Acidic pH Modulates Cell Wall and Melanization in Paracoccidioides brasiliensis, Affecting Macrophage Interaction
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Isolate and Growth Conditions
2.2. Growth Assay of P. brasiliensis in Acid Conditions
2.3. Spot Assay
2.4. Evaluation of P. brasiliensis Pigmentation and Growth at Acidic pH
2.5. Quantification of Melanin Production in Liquid Culture
2.6. Evaluation of Laccase Activity
2.7. Bioinformatic Analysis
2.8. P. brasiliensis RNA Isolation
2.9. Real-Time Quantitative RT-qPCR
2.10. Analysis of the Modulation of Cell Wall Components
2.11. Phagocytosis Assay
2.12. Cytokine Measurement
2.13. Nitric Oxide (NO) Measurement
3. Results
3.1. Growth and Adaptation to Stress of P. brasiliensis in Acidic pH
3.2. Low pH Promotes Melanin-like Pigment Formation and Enhances Laccase Activity in P. brasiliensis
3.3. Acidic pH Induces the Expression of DHN-Melanin Pathway Genes in P. brasiliensis
3.4. Acidic pH Modulates Cell Wall of P. brasiliensis
3.5. Growth Under Acidic Conditions Decreases Phagocytosis of P. brasiliensis and Alters Cytokine and Nitric Oxide Production by Macrophages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaves, A.F.A.; Navarro, M.V.; de Barros, Y.N.; Silva, R.S.; Xander, P.; Batista, W.L. Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J. Fungi 2021, 7, 116. [Google Scholar] [CrossRef]
- Shikanai-Yasuda, M.A.; Mendes, R.P.; Colombo, A.L.; Queiroz-Telles, F.; Kono, A.S.G.; Paniago, A.M.M.; Nathan, A.; Valle, A.C.F.; Bagagli, E.; Benard, G.; et al. Brazilian guidelines for the clinical management of paracoccidioidomycosis. Rev. Soc. Bras. Med. Trop. 2017, 50, 715–740. [Google Scholar] [CrossRef]
- Mendes, R.P.; Cavalcante, R.S.; Marques, S.A.; Marques, M.E.A.; Venturini, J.; Sylvestre, T.F.; Paniago, A.M.M.; Pereira, A.C.; da Silva, J.F.; Fabro, A.T.; et al. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol. J. 2017, 11, 224–282. [Google Scholar] [CrossRef]
- Martinez, R. Epidemiology of paracoccidioidomycosis. Rev. Inst. Med. Trop. São Paulo 2015, 57, 11–20. [Google Scholar] [CrossRef]
- Hahn, R.C.; Hagen, F.; Mendes, R.P.; Burger, E.; Nery, A.F.; Siqueira, N.P.; Guevara, A.; Rodrigues, A.M.; Zoilo Pires de Camargo, Z.P. Paracoccidioidomycosis: Current Status and Future Trends. Clin. Microbiol. Rev. 2022, 35, e0023321. [Google Scholar] [CrossRef]
- Santo, A.H. Tendência da mortalidade relacionada à paracoccidioidomicose, Estado de São Paulo, Brasil, 1985 a 2005: Estudo usando causas múltiplas de morte. Pan Am. J. Public Health 2008, 23, 313–324. [Google Scholar] [CrossRef]
- da Silva, M.B.; Marques, A.F.; Nosanchuk, J.D.; Casadevall, A.; Travassos, L.R.; Taborda, C.P. Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: Effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect. 2006, 8, 197–205. [Google Scholar] [CrossRef]
- Taborda, C.P.; da Silva, M.B.; Nosanchuk, J.D.; Travassos, L.R. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: A minireview. Mycopathologia 2008, 165, 331–339. [Google Scholar] [CrossRef]
- Santos, L.A.; Grisolia, J.C.; Burger, E.; Paula, F.B.A.; Dias, A.L.T.; Malaquias, L.C.C. Virulence factors of Paracoccidioides brasiliensis as therapeutic targets: A review. Antonie Van. Leeuwenhoek 2020, 113, 593–604. [Google Scholar] [CrossRef]
