Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (623)

Search Parameters:
Keywords = “European green deal”

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1286 KiB  
Article
Sustainable Development as a Transformative Axis of the European Union’s Trade Policy
by Christian Arias and José Varela-Aldás
Sustainability 2025, 17(15), 7151; https://doi.org/10.3390/su17157151 - 7 Aug 2025
Abstract
This study analyzes the strategic and institutional frameworks that precede the formulation of trade agreements, with a focus on the European Union’s external action and its link to the Sustainable Development Goals. Based on a documentary research design, this study examines official documents [...] Read more.
This study analyzes the strategic and institutional frameworks that precede the formulation of trade agreements, with a focus on the European Union’s external action and its link to the Sustainable Development Goals. Based on a documentary research design, this study examines official documents from the EU and the United Nations, as well as the academic literature indexed in Scopus and Web of Science. The methodological process involved four phases: systematic search, selection and classification, inductive content coding, and interpretative analysis. Through this process, this study identifies discursive patterns, normative tensions, and policy orientations that reveal the EU’s evolving approach to sustainable trade governance. The findings highlight the existence of a growing institutional alignment between trade policy and sustainable development frameworks, yet also expose persistent gaps in coherence and implementation. This article contributes to the academic debate by offering a critical and structured analytical lens to understand how trade agreements are politically and institutionally prefigured before their negotiation phase. Full article
Show Figures

Figure 1

31 pages, 1698 KiB  
Article
Green Energy Fuelling Stations in Road Transport: Poland in the European and Global Context
by Tomasz Neumann
Energies 2025, 18(15), 4110; https://doi.org/10.3390/en18154110 - 2 Aug 2025
Viewed by 168
Abstract
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, [...] Read more.
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, across EU countries with a focus on Poland. It combines a policy and technology overview with a quantitative scientific analysis, offering a multidimensional perspective on green infrastructure deployment. A Pearson correlation analysis reveals significant links between charging station density and both GDP per capita and the share of renewable energy. The study introduces an original Infrastructure Accessibility Index (IAI) to compare infrastructure availability across EU member states and models Poland’s EV charging station demand up to 2030 under multiple growth scenarios. Furthermore, the article provides a comprehensive overview of biofuels, including first-, second-, and third-generation technologies, and highlights recent advances in hydrogen and renewable electricity integration. Emphasis is placed on life cycle considerations, energy source sustainability, and economic implications. The findings support policy development toward zero-emission mobility and the decarbonisation of transport systems, offering recommendations for infrastructure expansion and energy diversification strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 5488 KiB  
Article
Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
by Wolfgang Reiter, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon and Klaus Doschek-Held
Metals 2025, 15(8), 867; https://doi.org/10.3390/met15080867 - 1 Aug 2025
Viewed by 147
Abstract
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is [...] Read more.
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is expected to increase in the next decade. However, the environmental burden associated with steel manufacturing must be mitigated to achieve sustainable production, which would align with the European Green Deal pathway. Such a burden is associated both with the GHG emissions and with the solid residues arising from steel manufacturing, considering both the integrated and electrical routes. The valorisation of the main steel residues from the electrical steelmaking is the central theme of this work, referring to the steel electric manufacturing in the Dalmine case study. The investigation was carried out from two different points of view, comprising the action of a plasma electric reactor and a RecoDust unit to optimize the recovery of iron and zinc, respectively, being the two main technologies envisioned in the EU-funded research project ReMFra. This work focuses on those preliminary steps required to detect the optimal recipes to consider for such industrial units, such as thermodynamic modelling, testing the mechanical properties of the briquettes produced, and the smelting trials carried out at pilot scale. However, tests for the usability of the dusty feedstock for RecoDust are carried out, and, with the results, some recommendations for pretreatment can be made. The outcomes show the high potential of these streams for metal and mineral recovery. Full article
33 pages, 870 KiB  
Article
Decarbonizing Urban Transport: Policies and Challenges in Bucharest
by Adina-Petruța Pavel and Adina-Roxana Munteanu
Future Transp. 2025, 5(3), 99; https://doi.org/10.3390/futuretransp5030099 - 1 Aug 2025
Viewed by 209
Abstract
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for [...] Read more.
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for 55 package, are reflected in Romania’s transport policies, with a focus on implementation challenges and urban outcomes in Bucharest. By combining policy analysis, stakeholder mapping, and comparative mobility indicators, the paper critically assesses Bucharest’s current reliance on private vehicles, underperforming public transport satisfaction, and limited progress on active mobility. The study develops a context-sensitive reform framework for the Romanian capital, grounded in transferable lessons from Western and Central European cities. It emphasizes coordinated metropolitan governance, public trust-building, phased car-restraint measures, and investment alignment as key levers. Rather than merely cataloguing policy intentions, the paper offers practical recommendations informed by systemic governance barriers and public attitudes. The findings will contribute to academic debates on urban mobility transitions in post-socialist cities and provide actionable insights for policymakers seeking to operationalize EU decarbonization goals at the metropolitan scale. Full article
Show Figures

