Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
Abstract
1. Introduction
2. Materials and Methods
2.1. Preliminary Modelling and Historical Data Analysis
2.2. Material Plasma Reactor
2.3. Materials and Description of RecoDust
3. Results
3.1. Plasma Reactor
- Ratio 70:30, ReMFra 1: IBLU.
- Ratio 30:70, ReMFra 2: IBLU.
- Ratio 50:50, ReMFra 3: IBLU.
3.1.1. Engineering Solution
3.1.2. CFD Simulation of Off-Gases
3.2. RecoDust
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EU | European Union |
BF-BOF | Blast Furnace–Basic Oxygen Furnace |
ISM | Iron and Steel Makin |
EAF | Electrical Arc Furnace |
EAFD | Electric Arc Furnace Dust |
CO2 | Carbon Dioxide |
ZnO | Zinc Oxide |
Fe | Iron |
Zn | Zinc |
LF | Ladle Furnace |
CaO | Calcium Oxide |
MgO | Magnesium Oxide |
Al | Aluminium |
Si | Silicon |
Mg | Magnesium |
Mn | Manganese |
Ni | Nickel |
Cr | Chrome |
V | Vanadium |
CFD | Computational Fluid Dynamics |
GHG | Greenhouse gas |
References
- World Steel Association. 2024 World Steel in Figures. Available online: https://worldsteel.org/data/world-steel-in-figures/world-steel-in-figures-2024/ (accessed on 12 June 2025).
- Biswal, S.; Pahlevani, F.; Sahajwalla, V. Wastes as resources in steelmaking industry—Current trends. Curr. Opin. Green Sustain. Chem. 2020, 26, 100377. [Google Scholar] [CrossRef]
- Keeling, R. Keeling Curve Lessons. Available online: https://scrippsco2.ucsd.edu/graphics_gallery/mauna_loa_record/mauna_loa_record.html (accessed on 15 May 2025).
- Kienberger, T.; Mobarakeh, M.R.; Lachner, E.; EVT, P.N.; Pomberger, R.; Haslauer, P.; Nigl, T. Systematisches Zusammenwirken von Dekarbonisierung und Kreislaufwirtschaft am Beispiel der Österreichischen Industrie; Montanuniversität Leoben: Leoben, Austria, 2022. [Google Scholar]
- Thiel, S.; Thomé-Kozmiensky, E.; Senk, D.G.; Wotruba, H.; Antrekowitsch, H. (Eds.) Mineralische Nebenprodukte und Abfälle 10: Aschen, Schlacken, Stäube und Baurestmassen: Aschen, Schlacken, Stäube und Baurestmassen; Thomé-Kozmiensky Verlag GmbH: Nietwerder, Germany, 2023; pp. 235–242. [Google Scholar]
- Rentz, O.; Geldermann, J. Stoffstrommanagement in der Eisen-und Stahlindustrie: Konkretisierung des § 5 Abs. 1 Nr. 3 BimSchG; Erich Schmidt: Berlin, Germany, 1996. [Google Scholar]
- Esezobor, D.E.; Balogun, S.A. Zinc accumulation during recycling of iron oxide wastes in the blast furnace. Ironmak. Steelmak. 2006, 33, 419–425. [Google Scholar] [CrossRef]
- Suetens, T.; Klaasen, B.; van Acker, K.; Blanpain, B. Comparison of electric arc furnace dust treatment technologies using exergy efficiency. J. Clean. Prod. 2014, 65, 152–167. [Google Scholar] [CrossRef]
- Sassen, K.-J.; Hillmann, C. The DK Process—A Solution for the By-Products of the European Steel Industry. In Proceedings of the 21st International Conference on Metallurgy and Materials, Brno, Czech Republic, 23–25 May 2012. [Google Scholar]
- Rieger, J.; Schenk, J. Residual processing in the European steel industry: A technological overview. J. Sustain. Metall. 2019, 5, 295–309. [Google Scholar] [CrossRef]
- Simoni, M.; Reiter, W.; Suer, J.; Di Sante, L.; Cirilli, F.; Praolini, F.; Mosconi, M.; Guzzon, M.; Malfa, E.; Algermissen, D.; et al. Towards the Circularity of the EU Steel Industry: Modern Technologies for the Recycling of the Dusts and Recovery of Resources. Metals 2024, 14, 233. [Google Scholar] [CrossRef]
