Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = β-glucan production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1066 KB  
Review
Structure-Forming Properties of Pleurotus ostreatus: A Promising Resource for Edible 3D Printing Applications
by Alona Tiupova and Joanna Harasym
Molecules 2025, 30(16), 3350; https://doi.org/10.3390/molecules30163350 - 12 Aug 2025
Viewed by 438
Abstract
Approximately 20–30% of cultivated oyster mushrooms (Pleurotus ostreatus) are classified as low grade due to morphological and visual imperfections or mechanical damage, representing significant waste in mushroom production systems. This review examines the structural and biochemical properties of P. ostreatus, [...] Read more.
Approximately 20–30% of cultivated oyster mushrooms (Pleurotus ostreatus) are classified as low grade due to morphological and visual imperfections or mechanical damage, representing significant waste in mushroom production systems. This review examines the structural and biochemical properties of P. ostreatus, particularly focusing on cell wall components including chitin, β-glucans, and mannogalactans, which provide crucial rheological characteristics for 3D printing. The literature results demonstrate that these natural polysaccharides contribute essential viscosity, water-binding capacity, and mechanical stability required for printable edible inks. Notably, the mushroom stipe contains significantly higher concentrations of glucans compared to the cap, with 57% more α-glucans and 33% more β-glucans. The unique combination of rigidity from chitin, elasticity from β-glucans, and water retention capabilities creates printable structures that maintain shape fidelity while delivering nutritional benefits. This approach addresses dual challenges in sustainable food systems by reducing agricultural waste streams while advancing eco-friendly food innovation. The integration of mushroom-derived biomaterials into 3D printing technologies offers a promising pathway toward developing nutrient-rich, functional foods within a regenerative production model. Full article
Show Figures

Figure 1

26 pages, 4076 KB  
Article
Yeast-Derived Glucan Particles: Biocompatibility, Efficacy, and Immunomodulatory Potential as Adjuvants and Delivery Systems
by João Panão-Costa, Mariana Colaço, Sandra Jesus, Filipa Lebre, Maria T. Cruz, Ernesto Alfaro-Moreno and Olga Borges
Pharmaceutics 2025, 17(8), 1032; https://doi.org/10.3390/pharmaceutics17081032 - 8 Aug 2025
Viewed by 375
Abstract
Background/Objectives: Glucan particles (GPs), derived from Saccharomyces cerevisiae yeast, possess unique biomedical properties. Nevertheless, it is imperative that a comprehensive risk assessment is conducted during pre-clinical development. GPs are primarily constituted of a naturally occurring polymer known as β-glucan. This study characterized [...] Read more.
Background/Objectives: Glucan particles (GPs), derived from Saccharomyces cerevisiae yeast, possess unique biomedical properties. Nevertheless, it is imperative that a comprehensive risk assessment is conducted during pre-clinical development. GPs are primarily constituted of a naturally occurring polymer known as β-glucan. This study characterized GPs, focusing on physicochemical attributes, biocompatibility, and immunomodulatory potential. Methods: GPs were characterized for size, morphology, surface charge, and protein encapsulation efficiency using dynamic light scattering (DLS), electron microscopy, and encapsulation assays. Biocompatibility was assessed through cytotoxicity assays (MTT), hemolysis tests, and measurement of reactive oxygen (ROS) and nitric oxide (NO) production in immune cells. Immunomodulatory potential was evaluated by cytokine and chemokine secretion analysis in peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (moDCs) and through in vivo immunization studies in a murine model, focusing on cellular immune responses. Results: GPs demonstrated stable physicochemical properties and efficient protein encapsulation, highlighting their suitability as vaccine delivery systems. They exhibited biocompatibility by not inducing cytotoxicity, hemolysis, or excessive ROS and NO production. In PBMCs, GPs stimulated cytokine secretion, suggesting their adjuvant potential. GPs were efficiently internalized by monocytes and led to specific chemokine secretion in stimulated moDCs. In a murine model, GPs induced distinctive cellular immune responses, including TNF-α and IFN-γ production and effector memory T cell activation. Conclusions: These findings emphasize GPs’ biocompatibility and immunomodulatory effects, highlighting their potential in immunotherapy and vaccine development, particularly for targeting infectious agents like hepatitis B virus. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Immunotherapies)
Show Figures

Figure 1

18 pages, 2312 KB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 - 1 Aug 2025
Viewed by 599
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
Show Figures