Figure 1

22 pages, 2575 KiB  
Article
European Green Deal Objective: Potential Expansion of Organic Farming Areas
by Aina Muska, Irina Pilvere, Ants-Hannes Viira, Kristaps Muska and Aleksejs Nipers
Agriculture 2025, 15(15), 1633; https://doi.org/10.3390/agriculture15151633 - 28 Jul 2025
Viewed by 341
Abstract
Organic farming represents a paradigm that emphasises a balance between production and environmental sustainability. In the European Union (EU), organic farming has evolved into a global production system with harmonised standards and increasing market demand. Compared with conventional agriculture, it produces greater environmental [...] Read more.
Organic farming represents a paradigm that emphasises a balance between production and environmental sustainability. In the European Union (EU), organic farming has evolved into a global production system with harmonised standards and increasing market demand. Compared with conventional agriculture, it produces greater environmental benefits. The European Green Deal and the Farm to Fork (F2F) strategy highlight the role of organic farming in achieving the EU’s climate and environmental goals, aiming to use at least 25% of the total agricultural area for organic farming by 2030. This research assesses the contributions of Member States towards achieving the objectives of the European Green Deal and F2F strategy and increasing the number of organic farming areas in the future. The research assessed the performance of EU Member States during the period of 2018–2022 and for the projected period up to 2030, using indicators outlined in the Common Agricultural Policy (CAP) Strategic Plan. EU Member States were classified by their historical growth in organic farming areas and their required future performance to meet targets. The results showed that the increase in organic farming areas across the EU is a sign of a shift towards more sustainable farming, although performance varied among Member States. Overall, performance tended to improve in seventeen Member States, remained stable in nine, and declined in only one. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

25 pages, 6464 KiB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 267
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 233
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

19 pages, 8482 KiB  
Article
Waste Heat Recovery in the Energy-Saving Technology of Stretch Film Production
by Krzysztof Górnicki, Paweł Obstawski and Krzysztof Tomczuk
Energies 2025, 18(15), 3957; https://doi.org/10.3390/en18153957 - 24 Jul 2025
Viewed by 348
Abstract
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first [...] Read more.
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first calender roller). To solidify the liquid raw material, the calendar must be cooled. The low-temperature heat, treated as waste heat, has dissipated in the atmosphere. Technological innovations were proposed: (a) the raw material comprises raw material (primary) and up to 80% recyclate (waste originating mainly from agriculture), (b) the use of low-temperature waste heat (the cooling of FCR in the process of foil stretch production). A heat recovery line based on two compressor heat pumps (HP, hydraulically coupled) was designed. The waste heat (by low-temperature HP) was transformed into high-temperature heat (by high-temperature HP) and used to prepare the raw material. The proposed technological line enables the management of difficult-to-manage post-production waste (i.e., agriculture and other economic sectors). It reduces energy consumption and raw materials from non-renewable sources (CO2 and other greenhouse gas emissions are reducing). It implements a closed-loop economy based on renewable energy sources (according to the European Green Deal). Full article
(This article belongs to the Special Issue Challenges and Research Trends of Energy Management)
Show Figures