- Castilho, D.G.; Chaves, A.F.; Xander, P.; Zelanis, A.; Kitano, E.S.; Serrano, S.M.; Tashima, A.K.; Batista, W.L. Exploring potential virulence regulators in Paracoccidioides brasiliensis isolates of varying virulence through quantitative proteomics. J. Proteome Res. 2014, 13, 4259–4271. [Google Scholar] [CrossRef]
- Castilho, D.G.; Chaves, A.F.A.; Navarro, M.V.; Conceição, P.M.; Ferreira, K.S.; da Silva, L.S.; Xander, P.; Batista, W.L. Secreted aspartyl proteinase (PbSap) contributes to the virulence of Paracoccidioides brasiliensis infection. PLoS Negl. Trop. Dis. 2018, 12, e0006806. [Google Scholar] [CrossRef]
- Silva, R.S.; Segura, W.D.; Oliveira, R.S.; Xander, P.; Batista, W.L. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J. Fungi 2023, 9, 375. [Google Scholar] [CrossRef]
- Lange, T.; Kasper, L.; Gresnigt, M.S.; Brunke, S.; Hube, B. “Under Pressure”—How fungi evade, exploit, and modulate cells of the innate immune system. Semin. Immunol. 2023, 66, 101738. [Google Scholar] [CrossRef]
- Vaughn, B.; Abu Kwaik, Y. Idiosyncratic biogenesis of intracellular pathogens-containing vacuoles. Front. Cell Infect. Microbiol. 2021, 11, 722433. [Google Scholar] [CrossRef]
- Black, B.; da Silva, L.B.R.; Hu, G.; Qu, X.; Smith, D.F.Q.; Magaña, A.A.; Horianopoulos, L.C.; Caza, M.; Attarian, R.; Foster, L.J.; et al. Glutathione-mediated redox regulation in Cryptococcus neoformans impacts virulence. Nat. Microbiol. 2024, 9, 2084–2098. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Leech, D.; Paice, M.G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Biophys. Acta 1998, 1379, 381–390. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Wagener, J.; Malireddi, S.R.K.; Lenardon, M.D.; Köberle, M.; Vautier, S.; MacCallum, D.M.; Biedermann, T.; Schaller, M.; Netea, M.G.; Kanneganti, T.D.; et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 2014, 10, e1004050. [Google Scholar] [CrossRef]
- Nogueira, M.F.; Istel, F.; Jenull, S.; Walker, L.A.; Gow, N.A.; Lion, T. Quantitative Analysis of Candida Cell Wall Components by Flow Cytometry with Triple-Fluorescence Staining. J. Microbiol. Mod. Tech. 2017, 2, 101. [Google Scholar]
- Navarro, M.V.; de Barros, Y.N.; Segura, W.D.; Chaves, A.F.A.; Jannuzzi, G.P.; Ferreira, K.S.; Xander, P.; Batista, W.L. The Role of Dimorphism Regulating Histidine Kinase (Drk1) in the Pathogenic Fungus Paracoccidioides brasiliensis Cell Wall. J. Fungi 2021, 7, 1014. [Google Scholar] [CrossRef]
- Popi, A.F.; Godoy, L.C.; Xander, P.; Lopes, J.D.; Mariano, M. B-1 cells facilitate Paracoccidioides brasiliensis infection in mice via IL-10 secretion. Microbes Infect. 2008, 10, 817–824. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase Properties, Physiological Functions, and Evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef]
- Chamilos, G.; Carvalho, A. Aspergillus fumigatus DHN-Melanin. Curr. Top. Microbiol. Immunol. 2020, 425, 17–28. [Google Scholar] [CrossRef]
- Riley, P.A. Melanin. Int. J. Biochem. Cell Biol. 1997, 29, 1235–1239. [Google Scholar] [CrossRef]
- Pascoe, M.J.; Maillard, J.Y. The role of melanin in Aspergillus tolerance to biocides and photosensitizers. Lett. Appl. Microbiol. 2021, 72, 375–381. [Google Scholar] [CrossRef]
- Perez-Cuesta, U.; Aparicio-Fernandez, L.; Guruceaga, X.; Martin-Souto, L.; Abad-Diaz-de-Cerio, A.; Antoran, A.; Buldain, I.; Hernando, F.L.; Ramirez-Garcia, A.; Rementeria, A. Melanin and pyomelanin in Aspergillus fumigatus: From its genetics to host interaction. Int. Microbiol. 2020, 23, 55–63. [Google Scholar] [CrossRef]