- Colla, V.; Branca, T.A.; Pietruck, R.; Wölfelschneider, S.; Morillon, A.; Algermissen, D.; Rosendahl, S.; Granbom, H.; Martini, U.; Snaet, D. Future Research and Developments on Reuse and Recycling of Steelmaking By-Products. Metals 2023, 13, 676. [Google Scholar] [CrossRef]
- Krammer, A.C.; Doschek-Held, K.; Steindl, F.R.; Weisser, K.; Gatschlhofer, C.; Juhart, J.; Wohlmuth, D.; Sorger, C. Valorisation of metallurgical residues via carbothermal reduction: A circular economy approach in the cement and iron and steel industry. Waste Manag. Res. 2024, 42, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Raupenstrauch, H.; Doschek-Held, K.; Rieger, J.; Reiter, W. RecoDust—An Efficient Way of Processing Steel Mill Dusts. J. Sustain. Metall. 2019, 5, 310–318. [Google Scholar] [CrossRef]
- Doschek-Held, K.; Wolfgang, R. ReMFra—REcovering Metals and Mineral FRAction from steelmaking residues. In Proceedings of the Science4Technology Poster Exhibition, Leoben, Austria, 23–31 May 2024. [Google Scholar]
- Reiter, W.; Lasser, M.; Rieger, J.; Raupenstrauch, H.; Tappeiner, T. Der RecoDust-Prozess—Behandlung von zinkhaltigen Stahlwerksstäuben und weiteren Nebenprodukten aus integrierten Hüttenwerken. BHM Berg-Und Huttenmann. Monatshefte 2020, 165, 297–301. [Google Scholar] [CrossRef]
- Samal, S.; Blanco, I. An overview of thermal plasma arc systems for treatment of various wastes in recovery of metals. Materials 2022, 15, 683. [Google Scholar] [CrossRef] [PubMed]
- Di Sante, L. Development of a Pyrometallurgical Approach for Iron and Zinc Recovery: Design and Modeling of a Plasma Reactor within the ReMFRa Projec. Available online: https://www.estep.eu/assets/Events/2024-ESTEP-Annual-event-Linz/Presentations-to-share/Session-4/2_RINA_ESTEP_Annual_Event_2024_Linz_Di-Sante-rev.pdf (accessed on 12 June 2025).
- Lohmeier, L.; Thaler, C.; Harris, C.; Wollenberg, R.; Schröder, H.-W. Briquetting of fine-grained residues from iron and steel production using organic and inorganic binders. Steel Res. Int. 2020, 91, 2000238. [Google Scholar] [CrossRef]
- Mousa, E.; Ahmed, H.; Söderström, D. Potential of alternative organic binders in briquetting and enhancing residue recycling in the steel industry. Recycling 2022, 7, 21. [Google Scholar] [CrossRef]
- Ryou, J.-H.; Cho, J.-E.; Park, S.-H.; Kang, C.-O.; Lee, H.-G. Coal Briquette Having Superior Strength and Briquetting Metho Thereof. Patent WO2002050219A1, 12 December 2001. [Google Scholar]
- Kim, H.S.; Min, D.J.; Park, J.H. Foaming Behavior of CaO–SiO2–FeO–MgOsatd–X (X = Al2O3, MnO, P2O5, and CaF2) Slags at High Temperatures. ISIJ Int. 2001, 41, 317–324. [Google Scholar] [CrossRef]
- Ślęzak, M.; Migas, P.; Bernasowski, M. The Use of Microwave Treatment as a Sustainable Technology for the Drying of Metallurgical Sludge. Materials 2024, 17, 6207. [Google Scholar] [CrossRef] [PubMed]
- Fladischer, M. Beeinflussung des Schmelzintervalls von EAF-Stäuben. Bachelor-Thesis, Technical University of Leoben, Leoben, Austria, 2022. [Google Scholar]
- Reiter, W.; Rieger, J.; Raupenstrauch, H.; Cattini, L.; Maystrenko, N.; Kovalev, D.; Alexey, A.; Mitrofanov, A. Recovery of valuable materials with the RecoDust process. Metals 2023, 13, 1191. [Google Scholar] [CrossRef]
Species | EAF Slag | LF Slag | Scale | Rolling Mill Sludge | EAFD |
---|---|---|---|---|---|
FeO | 37.00 | 10.00 | 93.00 | 70.00 | 41.66 |
C | 0.40 | 0.17 | 0.30 | 14.30 | 4.30 |
S | 0.78 | 0.04 | 0.52 | 0.44 | |
P | |||||
MnO | 1.72 | 1.02 | 0.75 | 3.90 | |
NiO | 0.10 | 0.00 | 0.15 | 0.15 | 0.08 |
CuO | 0.10 | 0.10 | 0.10 | ||
Cr2O3 | 3.40 | 0.92 | 0.25 | 0.35 | 0.79 |
CaO | 23.50 | 47.20 | 0.29 | 0.95 | 14.50 |
Al2O3 | 4.70 | 18.30 | 0.15 | 0.43 | 1.66 |
SiO2 | 11.00 | 10.90 | 2.80 | 2.30 | 20.40 |
MgO | 9.70 | 8.17 | 0.05 | 0.30 | 5.80 |
Na2O | 0.10 | 0.80 | 2.10 | 1.80 | 0.50 |
K2O | 0.00 | 0.10 | 0.40 | ||
ZnO | 0.00 | 0.00 | 0.10 | 0.10 | 4.99 |
TiO2 | 0.60 | 0.50 | 0.10 | ||
PbO | 0.40 |
Stream | Annual Production/t y−1 | Density /g cm−3 | Moisture /wt.% |
---|---|---|---|
EAF Slag | 55.000 | 3–4 | 2.8 |
LF Slag | 23.000 | 1.7 | 3.4 |
Scale | 24.000 | 2.5 | 1.7 |
Rolling Mill Sludge | 3.500 | 1.8 | 21.4 |
EAFD | 1.200 | 1.1 | 64.9 |
Recipe | LF Slag | Scale | Rolling Mill Sludge | EAFD | Coal | Molasses | CaO | Water | Fe/C |
---|---|---|---|---|---|---|---|---|---|
1 | 16.16 | 40.4 | 8.08 | 3.03 | 9.09 | 8.08 | 8.08 | 7.07 | 5.41 |
2 | 11.27 | 36.89 | 17.42 | 6.15 | 6.15 | 8.20 | 8.20 | 5.71 | 9.16 |
3 | 12.28 | 40.92 | 12.28 | 4.09 | 8.18 | 8.18 | 8.18 | 5.88 | 6.64 |
Recipe | LF Slag | Scale | Rolling Mill Sludge | EAFD | Coal | Molasses | CaO | Water | Fe/C |
---|---|---|---|---|---|---|---|---|---|
1 | 16.16 | 40.4 | 8.08 | 3.03 | 9.09 | 8.08 | 8.08 | 7.07 | 5.41 |
2 | 11.27 | 36.89 | 17.42 | 6.15 | 6.15 | 8.20 | 8.20 | 5.71 | 9.16 |
3 | 12.28 | 40.92 | 12.28 | 4.09 | 8.18 | 8.18 | 8.18 | 5.88 | 6.64 |
Recipe | Fe | Al | Si | Ca | Mg | Mn | Ni | Cr | V |
---|---|---|---|---|---|---|---|---|---|
1 | 40 | 8.0 | 0.9 | 9.5 | 0.5 | 0.6 | 0.1 | 0.2 | <0.1 |
2 | 47 | 5.9 | 0.8 | 5.0 | 0.3 | 0.8 | 0.1 | 0.3 | <0.1 |
3 | 43 | 6.6 | 0.9 | 7.2 | 0.3 | 0.7 | 0.1 | 0.2 | <0.1 |
Recovered Fraction of Metal /g | Metallic Yield /wt.% | Carbon on the Reduced Metal/wt.% | |
---|---|---|---|
1 | 43.80 | 98.82 | 0.07 |
2 | 38.89 | 75.23 | 0.20 |
3 | 37.90 | 79.32 | 0.31 |
Recipe No. | 1 | 2 | 3 |
---|---|---|---|
Charge rate/t h−1 | 7.40 | 7.80 | 7.90 |
Charge/t heat−1 | 22.20 | 23.40 | 23.80 |
Coal/kg tFeed−1 | 161.00 | 154.00 | 139.00 |
Energy/kWh tFeed−1 | 1868.00 | 1843.90 | 1795.00 |
Off-gas flow/Nm3 t−1 | 227.00 | 218.50 | 252.10 |
Off-gas heat/kWh t−1 | 163.00 | 169.30 | 193.70 |
Height metal/m | 0.35 | 0.36 | 0.35 |
Max height foam/m | 1.62 | 1.71 | 1.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiter, W.; Di Sante, L.; Pepe, V.; Guzzon, M.; Doschek-Held, K. Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust. Metals 2025, 15, 867. https://doi.org/10.3390/met15080867
Reiter W, Di Sante L, Pepe V, Guzzon M, Doschek-Held K. Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust. Metals. 2025; 15(8):867. https://doi.org/10.3390/met15080867
Chicago/Turabian StyleReiter, Wolfgang, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon, and Klaus Doschek-Held. 2025. "Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust" Metals 15, no. 8: 867. https://doi.org/10.3390/met15080867
APA StyleReiter, W., Di Sante, L., Pepe, V., Guzzon, M., & Doschek-Held, K. (2025). Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust. Metals, 15(8), 867. https://doi.org/10.3390/met15080867