82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm
Abstract
1. Introduction
2. Principles
2.1. SMOTE (Synthetic Minority Oversampling Technique)
2.2. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
2.3. DNN Equalizer
3. Experimental Setup and Link Budget
3.1. Experimental Setup
3.2. Link Budget
4. Experimental Results and Discussions
4.1. DBSCAN Parameter Analysis and Performance Validation
4.2. Complexity Analysis
4.3. Performance Comparison of Different Equalization Schemes
4.4. Inclusion of a Strong DSP Baseline for Performance Comparison
4.5. Performance Comparison of Different SMOTE Variants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1: SMOTE Algorithm |
Appendix B
Algorithm A2: DBSCAN Algorithm |
References
- Li, X.; Zhang, J.; Xiao, J.; Zhang, Z.; Xu, Y.; Yu, J. W-band 8QAM vector signal generation by MZM-based photonic frequency octupling. IEEE Photonics Technol. Lett. 2015, 27, 1257–1260. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, W.; Bian, C.; Ge, J.; Xu, S.; Ma, Y.; Wang, Q.; Wang, S.; Ou, Z.; Hu, S. 85-GHz photonics W-band IM/DD PAM4 wireless transmission over 300 m based on nonlinear U-net symmetrical encoder-decoder equalizer. Opt. Commun. 2025, 577, 131423. [Google Scholar]
- Wei, C.C.; Xie, Z.X.; Ting, P.H.; Huang, Z.W.; Lin, C.T. 3 × 3 MIMO 60-GHz OFDM-RoF system with long-distance wireless transmission enabled by MIMO volterra filtering. J. Light. Technol. 2022, 40, 6860–6866. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Xu, S.; Wang, Q.; Ou, Z.; Ma, Y.; Lin, J.; Ge, J.; Yu, J. Frequency-Domain Complex-Valued NN Equalizer Based on Deep Reinforcement Learning for Photonics-Assisted W-Band 16QAM-DMT Signals System Over 50 m. J. Light. Technol. 2025, 43, 2651–2663. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y.; Fadlullah, Z.M.; Kato, N. Space-air-ground integrated network: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2714–2741. [Google Scholar] [CrossRef]
- Xu, J.; Kishk, M.A.; Alouini, M.S. Space-air-ground-sea integrated networks: Modeling and coverage analysis. IEEE Trans. Wirel. Commun. 2023, 22, 6298–6313. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Han, C.; Hu, Z.; Nie, S.; Jornet, J.M. Terahertz band communication: An old problem revisited and research directions for the next decade. IEEE Trans. Commun. 2022, 70, 4250–4285. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Ding, J.; Zhang, J.; Li, W.; Wang, F.; Wang, C.; Wang, K.; Tan, Y.; Zhu, M.; et al. Broadband photon-assisted terahertz communication and sensing. J. Light. Technol. 2023, 41, 3332–3349. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; Xu, Y.; Chen, L.; Yu, J. Frequency-doubling photonic vector millimeter-wave signal generation from one DML. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Li, X.; Gou, P.; Zhou, W. Fiber-THz-fiber link for THz signal transmission. IEEE Photonics J. 2018, 10, 7200706. [Google Scholar]
- Lei, M.; Cai, Y.; Zhang, J.; Hua, B.; Zou, Y.; Luo, W.; Fang, M.; Xiang, S.; Yu, J.; Zhu, M. Photonics-assisted joint radar and communication system in W band using electromagnetic polarization multiplexing. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 5–9 March 2023. [Google Scholar]
- Zhao, H.; Ji, F.; Wang, Y.; Yao, K.; Chen, F. Space–air–ground–sea integrated network with federated learning. Remote Sens. 2024, 16, 1640. [Google Scholar] [CrossRef]
- Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1117–1174. [Google Scholar]
- Kawanishi, T. THz and photonic seamless communications. J. Light. Technol. 2019, 37, 1671–1679. [Google Scholar] [CrossRef]
- Li, W.; Yu, J.; Zhu, B.; Zhang, J.; Zhu, M.; Zhao, F.; Xie, T.; Wang, K.; Wei, Y.; Yang, X.; et al. Photonics-assisted 320 GHz THz-band 50 Gbit/s signal outdoor wireless communication over 850 meters. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Li, X.; Xiao, J.; Yu, J. Long-distance wireless mm-wave signal delivery at W-band. J. Light. Technol. 2015, 34, 661–668. [Google Scholar]