- Tsai, H.F.; Wheeler, M.H.; Chang, Y.C.; Kwon-Chung, K.J. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J. Bacteriol. 1999, 181, 6469–6477. [Google Scholar] [CrossRef]
- Wang, B.; Han, Z.; Gong, D.; Xu, X.; Li, Y.; Sionov, E.; Prusky, D.; Bi, Y.; Zong, Y. The pH signalling transcription factor PacC modulates growth, development, stress response and pathogenicity of Trichothecium roseum. Environ. Microbiol. 2022, 24, 1608–1621. [Google Scholar] [CrossRef]
- Heninger, E.; Hogan, L.H.; Karman, J.; Macvilay, S.; Hill, B.; Woods, J.P.; Sandor, M. Characterization of the Histoplasma capsulatum-induced granuloma. J. Immunol. 2006, 177, 3303–3313. [Google Scholar] [CrossRef]
- Kiran, D.; Podell, B.K.; Chambers, M.; Basaraba, R.J. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: A review. Semin. Immunopathol. 2016, 38, 167–183. [Google Scholar] [CrossRef]
- Fang, Y.; Li, Z.; Yang, L.; Li, W.; Wang, Y.; Kong, Z.; Miao, J.; Chen, Y.; Bian, Y.; Li Zeng, L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun. Signal. 2024, 22, 276. [Google Scholar] [CrossRef]
- Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013, 13, 89. [Google Scholar] [CrossRef]
- Lardner, A. The effects of extracellular pH on immune function. J. Leukoc. Biol. 2001, 69, 522–530. [Google Scholar] [CrossRef]
- Vylkova, S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 2017, 13, e1006149. [Google Scholar] [CrossRef]
- Palková, Z.; Janderová, B.; Gabriel, J.; Zikánová, B.; Pospísek, M.; Forstová, J. Ammonia mediates communication between yeast colonies. Nature 1997, 390, 532–536. [Google Scholar] [CrossRef]
- Shnaiderman, C.; Miyara, I.; Kobiler, I.; Sherman, A.; Prusky, D. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. Mol. Plant Microbe Interact. 2013, 26, 345–355. [Google Scholar] [CrossRef]
- Schindler, J.; Sussman, M. Ammonia determines the choice of morphogenetic pathways in Dictyostelium discoideum. J. Mol. Biol. 1977, 116, 161–169. [Google Scholar] [CrossRef]
- Vylkova, S.; Carman, A.J.; Danhof, H.A.; Collette, J.R.; Zhou, H.; Lorenz, M.C. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio 2011, 2, e00055-11. [Google Scholar] [CrossRef]
- Kapteyn, J.C.; ter Riet, B.; Vink, E.; Blad, S.; De Nobel, H.; Van Den Ende, H.; Klis, F.M. Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol. Microbiol. 2001, 39, 469–479. [Google Scholar] [CrossRef]
- Lucena, R.M.; Dolz-Edo, L.; Brul, S.; de Morais, M.A., Jr.; Smits, G. Extreme low cytosolic pH is a signal for cell survival in acid stressed yeast. Genes 2020, 11, 656. [Google Scholar] [CrossRef]
- Chen, A.K.; Gelling, C.; Rogers, P.L.; Dawes, I.W.; Rosche, B. Response of Saccharomyces cerevisiae to stress-free acidification. J. Microbiol. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Ullah, A.; Chandrasekaran, G.; Brul, S.; Smits, G.J. Yeast adaptation to weak acids prevents futile energy expenditure. Front. Microbiol. 2013, 4, 142. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latgé, J.P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, 10–1128. [Google Scholar] [CrossRef]
- Lee, C.G.; Da Silva, C.A.; Lee, J.Y.; Hartl, D.; Elias, J.A. Chitin regulation of immune responses: An old molecule with new roles. Curr. Opin. Immunol. 2008, 20, 684–689. [Google Scholar] [CrossRef]