Figure 1

20 pages, 10909 KB  
Article
Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
by Yuanhang Ren, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou and Lianxin Peng
Foods 2025, 14(15), 2712; https://doi.org/10.3390/foods14152712 - 1 Aug 2025
Viewed by 388
Abstract
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, [...] Read more.
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, stability, and digestibility, which may support promising application of the phenol and polysaccharide complex in health food industry. In this study, two complexes with potential existence in highland barley, such as β-glucan-ferulic acid (GF) and β-glucan-quercetin (GQ), were prepared using the equilibrium dialysis method in vitro. FTIR and SEM results showed that ferulic acid and quercetin formed complexes with β-glucan separately, with covalent and non-covalent bonds and a dense morphological structure. The pH value, reaction temperature, and concentration of phosphate buffer solution (PBS) were confirmed to have an impact on the formation and yield of the complex. Through the test of the response surface, it was found that the optimum conditions for GF and (GQ) preparations were a pH of 6.5 (6), a PBS buffer concentration of 0.08 mol/L (0.3 mol/L), and a temperature of 8 °C (20 °C). Through in vitro assays, GF and GQ were found to possess good antioxidant activity, with a greater scavenging effect of DPPH, ABTS, and hydroxyl radical than the individual phenolic acids and glucans, as well as their physical mixtures. Taking GF as an example, the DPPH radical scavenging capacity ranked as GF (71.74%) > ferulic acid (49.50%) > PGF (44.43%) > β-glucan (43.84%). Similar trends were observed for ABTS radical scavenging (GF: 54.56%; ferulic acid: 44.37%; PGF: 44.95%; β-glucan: 36.42%) and hydroxyl radical elimination (GF: 39.16%; ferulic acid: 33.06%; PGF: 35.51%; β-glucan: 35.47%). In conclusion, the convenient preparation method and excellent antioxidant effect of the phenol–polysaccharide complexes from highland barley provide new opportunities for industrial-scale production, development, and design of healthy food based on these complexes. Full article
Show Figures

Figure 1

15 pages, 1025 KB  
Article
Characteristics of the Content and Variability of Dietary Fiber Components and Alkylresorcinols of Rye Grain (Secale cereale L.)
by Anna Fraś, Magdalena Wiśniewska, Dariusz R. Mańkowski and Marlena Gzowska
Molecules 2025, 30(14), 2994; https://doi.org/10.3390/molecules30142994 - 16 Jul 2025
Viewed by 338
Abstract
Rye (Secale cereale L.) is one of the most important cereals cultivated in Central and Eastern Europe, valued for its high resistance to environmental stress and high levels of bioactive compounds, such as dietary fiber (DF) and alkylresorcinols (ARR). The aim of [...] Read more.
Rye (Secale cereale L.) is one of the most important cereals cultivated in Central and Eastern Europe, valued for its high resistance to environmental stress and high levels of bioactive compounds, such as dietary fiber (DF) and alkylresorcinols (ARR). The aim of the study was to evaluate the content and variability of DF fractions and ARR in rye grain of hybrid and population cultivars. The research was conducted on grain from four rye cultivars cultivated in five locations over three consecutive growing seasons. The content of DF, its fractions, and ARR, was determined using enzymatic–gravimetric and colorimetric methods. The results showed significant variability in all analyzed traits, with environmental conditions and G×E interaction having the greatest impact on their content. Hybrid cultivars were characterized by a higher and more stable content of bioactive compounds. Notable average values for hybrids vs. populations included DF: 153.9 vs. 151.7 g kg−1, NSP: 129.4 vs. 127.7 g kg−1, lignin: 24.5 vs. 24.0 g kg−1, β-glucan: 21.7 vs. 20.6 g kg−1, and ARR: 1015 vs. 987 g kg−1. The KWS Serafino cultivar characterized by the highest and most stable content of bioactive compounds. Selecting genotypes with stable chemical profiles regardless of environmental conditions is crucial for developing nutritionally valuable rye-based products. Full article
Show Figures

