digital Extended Self of Influencers: A Case Study of a Travel Channel
by Raphaela Trezza Lima, André Falcão Durão, Julio Cesar Ferro de Guimarães, André Riani Costa Perinotto and Nathaly Pereira da Silva
Tour. Hosp. 2025, 6(5), 262; https://doi.org/10.3390/tourhosp6050262 - 1 Dec 2025
Viewed by 367
Abstract
This article analyzes the construction of the Digital Extended Self of digital influencers from the travel channel Travel Channel, drawing on R. W. Belk’s theory. The study employs a qualitative exploratory–descriptive approach, using a case study as its methodological strategy. Data collection involved [...] Read more.
This article analyzes the construction of the Digital Extended Self of digital influencers from the travel channel Travel Channel, drawing on R. W. Belk’s theory. The study employs a qualitative exploratory–descriptive approach, using a case study as its methodological strategy. Data collection involved analyzing five podcast interviews with the channel’s founders, along with videos published between 2022 and 2024. In addition, viewer comments on these videos were extracted and examined. All materials were analyzed using Bardin’s content analysis. The results reveal a strong presence of the Extended Self dimensions, co-construction, and sharing, showing that interaction with the audience actively shapes the influencers’ identity and content. The dimensions of dematerialization (e.g., cloud storage) and distributed memory (the use of digital records as extensions of memory) were also evident. Reincarnation (the use of avatars or personas) was the least observed dimension, a finding attributed to the influencers’ authentic style and focus on real-life experiences. Overall, the Digital Extended Self of the Travel Channel emerges as a genuine and organically constructed entity, resulting in an aggregated Self that reflects a strong connection with its audience. This research provides valuable insights into how Belk’s theory can be applied to the in-depth analysis of digital materials. Full article
(This article belongs to the Special Issue Digital Transformation in Hospitality and Tourism)
18 pages, 3815 KB  
Article
Interactive Mechanisms and Pathways of Meteorology and Blue-Green Space on PM2.5: An Empirical Study Integrating XGBoost-SHAP and SEM
by Wen Zhou, Yaojia Lu, Yiqi Yu and Shuting Chen
Sustainability 2025, 17(23), 10698; https://doi.org/10.3390/su172310698 - 28 Nov 2025
Viewed by 273
Abstract
Blue-green space patterns and meteorological conditions jointly influence PM2.5 concentrations. However, the nonlinear mechanisms and interactions among these key drivers remain insufficiently studied. To address this gap, this study applied an interpretable machine learning approach (XGBoost-SHAP) to detect seasonal nonlinearities, thresholds, and [...] Read more.
Blue-green space patterns and meteorological conditions jointly influence PM2.5 concentrations. However, the nonlinear mechanisms and interactions among these key drivers remain insufficiently studied. To address this gap, this study applied an interpretable machine learning approach (XGBoost-SHAP) to detect seasonal nonlinearities, thresholds, and interaction effects of meteorological and landscape metrics on PM2.5 distribution in Jiangsu Province, China. Structural Equation Model was further employed to quantify the direct and indirect effect pathways among these factors. Model explanatory power showed distinct seasonal variations, with the highest performance in summer (R2 = 0.615) and the lowest in winter (R2 = 0.316). Meteorological factors exerted stronger influences than blue-green space pattern metrics, with wind speed being the most critical meteorological factor across all seasons. Among landscape metrics, the proportion of green space and water body (G_PLAND and W_PLAND) was the key driver of PM2.5 concentrations in spring, autumn, and winter, while its influence became insignificant in summer, replaced by the number and shape complexity of green space patches. This study further revealed that in spring, autumn, and winter, G_PLAND and W_PLAND not only exerted direct effects on PM2.5 but also significantly influenced it indirectly by modulating land surface temperature. Additionally, green space shape complexity and land surface temperature were found to interact with other meteorological and landscape factors during these seasons; once exceeding specific thresholds, they reversed the direction of other factors’ effects on PM2.5. No significant interactions were detected in summer, indicating that dominant factors primarily exerted independent effects during this season. Collectively, our findings provide important insights for formulating seasonally adaptive planning strategies to advance sustainable urban development and long-term air quality management. Full article
Show Figures