- Becker, K.L.; Aimanianda, V.; Wang, X.; Gresnigt, M.S.; Ammerdorffer, A.; Jacobs, C.W.; Gazendam, R.P.; Joosten, L.A.; Netea, M.G.; Latgé, J.P.; et al. Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCs via the Fc-γ receptor/Syk/PI3K pathway. mBio 2016, 7, e01823-15. [Google Scholar] [CrossRef]
- Silva, M.B.; Thomaz, L.; Marques, A.F.; Svidzinski, A.E.; Nosanchuk, J.D.; Casadevall, A.; Travassos, L.R.; Taborda, C.P. Resistance of melanized yeast cells of Paracoccidioides brasiliensis to antimicrobial oxidants and inhibition of phagocytosis using carbohydrates and monoclonal antibody to CD18. Mem. Inst. Oswaldo Cruz 2009, 104, 644–648. [Google Scholar] [CrossRef]
- Urán, M.E.; Nosanchuk, J.D.; Restrepo, A.; Hamilton, A.J.; Gómez, B.L.; Cano, L.E. Detection of antibodies against Paracoccidioides brasiliensis melanin in in vitro and in vivo studies during infection. Clin. Vaccine Immunol. 2011, 18, 1680–1688. [Google Scholar] [CrossRef]
- Gómez, B.L.; Nosanchuk, J.D. Melanin and fungi. Curr. Opin. Infect. Dis. 2003, 16, 91–96. [Google Scholar] [CrossRef]
- Portis, I.G.; de Sousa Lima, P.; Paes, R.A.; Oliveira, L.N.; Pereira, C.A.; Parente-Rocha, J.A.; Pereira, M.; Nosanchuk, J.D.; de Almeida Soares, C.M. Copper overload in Paracoccidioides lutzii results in the accumulation of ergosterol and melanin. Microbiol. Res. 2020, 239, 126524. [Google Scholar] [CrossRef]
Gene | Organism | ID | ID P. brasiliensis | Similarity (%) |
---|---|---|---|---|
ABR1 | A. niger | An14g05370 | PADG_05994 | 29.67 |
ABR2 | A. niger | An01g13660 | PADG_03184 | 44.25 |
ABL1 | A. fumigatus | Afu2g17600 | PADG_02849 | 25.88 |
HPPD | A. fumigatus | Afu2g04200 | PADG_08468 | 80.5 |
HMGX | A. fumigatus | Afu2g04210 | PADG_08467 | 41.18 |
MAIA | A. fumigatus | Afu2g04240 | PADG_08464 | 55.75 |
HMGA | A. nidulans | AN1897 | PADG_08466 | 78.57 |
FAHA | A. nidulans | AN1896 | PADG_08465 | 72.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.d.S.; Segura, W.D.; Zauli, R.C.; Oliveira, R.S.; Vidal, V.; Louvandini, E.C.; Xander, P.; Vasconcellos, S.P.; Batista, W.L. Acidic pH Modulates Cell Wall and Melanization in Paracoccidioides brasiliensis, Affecting Macrophage Interaction. J. Fungi 2025, 11, 504. https://doi.org/10.3390/jof11070504
Silva RdS, Segura WD, Zauli RC, Oliveira RS, Vidal V, Louvandini EC, Xander P, Vasconcellos SP, Batista WL. Acidic pH Modulates Cell Wall and Melanization in Paracoccidioides brasiliensis, Affecting Macrophage Interaction. Journal of Fungi. 2025; 11(7):504. https://doi.org/10.3390/jof11070504
Chicago/Turabian StyleSilva, Rafael de Souza, Wilson Dias Segura, Rogéria Cristina Zauli, Reinaldo Souza Oliveira, Vitor Vidal, Eduardo Correa Louvandini, Patricia Xander, Suzan Pantaroto Vasconcellos, and Wagner Luiz Batista. 2025. "Acidic pH Modulates Cell Wall and Melanization in Paracoccidioides brasiliensis, Affecting Macrophage Interaction" Journal of Fungi 11, no. 7: 504. https://doi.org/10.3390/jof11070504
APA StyleSilva, R. d. S., Segura, W. D., Zauli, R. C., Oliveira, R. S., Vidal, V., Louvandini, E. C., Xander, P., Vasconcellos, S. P., & Batista, W. L. (2025). Acidic pH Modulates Cell Wall and Melanization in Paracoccidioides brasiliensis, Affecting Macrophage Interaction. Journal of Fungi, 11(7), 504. https://doi.org/10.3390/jof11070504