Graphical abstract

13 pages, 1794 KB  
Article
Synergistic Enhancement of Paramylon Production in Edible Microalga Euglena gracilis via Ethanol-Guaiacol Co-Regulation
by Xinyi Yan, Hao Xu, Zhengfei Yang, Yongqi Yin, Weiming Fang, Minato Wakisaka and Jiangyu Zhu
Foods 2025, 14(14), 2457; https://doi.org/10.3390/foods14142457 - 12 Jul 2025
Viewed by 385
Abstract
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3 [...] Read more.
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3 glucan accumulation in edible microalgae, namely Euglena gracilis. The ethanol-induced mixotrophic mode significantly increased biomass and paramylon production by 12.68 and 6.43 times, respectively, compared to the autotrophic control group. GA further exerted toxic excitatory effects (hormesis) on top of ethanol mixotrophic nutrition. At the optimal concentration of 10 mg·L−1 GA, chlorophyll a, carotenoids, and paramylon production increased by 8.96%, 11.75%, and 16.67%, respectively, compared to the ethanol-treated group. However, at higher concentrations, the biomass and paramylon yield decreased significantly. This study not only establishes an effective combinatorial strategy for enhancing paramylon biosynthesis but also provides novel insights into the hormesis mechanism of phenolic compounds in microalgae cultivation. The developed approach demonstrates promising potential for sustainable production of high-value algal metabolites while reducing cultivation costs, which could significantly advance the commercialization of microalgae-based biorefineries in food and pharmaceutical industries. Full article
Show Figures

Figure 1

19 pages, 1245 KB  
Article
Fungal β-Glucans Shape Innate Immune Responses in Human Peripheral Blood Mononuclear Cells (PBMCs): An In Vitro Study on PRR Regulation, Cytokine Expression, and Oxidative Balance
by Elżbieta Kozłowska, Justyna Agier, Sylwia Różalska, Magdalena Jurczak, Aleksandra Góralczyk-Bińkowska and Paulina Żelechowska
Int. J. Mol. Sci. 2025, 26(13), 6458; https://doi.org/10.3390/ijms26136458 - 4 Jul 2025
Viewed by 564
Abstract
Fungi are ubiquitous organisms that are capable of transient or persistent colonization in humans. Their polymorphic nature and complex host–mycobiome interactions remain incompletely understood. Emerging evidence highlights the role of resident fungi in modulating immune responses and adapting to host changes, which can [...] Read more.
Fungi are ubiquitous organisms that are capable of transient or persistent colonization in humans. Their polymorphic nature and complex host–mycobiome interactions remain incompletely understood. Emerging evidence highlights the role of resident fungi in modulating immune responses and adapting to host changes, which can trigger a shift from commensalism to parasitism, particularly in immunocompromised individuals. This study evaluated the effects of two major β-glucans—zymosan and curdlan—on the expression of pattern recognition receptors (Dectin1, Dectin2, TLR2, TLR4) in human peripheral blood mononuclear cells (PBMCs). It also examined their impact on reactive oxygen species (ROS) production, cytokine/chemokine gene expression, and antioxidant enzyme expression. Both β-glucans significantly increased the mRNA levels of all tested receptors and enhanced ROS generation. Curdlan downregulated key antioxidant enzymes (SOD1, CAT, GPX1), while zymosan markedly upregulated SOD1. These findings demonstrate that the β-glucans zymosan and curdlan have a substantial influence on PBMC reactivity and oxidative stress responses. Further studies are needed to deepen our understanding of host–fungal interactions and their implications in health and disease. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 1783 KB  
Article
Acidic pH Modulates Cell Wall and Melanization in Paracoccidioides brasiliensis, Affecting Macrophage Interaction
by Rafael de Souza Silva, Wilson Dias Segura, Rogéria Cristina Zauli, Reinaldo Souza Oliveira, Vitor Vidal, Eduardo Correa Louvandini, Patricia Xander, Suzan Pantaroto Vasconcellos and Wagner Luiz Batista
J. Fungi 2025, 11(7), 504; https://doi.org/10.3390/jof11070504 - 4 Jul 2025
Viewed by 561
Abstract
Paracoccidioides brasiliensis is a thermally dimorphic fungal pathogen and the main etiological agent of paracoccidioidomycosis (PCM), a neglected systemic mycosis endemic in Latin America. The virulence of P. brasiliensis is closely associated with its capacity to survive under hostile host conditions, including acidic [...] Read more.
Paracoccidioides brasiliensis is a thermally dimorphic fungal pathogen and the main etiological agent of paracoccidioidomycosis (PCM), a neglected systemic mycosis endemic in Latin America. The virulence of P. brasiliensis is closely associated with its capacity to survive under hostile host conditions, including acidic environments. In this study, we demonstrate that acidic pH induces melanization in P. brasiliensis, modulates its cell wall composition, and alters the interaction with macrophages. Cultivation at acidic pH resulted in reduced fungal growth without compromising viability and triggered increased production of melanin-like pigments, as confirmed by enhanced laccase activity and upregulation of genes in the DHN-melanin biosynthetic pathway. Additionally, growth under acidic pH induced significant remodeling of the fungal cell wall, leading to increased chitin on the cell wall surface and reduced mannan content, while β-glucan levels remained unchanged. These modifications correlated with decreased viability to Congo Red, suggesting altered cell wall stability. Importantly, P. brasiliensis grown under acidic conditions exhibited reduced phagocytosis by RAW 264.7 macrophages, along with changes in nitric oxide and cytokine production, indicating potential mechanisms of immune evasion. Collectively, our findings suggest that environmental acidification promotes fungal adaptations that enhance survival and modulate host–pathogen interactions, contributing to P. brasiliensis virulence. Understanding how acidic pH regulates these processes provides new insights into the pathobiology of PCM and may contribute to understanding the mechanisms of fungal immune evasion. Full article
(This article belongs to the Special Issue Recent Advances in Systemic and Emerging Mycoses)
Show Figures