- Li, K.; Chen, X.; Zhang, R.; Pickwell-MacPherson, E. Classification for glucose and lactose terahertz spectrums based on SVM and DNN methods. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 617–623. [Google Scholar] [CrossRef]
- Nguyen, C.; Hoang, T.M.; Cheema, A.A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network. IEEE Trans. Mach. Learn. Commun. Netw. 2023, 1, 43–60. [Google Scholar] [CrossRef]
- Murshed, R.U.; Ashraf, Z.B.; Hridhon, A.H.; Munasinghe, K.; Jamalipour, A.; Hossain, M.F. A cnn-lstm-based fusion separation deep neural network for 6g ultra-massive mimo hybrid beamforming. IEEE Access 2023, 11, 38614–38630. [Google Scholar]
- Huq, K.M.S.; Otung, I.E.; Rodriguez, J. A study of coverage probability-based energy-efficiency analysis for UAV-aided THz-enabled 6G networks. IEEE Trans. Intell. Transp. Syst. 2022, 24, 7404–7411. [Google Scholar] [CrossRef]
- Serghiou, D.; Khalily, M.; Brown, T.W.; Tafazolli, R. Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions. IEEE Commun. Surv. Tutor. 2022, 24, 1957–1996. [Google Scholar]
- Chen, H.; Sarieddeen, H.; Ballal, T.; Wymeersch, H.; Alouini, M.S.; Al-Naffouri, T.Y. A tutorial on terahertz-band localization for 6G communication systems. IEEE Commun. Surv. Tutor. 2022, 24, 1780–1815. [Google Scholar] [CrossRef]
- Pradipta, G.A.; Wardoyo, R.; Musdholifah, A.; Sanjaya, I.N.H.; Ismail, M. SMOTE for handling imbalanced data problem: A review. In Proceedings of the 2021 Sixth International Conference on Informatics and Computing (ICIC), Jakarta, Indonesia, 3–4 November 2021; pp. 1–8. [Google Scholar]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef]
- Brandt, J.; Lanzén, E. A Comparative Review of SMOTE and ADASYN in Imbalanced Data Classification. Bachelor’s Thesis, Uppsala University, Uppsala, Sweden, 2021. [Google Scholar]
- Dablain, D.; Krawczyk, B.; Chawla, N.V. DeepSMOTE: Fusing deep learning and SMOTE for imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 6390–6404. [Google Scholar] [CrossRef]
- Jeatrakul, P.; Wong, K.W.; Fung, C.C. Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm. In Proceedings of the International Conference on Neural Information Processing, Sydney, Australia, 21–25 November 2010; pp. 152–159. [Google Scholar]
- Mohammed, A.J.; Muhammed Hassan, M.; Hussein Kadir, D. Improving classification performance for a novel imbalanced medical dataset using SMOTE method. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 3161–3172. [Google Scholar] [CrossRef]
- Douzas, G.; Bacao, F.; Fonseca, J.; Khudinyan, M. Imbalanced learning in land cover classification: Improving minority classes’ prediction accuracy using the geometric SMOTE algorithm. Remote Sens. 2019, 11, 3040. [Google Scholar] [CrossRef]
- Hu, S.; Liang, Y.; Ma, L.; He, Y. MSMOTE: Improving classification performance when training data is imbalanced. In Proceedings of the 2009 Second International Workshop on Computer Science and Engineering, Qingdao, China, 28–30 October 2009; pp. 13–17. [Google Scholar]
- Wongvorachan, T.; He, S.; Bulut, O. A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining. Information 2023, 14, 54. [Google Scholar] [CrossRef]
- Urata, R.; Liu, H.; Zhou, X.; Vahdat, A. Datacenter interconnect and networking: From evolution to holistic revolution. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
- Huang, C.; Song, H.; Dai, L.; Cheng, M.; Yang, Q.; Tang, M.; Liu, D.; Deng, L. Optical multipath interference mitigation for high-speed PAM4 IMDD transmission system. J. Light. Technol. 2022, 40, 5490–5501. [Google Scholar] [CrossRef]
- Wang, J.; Xu, M.; Wang, H.; Zhang, J. Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding. In Proceedings of the 2006 8th International Conference on Signal Processing, Guilin, China, 16–20 November 2006; p. 3. [Google Scholar]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 878–887. [Google Scholar]