Graphical abstract

20 pages, 5146 KB  
Article
Multi-Objective Robust Design of Segmented Thermoelectric–Thermal Protection Structures for Hypersonic Vehicles Using a High-Fidelity Thermal Network
by Yidi Zhao, Hao Dong, Keming Cheng, Kongjun Zhu and Tianyu Xia
Appl. Sci. 2025, 15(23), 12482; https://doi.org/10.3390/app152312482 - 25 Nov 2025
Viewed by 196
Abstract
Long-endurance hypersonic vehicles face the dual challenge of withstanding extreme aerodynamic heating while meeting onboard power requirements. Integrating thermoelectric generators within thermal protection systems offers a solution by converting thermal loads into electrical power. However, accurate prediction requires resolving coupled multiphysics, where three-dimensional [...] Read more.
Long-endurance hypersonic vehicles face the dual challenge of withstanding extreme aerodynamic heating while meeting onboard power requirements. Integrating thermoelectric generators within thermal protection systems offers a solution by converting thermal loads into electrical power. However, accurate prediction requires resolving coupled multiphysics, where three-dimensional simulations are computationally prohibitive and existing one-dimensional models lack accuracy. This study develops a quasi-two-dimensional distributed thermal network incorporating shape-factor corrections for rapid, high-fidelity prediction. Multi-objective optimization is performed to balance specific power, thermal expansion mismatch, and thermal margin. Analysis reveals fundamental trade-offs: a maximum-power design achieves 28.1 W/kg but only a 0.8% thermal margin, whereas a balanced design delivers 24.5 W/kg with a 5.1% thermal margin and significantly reduced thermal stress. Despite geometric variations, peak conversion efficiency converges to approximately 13%. This indicates that efficiency is primarily governed by material properties, while geometric optimization effectively tunes temperature and thermal strain distributions, providing guidelines for reliable system development. Full article
Show Figures

Figure 1

24 pages, 5647 KB  
Article
Thermal Performance Assessment of Heat Storage Unit by Investigating Different Fins Configurations
by Atif Shazad, Maaz Akhtar, Ahmad Hussain, Naser Alsaleh and Barun Haldar
Energies 2025, 18(22), 5920; https://doi.org/10.3390/en18225920 - 10 Nov 2025
Viewed by 391
Abstract
Energy shortage is a significant global concern due to the heavy reliance of industrial and residential sectors on energy. As fossil fuels diminish, there is a pressing shift towards alternative energy sources such as solar and wind. However, the intermittent nature of these [...] Read more.
Energy shortage is a significant global concern due to the heavy reliance of industrial and residential sectors on energy. As fossil fuels diminish, there is a pressing shift towards alternative energy sources such as solar and wind. However, the intermittent nature of these renewable resources, such as the absence of solar energy at night, necessitates robust energy storage solutions. This study focuses on enhancing the performance of a thermal storage unit by employing multiple fin configuration with solar salt (NaNO3-KNO3) as a phase change material (PCM) and Duratherm 630 as a heat transfer fluid (HTF). Notably, W-shaped and trapezoidal fins achieved reductions in melting time from 162 min to 84 min and 97 min, respectively, while rectangular fins were the least effective, albeit still reducing melting time to 143 min. Reduction in thermal gradients due to well-developed thermal mixing significantly reduced phase transition duration. Impact of fins geometries on localized vortexes generation within the unit was identified. W-shaped and trapezoidal fins were notably efficacious because of greater heat transfer area and better heat distribution through conduction and convection. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