Figure 1

20 pages, 3868 KB  
Article
Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes
by Qiang Yang, Jean-Philippe Ral, Qiantao Jiang and Zhongyi Li
Foods 2025, 14(13), 2319; https://doi.org/10.3390/foods14132319 - 30 Jun 2025
Viewed by 401
Abstract
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes [...] Read more.
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes inactivated in the genome-edited offspring of targeted mutagenesis of starch synthetic genes using multiplex genome editing. The grain compositions and starch properties of the ssIIa/ssIIIa/sbeIIa/sbeIIb mutant were analysed and compared with the corresponding parameters of ssIIa, ssIIIa, sbeIIa/sbeIIb, ssIIa/sbeIIa/sbeIIb, and non-genome-edited lines (NE), respectively. ssIIa/ssIIIa/sbeIIa/sbeIIb exhibited the highest contents of β-glucan and amylose content among all mutants and NE, but not the most prominent in resistant starch, fructan, and fibre contents. The loss of SSIIa, SSIIIa, SBEIIa, and SBEIIb genes also resulted in significant changes in starch properties. This study enriched the genotypes of healthy barley and provided a theoretical basis for improving barley quality. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

27 pages, 2332 KB  
Article
Conversion of Soluble Compounds in Distillery Wastewater into Fungal Biomass and Metabolites Using Australian Ganoderma Isolates
by Aline D. O. Campos, Hashini J. Wahalathanthrige, Shane Russell, Mark D. Harrison and Peter James Strong
J. Fungi 2025, 11(6), 432; https://doi.org/10.3390/jof11060432 - 6 Jun 2025
Viewed by 1672
Abstract
Stillage is an acidic residue from ethanol production that has a high carbon load. Here, Ganoderma isolates were assessed for the treatment of rum stillage while producing biomass and associated metabolites. Isolates grew in 25% raw stillage, removing up to 73% of soluble [...] Read more.
Stillage is an acidic residue from ethanol production that has a high carbon load. Here, Ganoderma isolates were assessed for the treatment of rum stillage while producing biomass and associated metabolites. Isolates grew in 25% raw stillage, removing up to 73% of soluble organic carbon, 77% soluble nitrogen, and 74% phenolic compounds. Isolate G2 demonstrated faster removal of organic carbon and nitrogen. Biomass and metabolite production were benchmarked against a nutrient medium. In stillage, maximum values of the following were obtained: 8.2 g·L−1 biomass; 52.8% crude protein; 22.1 mg·g−1 extractable protein; antioxidants of 17.2 mg TE·g−1 (2,2′-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS) and 16.6 µmol Fe2+·g−1 (ferric reducing antioxidant power, FRAP); 2.9 mg GAE·g−1 phenolic compounds (gallic acid equivalents); 1.2% lipids; and 11% β-glucans. In the nutrient medium, the following were obtained: 6.9 g·L−1 biomass; 56.4% crude protein; 38.7 mg·g−1 extractable protein; antioxidants of 24.9 mg TE·g−1 (ABTS) and 25.9 µmol Fe2+·g−1 (FRAP); 6.0 mg GAE·g−1 phenolic compounds; 0.7% lipids; and 13% β-glucans. To our knowledge, this is the first report detailing the biomass metabolite content of Ganoderma mycelium using rum stillage. The production of edible biomass containing bioactive products demonstrates the potential of using Ganoderma strains to valorize this residue. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