Figure 1

20 pages, 1056 KiB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 254
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

16 pages, 1856 KiB  
Article
Gas in Transition: An ARDL Analysis of Economic and Fuel Drivers in the European Union
by Olena Pavlova, Kostiantyn Pavlov, Oksana Liashenko, Andrzej Jamróz and Sławomir Kopeć
Energies 2025, 18(14), 3876; https://doi.org/10.3390/en18143876 - 21 Jul 2025
Viewed by 557
Abstract
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed [...] Read more.
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed integration orders, allowing valid ARDL estimation. The results reveal a statistically significant long-run relationship (cointegration) between gas consumption and the energy–economic system. In the short run, the use of liquid fuel exerts a strong positive influence on gas demand, while the effects of GDP materialise only after a two-year lag. Solid fuels show a delayed substitutive impact, reflecting the ongoing transition from coal. An error correction model confirms rapid convergence to equilibrium, with 77% of deviations corrected within one period. Recursive residual and CUSUM tests indicate structural stability over time. These findings highlight the responsiveness of EU gas demand to both economic and policy signals, offering valuable insights for energy modelling and strategic planning under the European Green Deal. Full article
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 460
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

17 pages, 6527 KiB  
Article
Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction
by Sotirios Pemas, Dimitrios Baliakas, Eleftheria Maria Pechlivani and Maria Stefanidou
Materials 2025, 18(14), 3375; https://doi.org/10.3390/ma18143375 - 18 Jul 2025
Viewed by 440
Abstract
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices [...] Read more.
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices to innovative and sustainable green alternatives. This study investigates the use of non-cementitious traditional mixtures for green construction applications through 3D printing using Liquid Deposition Modeling (LDM) technology. To explore the development of mixtures with enhanced physical and mechanical properties, natural pine and cypress wood shavings were added in varying proportions (1%, 3%, and 5%) as sustainable additives. The aim of this study is twofold: first, to demonstrate the printability of these eco-friendly mortars that can be used for conservation purposes and overcome the challenges of incorporating bio-products in 3D printing; and second, to develop sustainable composites that align with the objectives of the European Green Deal, offering low-emission construction solutions. The proposed mortars use hydrated lime and natural pozzolan as binders, river sand as an aggregate, and a polycarboxylate superplasticizer. While most studies with bio-products focus on traditional methods, this research provides proof of concept for their use in 3D printing. The study results indicate that, at low percentages, both additives had minimal effect on the physical and mechanical properties of the tested mortars, whereas higher percentages led to progressively more significant deterioration. Additionally, compared to molded specimens, the 3D-printed mortars exhibited slightly reduced mechanical strength and increased porosity, attributable to insufficient compaction during the printing process. Full article
(This article belongs to the Special Issue Eco-Friendly Materials for Sustainable Buildings)
Show Figures

Figure 1

13 pages, 1829 KiB  
Article
The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea
by Vytautas Bunevičius, Armina Morkeliūnė, Justina Griauzdaitė, Alma Valiuškaitė and Neringa Rasiukevičiūtė
Agronomy 2025, 15(7), 1728; https://doi.org/10.3390/agronomy15071728 - 17 Jul 2025
Viewed by 364
Abstract
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental [...] Read more.
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental pollution, and adverse effects on human health. Also, due to the goals of the European Green Deal and the decreasing use of chemical pesticides, it has become essential to look for safer alternatives. The aim of this study was to investigate the inhibitory effect of plant extracts of clove (Syzygium aromaticum L.) and rosemary (Rosmarinus officinalis L.) against Colletotrichum acutatum and Botrytis cinerea plant pathogens and to evaluate fungal pathogens recovery after the exposure to the extract. The plant extracts (PEs) were obtained by subcritical CO2 extraction. The inhibitory effect of PEs was investigated in vitro at concentrations of 1200, 1600, 2000, 2400, 2800, and 3000 μL/L. Petri dishes were incubated at 25 ± 2 °C, and the mycelial growth of fungal pathogens was evaluated at 2, 4, and 7 days after inoculation (DAI). Reinoculation was then performed. The research showed that both plant extracts had an antifungal effect. However, clove PE was more effective. This allows us to say that plant-based measures can inhibit plant pathogens, but it is essential to determine the optimal concentrations and test them with different pathogens. Full article
Show Figures