12 pages, 1206 KB  
Article
The Asymptotic Sigmoidal Curve Obtained Through the Multi-Model Approach Provides the Best Description of Growth in Panulirus inflatus Juveniles (Decapoda: Palinuridae)
by Juan Francisco Arzola-González, Jesús Audomar Landeros-Armenta, José Adán Félix-Ortiz, Yecenia Gutiérrez-Rubio, Martín Ignacio Borrego, Raúl Pérez-González, Jorge Payán-Alejo and Eugenio Alberto Aragón-Noriega
Hydrobiology 2025, 4(4), 29; https://doi.org/10.3390/hydrobiology4040029 - 3 Nov 2025
Viewed by 491
Abstract
A mark–recapture experiment was conducted off Mazatlán in the entrance of the Gulf of California to evaluate the growth of juvenile spiny lobsters (Panulirus inflatus). A total of 40 post larvae of spiny lobster were captured, marked, and maintained in plastic [...] Read more.
A mark–recapture experiment was conducted off Mazatlán in the entrance of the Gulf of California to evaluate the growth of juvenile spiny lobsters (Panulirus inflatus). A total of 40 post larvae of spiny lobster were captured, marked, and maintained in plastic cages for 180 days in seawater off Mazatlán, Sinaloa, Mexico (23°12′32.4″ N 106°25′33.2″ W). Carapace length (CL in mm) was measured. Growth was estimated using the Schnute model, which encompasses four primary cases. In this study, two additional variants equivalent to the von Bertalanffy and Logistic models were also incorporated. These six models were parametrized using normal and log-normal distributions of errors. The selection of the best distribution and best model was based on the Akaike information criterion (AIC). The AIC selected the normal distribution of error and sigmoid-shaped curve as best representative of the growth pattern of juvenile spiny lobster P. inflatus. By identifying the asymptotic sigmoidal curve as the best descriptor of juvenile growth, this study offers a reliable foundation for subsequent assessments of population dynamics, resource management, and aquaculture development of P. inflatus. Full article
Show Figures

Figure 1

13 pages, 11603 KB  
Article
Effect of CeO2 Addition on the Microstructure and Properties of Laser-Prepared WC/Ni60 Composite Coatings for Cold Work Tool Steel
by Weiwei Ma, Wenqian Zhou, Yamin Li, Yali Zhao, Hao Xue, Bo Gao and Yufu Sun
Coatings 2025, 15(11), 1263; https://doi.org/10.3390/coatings15111263 - 1 Nov 2025
Viewed by 334
Abstract
Nickel–tungsten carbide (Ni/WC) multi-pass fused cladding layers with different cerium (IV) oxide (CeO2) contents were applied to Cr12MoV cold work tool steel surfaces using the coaxial powder feeding method for laser cladding. Scanning electron microscopy, energy spectrum analysis, X-ray diffraction, and [...] Read more.
Nickel–tungsten carbide (Ni/WC) multi-pass fused cladding layers with different cerium (IV) oxide (CeO2) contents were applied to Cr12MoV cold work tool steel surfaces using the coaxial powder feeding method for laser cladding. Scanning electron microscopy, energy spectrum analysis, X-ray diffraction, and wear experiments were conducted to study how adding CeO2 to change the properties of WC-reinforced Ni-base composite coatings in turn alters the microstructure and properties of Cr12MoV cold work tool steel. The results show that laser cladding is effective when the process parameters are as follows: a power of 1500 W, a 24 mm defocusing distance, a 6 mm/s scanning speed, a 5 mm spot diameter, and a powder delivery of 0.1 g/s. Laser-fused cladding coatings are mainly composed of dendrites, crystalline cells, strips, and bulk microstructures. The addition of CeO2 is effective at improving the microstructure and morphology of the coating—the size and distribution of the reinforcing phase change very significantly, and the shape changes from irregular and lumpy to spherical. With a 2% CeO2 content, the enhanced phase, now spherical and white, is more diffusely distributed in the tissue. The maximum microhardness of the composite-coated specimen after the addition of CeO2 is about 986 HV, which is approximately 20% higher than the hardness of the composite coating with no CeO2 added. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

20 pages, 2917 KB  
Article
Multi-Objective Optimization and Reliability Assessment of Date Palm Fiber/Sheep Wool Hybrid Polyester Composites Using RSM and Weibull Analysis
by Mohammed Y. Abdellah, Ahmed H. Backar, Mohamed K. Hassan, Miltiadis Kourmpetis, Ahmed Mellouli and Ahmed F. Mohamed
Polymers 2025, 17(20), 2786; https://doi.org/10.3390/polym17202786 - 17 Oct 2025
Viewed by 457
Abstract
This study investigates date palm fiber (DPF) and sheep wool hybrid polyester composites with fiber loadings of 0%, 10%, 20%, and 30% by weight, fabricated by compression molding, to develop a sustainable and reliable material system. Experimental data from prior work were modeled [...] Read more.
This study investigates date palm fiber (DPF) and sheep wool hybrid polyester composites with fiber loadings of 0%, 10%, 20%, and 30% by weight, fabricated by compression molding, to develop a sustainable and reliable material system. Experimental data from prior work were modeled using Weibull analysis for reliability evaluation and response surface methodology (RSM) for multi-objective optimization. Weibull statistics fitted a two-parameter distribution to tensile strength and fracture toughness, extracting shape (η) and scale (β) parameters to quantify variability and failure probability. The analysis showed that 20% hybrid content achieved the highest scale values (β = 28.85 MPa for tensile strength and β = 15.03 MPam for fracture toughness) and comparatively low scatter (η = 10.39 and 9.2, respectively), indicating superior reliability. RSM quadratic models were developed for tensile strength, fracture toughness, thermal conductivity, acoustic attenuation, and water absorption, and were combined using desirability functions. The RSM optimization was found at 18.97% fiber content with a desirability index of 0.673, predicting 25.89 MPa tensile strength, 14.23 MPam fracture toughness, 0.08 W/m·K thermal conductivity, 20.49 dB acoustic attenuation, and 5.11% water absorption. Overlaying Weibull cumulative distribution functions with RSM desirability surfaces linked probabilistic reliability zones (90–95% survival) to the deterministic optimization peak. This integration establishes a unified framework for designing natural fiber composites by embedding reliability into multi-property optimization. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Figure 1

30 pages, 6302 KB  
Article
Pixel-Attention W-Shaped Network for Joint Lesion Segmentation and Diabetic Retinopathy Severity Staging
by Archana Singh, Sushma Jain and Vinay Arora
Diagnostics 2025, 15(20), 2619; https://doi.org/10.3390/diagnostics15202619 - 17 Oct 2025
Viewed by 663
Abstract
Background: Visual impairment remains a critical public health challenge, and diabetic retinopathy (DR) is a leading cause of preventable blindness worldwide. Early stages of the disease are particularly difficult to identify, as lesions are subtle, expert review is time-consuming, and conventional diagnostic workflows [...] Read more.
Background: Visual impairment remains a critical public health challenge, and diabetic retinopathy (DR) is a leading cause of preventable blindness worldwide. Early stages of the disease are particularly difficult to identify, as lesions are subtle, expert review is time-consuming, and conventional diagnostic workflows remain subjective. Methods: To address these challenges, we propose a novel Pixel-Attention W-shaped (PAW-Net) deep learning framework that integrates a Lesion-Prior Cross Attention (LPCA) module with a W-shaped encoder–decoder architecture. The LPCA module enhances pixel-level representation of microaneurysms, hemorrhages, and exudates, while the dual-branch W-shaped design jointly performs lesion segmentation and disease severity grading in a single, clinically interpretable pass. The framework has been trained and validated using DDR and a preprocessed Messidor + EyePACS dataset, with APTOS-2019 reserved for external, out-of-distribution evaluation. Results: The proposed PAW-Net framework achieved robust performance across severity levels, with an accuracy of 98.65%, precision of 98.42%, recall (sensitivity) of 98.83%, specificity of 99.12%, F1-score of 98.61%, and a Dice coefficient of 98.61%. Comparative analyses demonstrate consistent improvements over contemporary architectures, particularly in accuracy and F1-score. Conclusions: The PAW-Net framework generates interpretable lesion overlays that facilitate rapid triage and follow-up, exhibits resilience under domain shift, and maintains an efficient computational footprint suitable for telemedicine and mobile deployment. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

18 pages, 4208 KB  
Article
Investigation of Single-Pass Laser Remelted Joint of Mo-5Re Alloy: Microstructure, Residual Stress and Angular Distortion
by Yifeng Wang, Danmin Peng, Xi Qiu, Mingwei Su, Shuwei Hu, Wenjie Li and Dean Deng
Metals 2025, 15(10), 1145; https://doi.org/10.3390/met15101145 - 15 Oct 2025
Viewed by 370
Abstract
Molybdenum-rhenium (Mo-Re) alloys, especially those with low Re content, have great potential in fabricating nuclear components. However, the extremely high melting point and high brittleness of Mo-Re alloys make them difficult to weld. In this study, laser welding was used to prepare single-pass [...] Read more.
Molybdenum-rhenium (Mo-Re) alloys, especially those with low Re content, have great potential in fabricating nuclear components. However, the extremely high melting point and high brittleness of Mo-Re alloys make them difficult to weld. In this study, laser welding was used to prepare single-pass remelted joint of Mo-5Re alloy with welding parameters of laser power 2800 W, welding speed 2 m·min−1 and argon gas flow rate 20 L·min−1. The microstructure of the remelted joint was investigated by the optical microscopy and the scanning electron microscopy. The microhardness distribution of the joint was analyzed. In addition, the temperature field, residual stress, and angular distortion of the joint were investigated by both numerical and experimental methods. The results show that columnar grains grew from the fusion boundary toward the center of the weld pool, and equiaxed grains formed in the central region of the fusion zone (FZ). In the heat-affected zone (HAZ), the grains transformed from initial elongated into equiaxed grains. The electron backscatter diffraction (EBSD) results revealed that high-angle grain boundaries (HAGBs) dominated in FZ. Oxide/carbide particles at grain boundaries and inside the grains can be inferred from contrast results. The average microhardness of FZ was 170 ± 5 (standard deviation) HV, which was approximately 80 HV lower than that of the base metal (250 ± 2 HV). Softening phenomenon was also observed in HAZ. The calculated weld pool shape showed high consistency with the experimental observation. The peak temperature (296 °C) of the simulated thermal cycling curve was ~8% higher than the measured value (275 °C). The residual stress calculation results indicated that FZ and its vicinity exhibited high levels of longitudinal tensile residual stresses. The simulated peak longitudinal residual stress (509 MPa) was ~30% higher than the measured value (393 MPa). Furthermore, both the simulation and experimental results demonstrated that the single-pass remelted joint of Mo-5Re alloy produced only minor angular distortion. The obtained results are very useful in understanding the basic phenomena and problems in laser welding of Mo alloys with low Re content. Full article
(This article belongs to the Special Issue Properties and Residual Stresses of Welded Alloys)
Show Figures

Figure 1

30 pages, 5508 KB  
Article
Phase-Aware Complex-Spectrogram Autoencoder for Vibration Preprocessing: Fault-Component Separation via Input-Phasor Orthogonality Regularization
by Seung-yeol Yoo, Ye-na Lee, Jae-chul Lee, Se-yun Hwang, Jae-yun Lee and Soon-sup Lee
Machines 2025, 13(10), 945; https://doi.org/10.3390/machines13100945 - 13 Oct 2025
Viewed by 569
Abstract
We propose a phase-aware complex-spectrogram autoencoder (AE) for preprocessing raw vibration signals of rotating electrical machines. The AE reconstructs normal components and separates fault components as residuals, guided by an input-phasor phase-orthogonality regularization that defines parallel/orthogonal residuals with respect to the local signal [...] Read more.
We propose a phase-aware complex-spectrogram autoencoder (AE) for preprocessing raw vibration signals of rotating electrical machines. The AE reconstructs normal components and separates fault components as residuals, guided by an input-phasor phase-orthogonality regularization that defines parallel/orthogonal residuals with respect to the local signal phase. We use a U-Net-based AE with a mask-bias head to refine local magnitude and phase. Decisions are based on residual features—magnitude/shape, frequency distribution, and projections onto the normal manifold. Using the AI Hub open dataset from field ventilation motors, we evaluate eight representative motor cases (2.2–5.5 kW: misalignment, unbalance, bearing fault, belt looseness). The preprocessing yielded clear residual patterns (low-frequency floor rise, resonance-band peaks, harmonic-neighbor spikes), and achieved an area under the receiver operating characteristic curve (ROC-AUC) = 0.998–1.000 across eight cases, with strong leave-one-file-out generalization and good calibration (expected calibration error (ECE) ≤ 0.023). The results indicate that learning to remove normal structure while enforcing phase consistency provides an unsupervised front-end that enhances fault evidence while preserving interpretability on field data. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

33 pages, 7822 KB  
Article
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
by Alessandro Marini, Sebastiano Breda, Roberto Tonelli, Michele Di Sacco and Alessandro d’Adamo
Energies 2025, 18(19), 5181; https://doi.org/10.3390/en18195181 - 29 Sep 2025
Viewed by 877
Abstract
In the pursuit of zero-emission mobility, hydrogen represents a promising fuel for internal combustion engines. However, its low volumetric energy density poses challenges, especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled [...] Read more.
In the pursuit of zero-emission mobility, hydrogen represents a promising fuel for internal combustion engines. However, its low volumetric energy density poses challenges, especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine, targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation, combustion behavior, abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested, demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system, with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor, strongly linked to mixture stratification and high temperatures. To suppress it, water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall, the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

22 pages, 4882 KB  
Article
82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm
by Jingtao Ge, Jie Zhang, Sicong Xu, Qihang Wang, Jingwen Lin, Sheng Hu, Xin Lu, Zhihang Ou, Siqi Wang, Tong Wang, Yichen Li, Yuan Ma, Jiali Chen, Tensheng Zhang and Wen Zhou
Sensors 2025, 25(19), 5986; https://doi.org/10.3390/s25195986 - 27 Sep 2025
Viewed by 728
Abstract
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through [...] Read more.
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through ultra-broadband transmission. In this study, terahertz optical carrier-based systems are employed, where fiber-optic components are used to generate the optical signals, and the signal is transmitted via direct detection in the receiver side, without relying on fiber-optic transmission. In these systems, deep learning-based equalization effectively compensates for nonlinear distortions, while probability shaping (PS) enhances system capacity under modulation constraints. However, the probability distribution of signals processed by PS varies with amplitude, making it challenging to extract useful information from the minority class, which in turn limits the effectiveness of nonlinear equalization. Furthermore, in IM-DD systems, optical multipath interference (MPI) noise introduces signal-dependent amplitude jitter after direct detection, degrading system performance. To address these challenges, we propose a lightweight neural network equalizer assisted by the Synthetic Minority Oversampling Technique (SMOTE) and a clustering method. Applying SMOTE prior to the equalizer mitigates training difficulties arising from class imbalance, while the low-complexity clustering algorithm after the equalizer identifies edge jitter levels for decision-making. This joint approach compensates for both nonlinear distortion and jitter-related decision errors. Based on this algorithm, we conducted a 3.75 Gbaud W-band PAM4 wireless transmission experiment over 300 m at Fudan University’s Handan campus, achieving a bit error rate of 1.32 × 10−3, which corresponds to a 70.7% improvement over conventional schemes. Compared to traditional equalizers, the proposed new equalizer reduces algorithm complexity by 70.6% and training sequence length by 33%, while achieving the same performance. These advantages highlight its significant potential for future optical carrier-based wireless communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

Back to TopTop