15 pages, 2715 KB  
Article
Overcoming Forage Challenges in Mesophytic Grasslands—The Advantages of Lotus tenuis
by María Elena Vago, Paula Virginia Fernández, Juan Pedro Ezquiaga, Santiago Javier Maiale, Andrés Alberto Rodriguez, Juan Manuel Acosta, Maximiliano Gortari, Oscar Adolfo Ruiz and Marina Ciancia
Grasses 2025, 4(2), 19; https://doi.org/10.3390/grasses4020019 - 7 May 2025
Cited by 1 | Viewed by 670
Abstract
Previous studies in the Salado River Basin (Argentina) demonstrated that the introduced forage species, Lotus tenuis Waldst. & Kit. ex Wild. (Fabaceae), possesses high tolerance to abiotic stresses—including flooding, alkalinity, salinity, and drought. The efficient biological fixation of nitrogen in a region [...] Read more.
Previous studies in the Salado River Basin (Argentina) demonstrated that the introduced forage species, Lotus tenuis Waldst. & Kit. ex Wild. (Fabaceae), possesses high tolerance to abiotic stresses—including flooding, alkalinity, salinity, and drought. The efficient biological fixation of nitrogen in a region with a scarce presence of native legumes is one of its advantages. Despite these qualities, a year-long characterization of cell wall (CW) polysaccharides in Lotus tenuis and their relationship with the high nutritional quality is missing. In this study, seasonal parametric investigations of L. tenuis, regarding its photosynthetic and ionic status, modifications in CW composition, and concomitant nutritional quality, were performed. Our results demonstrate the high plant digestibility and protein content of this legume, even in summer, when most accompanying species reduce their forage quality. Regarding gas production kinetics (in vitro production is a proxy for the animal rumen’s output), spring biomass had the highest values. The CW material yields are similar throughout the year, but with differences in polysaccharide composition. In summer and winter, pectins predominate, while in the regrowth periods (spring and autumn), pectins and β-glucans are found in similar amounts. This work confirms that Lotus tenuis can help optimize grassland productivity in challenging mesophytic terrains to increase livestock productivity through environmentally friendly services. Full article
Show Figures

Graphical abstract

20 pages, 1869 KB  
Article
Production of β-Glucans from Rhizopus oryzae M10A1 by Optimizing Culture Conditions Using Liquid Potato Starch Waste
by Miguel Anchundia, Gualberto León-Revelo, Stalin Santacruz and Freddy Torres
Polymers 2025, 17(9), 1283; https://doi.org/10.3390/polym17091283 - 7 May 2025
Viewed by 795
Abstract
β-glucans from filamentous fungi are important for human health. There is limited research on polysaccharides from filamentous fungi, and no reports have been published regarding the optimization of culture media to produce β-glucans from Rhizopus oryzae using liquid waste from potato starch processing. [...] Read more.
β-glucans from filamentous fungi are important for human health. There is limited research on polysaccharides from filamentous fungi, and no reports have been published regarding the optimization of culture media to produce β-glucans from Rhizopus oryzae using liquid waste from potato starch processing. In this regard, the fermentation conditions to produce β-glucans from Rhizopus oryzae M10A1 were optimized using the one variable at a time (OVAT) and response surface methodology (RSM). The β-glucans were chemically characterized by determining moisture, nitrogen, protein, fat, ash, and total carbohydrates. The color, molecular weight, β-glucan content, monosaccharide composition, and structural and conformational characteristics were assessed by colorimetry, gel permeation chromatography, high-performance liquid chromatography, and Fourier transform infrared spectroscopy, respectively. The microbial indicators, mesophilic aerobes, molds, yeasts, and Escherichia coli were quantified following ISO standard protocols. Optimization indicated that supplementation with 0.8% (w/v) glucose and ammonium sulfate enhanced heteroglycan production (3254.56 mg/100 g of biomass). The β-glucans exhibited high purity, a light brown color, a molecular weight of 450 kDa, and a composition predominantly consisting of glucose and galactose. These findings suggest that β-glucans from Rhizopus oryzae M10A1 could be used for food and health applications. Full article
Show Figures