Figure 1

23 pages, 998 KiB  
Article
Farm Greenhouse Gas Emissions as a Determinant of Sustainable Development in Agriculture—Methodological and Practical Approach
by Konrad Prandecki and Wioletta Wrzaszcz
Sustainability 2025, 17(14), 6452; https://doi.org/10.3390/su17146452 - 15 Jul 2025
Viewed by 530
Abstract
Climate change is one of the most important environmental problems of the modern world. Without an effective solution to this problem, it is not possible to implement sustainable development. For this reason, in the European development strategies, including the European Green Deal (EGD), [...] Read more.
Climate change is one of the most important environmental problems of the modern world. Without an effective solution to this problem, it is not possible to implement sustainable development. For this reason, in the European development strategies, including the European Green Deal (EGD), the reduction in greenhouse gas (GHG) emissions is one of the priorities. This also applies to sectoral strategies, including those related to agriculture. In this context, the monitoring of changes in GHG emissions becomes particularly important, and its key condition is an applicative estimation method, adapted to the available data and levels of assessment (globally, country, sector, economic unit). GHG emission calculations at the level of the agricultural sector are officially estimated by the state and non-governmental organisations. However, calculations at the level of the agricultural unit-farm remain a challenge due to the lack of detailed data or its incomplete scope to estimate GHG emissions. The other issue is the necessity of a representative data nature, taking into consideration the different profiles of various farms. The research focused on presenting a methodological approach to utilising FADN (Farm Accountancy Data Network) data for estimating GHG emissions at the farm level. The Intergovernmental Panel on Climate Change (IPCC) methodology was adopted to use available farm-level data. Some assumptions were needed to achieve this goal. The article presents the subsequent stages of GHG calculation using the FADN data. The results reveal significant differences in GHG emissions among farm types. The presented results indicated the primary sources of emissions from agriculture, including energy (e.g., fuel and electricity consumption), thus outlining the scope of action that should be taken to reduce emissions effectively. The study confirms that the method used helps estimate emissions at the farm level. Its application can lead to better targeting of climate policy in agriculture. Full article
Show Figures

Figure 1

20 pages, 2004 KiB  
Review
An Overview of Intelligent Transportation Systems in Europe
by Nicolae Cordoș, Irina Duma, Dan Moldovanu, Adrian Todoruț and István Barabás
World Electr. Veh. J. 2025, 16(7), 387; https://doi.org/10.3390/wevj16070387 - 9 Jul 2025
Viewed by 672
Abstract
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study [...] Read more.
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study examines how ITS technologies, such as automation, real-time traffic data analytics and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, have been integrated to improve urban mobility and road safety. In addition, it reviews significant European initiatives and case studies from several cities, which show visible improvements in reducing congestion, reducing CO2 emissions and increasing the use of public transport. The paper highlights, despite progress, major obstacles to widespread adoption, such as technical interoperability, inadequate regulatory frameworks and insufficient data sharing between stakeholders. These issues prevent ITS applications from scaling up and functioning well in EU Member States. To overcome these problems, the study highlights the need for common standards and cooperation frameworks. The research analyses the laws, technological developments and socio-economic effects of ITSs. By promoting sustainable and inclusive mobility, ITSs can contribute to the European Green Deal and climate goals. Finally, the paper presents ITSs as a revolutionary solution for future European transport systems and offers suggestions to improve their interoperability, data governance and policy support. Full article
Show Figures

Graphical abstract

Back to TopTop