- Smiti, S.; Soui, M. Bankruptcy prediction using deep learning approach based on borderline SMOTE. Inf. Syst. Front. 2020, 22, 1067–1083. [Google Scholar] [CrossRef]
- Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 2018, 465, 1–20. [Google Scholar] [CrossRef]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. TODS 2017, 42, 1–21. [Google Scholar] [CrossRef]
- Deng, D. DBSCAN clustering algorithm based on density. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; pp. 949–953. [Google Scholar]
- Gholizadeh, N.; Saadatfar, H.; Hanafi, N. K-DBSCAN: An improved DBSCAN algorithm for big data. J. Supercomput. 2021, 77, 6214–6235. [Google Scholar] [CrossRef]
- Hou, J.; Gao, H.; Li, X. DSets-DBSCAN: A parameter-free clustering algorithm. IEEE Trans. Image Process. 2016, 25, 3182–3193. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Hao, X.; Liang, Z.; Liu, Y.; Wang, W.; Shao, L. Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Trans. Image Process. 2016, 25, 5933–5942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gou, P.; Lu, X.; Wang, K.; Kong, M.; Shi, J.; Wang, C.; Fang, K.; Zhao, L.; Yu, J. DBSCAN-based decision technique for 60Gbps PAM-8 IM/DD system. In Metro and Data Center Optical Networks and Short-Reach Links II; SPIE: Bellingham, WA, USA, 2019; Volume 10946, pp. 109–113. [Google Scholar]
- Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, J.; Zhao, X.; Li, W.; Wei, Y.; Yang, X.; Tan, J.; Zhang, B.; Wang, K.; Zhang, Y.; et al. 4.6-km D-band photonic-assisted terahertz wireless communication employing SIMO and MRC technology. IEEE Trans. Microw. Theory Tech. 2024, 72, 6657–6668. [Google Scholar] [CrossRef]
- Kato, K. Ultrawide-band/high-frequency photodetectors. IEEE Trans. Microw. Theory Tech. 2002, 47, 1265–1281. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, W.; Zhao, L. Modeling Device Nonlinearity in Millimeter-Wave Photonics Systems. In Proceedings of the 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 5–8 November 2022; pp. 1836–1839. [Google Scholar]
Component | Parameter |
---|---|
ECL 1 | Wavelength: 1550.00 nm Linewidth: <100 kHz Output power: 14.5 dBm |
ECL 2 | Wavelength: 1551.03 nm Linewidth: <100 kHz Output power: 14.5 dBm |
PD | Frequencyrange: 75–110 GHz |
MZM | Bandwidth: 20 GHz |
PA | Saturated output power: 13 dBm |
LNA | Gain: 18 dB |
HA | Gain: 25·dBi |
Parameter | Value |
---|---|
PT | 2.5 dBm |
GT | 37 dBi |
GR | 55 dBi |
d | 200 m |
f | 82.5 GHz |
FSPL | 116.8 dB |
LAM | 0.14 dB |
PR | −22.44 dBm |
Network | Network Structure | FLOPs | BER |
---|---|---|---|
DNN | 128-9-1 | 1170 | 5.83 × 10−3 |
DNN + ROS | 128-9-1 | 1170 | 4.55 × 10−3 |
DNN + SMOTE | 128-9-1 | 1170 | 2.03 × 10−3 |
CMA | 231-1 | 1157 | 7.85 × 10−3 |
Volterra | (231,1) | 1230 | 9.01 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Zhang, J.; Xu, S.; Wang, Q.; Lin, J.; Hu, S.; Lu, X.; Ou, Z.; Wang, S.; Wang, T.; et al. 82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm. Sensors 2025, 25, 5986. https://doi.org/10.3390/s25195986
Ge J, Zhang J, Xu S, Wang Q, Lin J, Hu S, Lu X, Ou Z, Wang S, Wang T, et al. 82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm. Sensors. 2025; 25(19):5986. https://doi.org/10.3390/s25195986
Chicago/Turabian StyleGe, Jingtao, Jie Zhang, Sicong Xu, Qihang Wang, Jingwen Lin, Sheng Hu, Xin Lu, Zhihang Ou, Siqi Wang, Tong Wang, and et al. 2025. "82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm" Sensors 25, no. 19: 5986. https://doi.org/10.3390/s25195986
APA StyleGe, J., Zhang, J., Xu, S., Wang, Q., Lin, J., Hu, S., Lu, X., Ou, Z., Wang, S., Wang, T., Li, Y., Ma, Y., Chen, J., Zhang, T., & Zhou, W. (2025). 82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm. Sensors, 25(19), 5986. https://doi.org/10.3390/s25195986