Figure 1

22 pages, 1168 KB  
Review
Yeasts and Their Derivatives as Functional Feed Additives in Poultry Nutrition
by Wafaa A. Abd El-Ghany
Agriculture 2025, 15(9), 1003; https://doi.org/10.3390/agriculture15091003 - 6 May 2025
Viewed by 1266
Abstract
Restrictions on antimicrobial use in food animal production have been imposed due to concerns over residue accumulation and the development of antibiotic resistance. Thus, there is a need to find potential and safe alternatives to antimicrobials. Some of these natural alternatives include yeasts [...] Read more.
Restrictions on antimicrobial use in food animal production have been imposed due to concerns over residue accumulation and the development of antibiotic resistance. Thus, there is a need to find potential and safe alternatives to antimicrobials. Some of these natural alternatives include yeasts and their derivatives. Yeasts are single-cell facultative anaerobic ascomycetous eukaryotic fungi that are comprehensively incorporated into poultry nutrition for their potential beneficial effects. They are available as probiotics (whole living yeast cells) or as prebiotics (bioactive derivative components, such as mannan-oligosaccharides, β-glucans, or chitin), along with nucleotides found in distillery yeast sludge or hydrolyzed yeast. The beneficial effects of yeasts and their derivatives stem from their ability to enhance production performance, stimulate immune responses, modulate gut microbiota, and reduce oxidative stress. This review explores the potential roles of yeasts and their derivatives in poultry nutrition. Their effects on productive performance (in broilers, layers, and breeders), carcass traits, immune response, gut health, and oxidative stress are investigated. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

14 pages, 1287 KB  
Article
The Effects of Pasteurization and Beer Type on the Functional Compounds and Flavor Substances in Beer
by Jiahui Ding, Xiaoping Hou, Jianghua Li, Xinrui Zhao and Shumin Hu
Beverages 2025, 11(3), 63; https://doi.org/10.3390/beverages11030063 - 1 May 2025
Viewed by 1130
Abstract
The study of functional compounds is of great importance for the production of nutrient-rich and flavorful beer. In this study, the effects of the pasteurization process and beer type (lager and ale, draft beer, and ripe beer) on the types and contents of [...] Read more.
The study of functional compounds is of great importance for the production of nutrient-rich and flavorful beer. In this study, the effects of the pasteurization process and beer type (lager and ale, draft beer, and ripe beer) on the types and contents of functional compounds were investigated, including the derivatives of amino acids (γ-aminobutyric acid and glutathione), β-glucan, phenolic acids, vitamin B, and volatile compounds. Among the six different types of beers tested, it was found that the concentration of functional compounds in ale was higher than that in lager. In addition, the process of pasteurization resulted in the loss of B vitamins and ferulic acid and an increase in some off-flavors such as aldehydes. The results of this study can aid in the development of novel functional beer and new strategies to improve beer quality. Full article
(This article belongs to the Section Malting, Brewing and Beer)
Show Figures

Figure 1

21 pages, 762 KB  
Review
Beyond Adaptive Immunity: Trained Innate Immune Responses as a Novel Frontier in Hepatocellular Carcinoma Therapy
by Ching-Hua Hsieh, Pei-Chin Chuang and Yueh-Wei Liu
Cancers 2025, 17(7), 1250; https://doi.org/10.3390/cancers17071250 - 7 Apr 2025
Cited by 2 | Viewed by 1574
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally, with the majority of cases detected at advanced stages when curative options are limited. Current systemic therapies, including immune checkpoint inhibitors, demonstrate limited efficacy with durable responses in only 15–20% of patients. [...] Read more.
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally, with the majority of cases detected at advanced stages when curative options are limited. Current systemic therapies, including immune checkpoint inhibitors, demonstrate limited efficacy with durable responses in only 15–20% of patients. This poor response is largely attributed to HCC’s immunosuppressive microenvironment, which blunts effective T-cell responses. By illustrating that innate immune cells can acquire memory-like characteristics through a process known as trained immunity, recent evidence has challenged the conventional belief that innate immunity is devoid of memory. This review investigates the potential of trained immunity, which is defined by the long-term functional reprogramming of innate immune cells through epigenetic, transcriptomic, and metabolic changes, to provide new therapeutic opportunities for HCC. We discuss mechanisms by which trained immunity can transform the HCC microenvironment, including enhanced inflammatory cytokine production, repolarization of tumor-associated macrophages toward anti-tumor phenotypes, increased immune cell infiltration, and improved bridging to adaptive immunity. We further evaluate emerging therapeutic strategies leveraging trained immunity principles, including BCG vaccination, β-glucan administration, cytokine-trained NK cell therapy, and innovative combination approaches. Finally, we address potential resistance mechanisms and future directions for clinical application. By integrating trained immunity into conventional immunotherapeutic regimens, we may significantly improve outcomes for HCC patients, potentially transforming advanced disease into a more manageable condition. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop