Yeasts and Their Derivatives as Functional Feed Additives in Poultry Nutrition
Abstract
:1. Introduction
2. The Different Effects of Yeasts as Dietary Feed Additives for Poultry (Figure 2)
2.1. Productivity
2.1.1. Growth Performance of Broilers
2.1.2. Production Performance with Layers and Breeders
2.2. Carcass Traits
2.3. Immune Response
2.4. Gut Health
2.5. Oxidative Stress
3. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Abd El-Ghany, W.A.; Abdel-Latif, M.A.; Hosny, F.; Alatfeehy, N.M.; Noreldin, A.E.; Quesnell, R.R.; Chapman, R.; Sakai, L.; Elbestawy, A.R. Comparative efficacy of postbiotic, probiotic, and antibiotic against necrotic enteritis in broiler chickens. Poult. Sci. 2022, 101, 101988. [Google Scholar] [CrossRef]
- Abou-Jaoudeh, C.; Andary, J.; Abou-Khalil, R. Antibiotic residues in poultry products and bacterial resistance: A review in developing countries. J. Infect. Public Health 2024, 17, 102592. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A.; Babazadeh, D. Betaine: A potential nutritional metabolite in the poultry industry. Animals 2022, 12, 2624. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. Chitosan: A promising natural polysaccharide feed additive in poultry production systems. Iran. J. Vet. Res. 2023, 24, 301–312. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. Applications of organic acids in poultry production: An updated and comprehensive review. Agriculture 2024, 14, 1756. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. The influence of the phytobiotic tulsi (Ocimum sanctum) on broiler production and health. Vet. Stanica 2024, 55, 221–230. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. The impact of dietary guava (Psidium guajava L.) on some livestock production system. CABI Rev. 2024, 19, 1–7. [Google Scholar] [CrossRef]
- Salahi, A.; Abd El-Ghany, W.A. Beyond probiotics, uses of their next-generation for poultry and humans: A review. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1336–1347. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. The different influences of a phytobiotic, green tea (Camellia sinensis L.) on the poultry health and production. J. Appl. Vet. Sci. 2025, 10, 32–45. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. The impact of using bee pollen in poultry systems: Apiculture. Vet. Stanica 2025, 56, 671. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Sifri, M.; Selvaraj, R. Yeasts and yeast-based products in poultry nutrition. J. Appl. Poult. Res. 2023, 32, 100345. [Google Scholar] [CrossRef]
- Bennett, J.W. Mycotechnology: The role of fungi in biotechnology. J. Biotechnol. 1998, 66, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, O.; Makanjuola, B.; Bankole, T.; Adeyori, A. Yeast culture (Saccharomyces cerevisae) supplementation: Effect on the performance and gut morphology of broiler birds. Glob. J. Sci. Front. Res. Biol. Sci. 2012, 12, 25–29. [Google Scholar]
- Fietto, J.L.; Araujo, R.S.; Valadao, F.N.; Fietto, L.G.; Brandao, R.L.; Neves, M.J.; Gomes, F.C.; Nicoli, J.R.; Castro, I.M. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Cand. J. Microbiol. 2004, 50, 615–621. [Google Scholar] [CrossRef]
- Deraz, S.F. Synergetic effects of multispecies probiotic supplementation on certain blood parameters and serum biochemical profile of broiler chickens. J. Vet. Med. Anim. Health 2018, 6, 27–34. [Google Scholar] [CrossRef]
- Feye, K.M.; Carroll, J.P.; Anderson, K.L.; Whittaker, J.H.; Schmidt-McCormack, G.R.; McIntyre, D.R.; Pavlidis, H.O.; Carlson, S.A. Saccharomyces cerevisiae fermentation products that mitigate foodborne Salmonella in cattle and poultry. Front. Vet. Sci. 2019, 6, 107. [Google Scholar] [CrossRef]
- Mulatu, K.; Ameha, N.; Girma, M. Effects of feeding different levels of baker’s yeast on performance and hematological parameters in broiler chickens. J. World Poult. Res. 2019, 9, 38–49. [Google Scholar] [CrossRef]
- Fornazier, R.; Ribeiro Junior, V.; Albino, L.F.T.; Tavernari, F.C.; Feddern, V.; Silva, D.L.; Serafini, S.; Petrolli, T.G.; Paiano, D.; Calderano, A.A.; et al. Prebiotic composed of yeast (Saccharomyces cerevisiae) cell wall improves performance in broiler diets. Rev. Bras. Zootec. 2024, 53, e20230162. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A.; Awaad, M.H.; Nagwa, S.R. Efficacy of certain feed additives for the prevention of Campylobacter jejuni infection in broiler chickens. Asian J. Anim. Sci. 2015, 9, 427–433. [Google Scholar] [CrossRef]
- Shurson, G.C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed Sci. Technol. 2018, 235, 60–76. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Okoro, V.M.; Mbajiorgu, E.F.; Mbajiorgu, C.A. Yeast (Saccharomyces cerevisiae) and its effect on production indices of livestock and poultry—A review. Comp. Clin. Pathol. 2019, 28, 669–677. [Google Scholar] [CrossRef]
- Perricone, V.; Sandrini, S.; Irshad, N.; Savoini, G.; Comi, M.; Agazzi, A. Yeast-derived products: The role of hydrolyzed yeast and yeast culture in poultry nutrition—A review. Animals 2022, 12, 1426. [Google Scholar] [CrossRef] [PubMed]
- Bilal, R.M.; Hassan, F.U.; Saeed, M.; Rafeeq, M.; Zahra, N.; Fraz, A.; Saeed, S.; Khan, M.A.; Mahgoub, H.A.; Farag, M.R.; et al. Role of yeast and yeast-derived products as feed additives in broiler nutrition. Anim. Biotechnol. 2021, 34, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Ihsanuddin, N.; Khan, R.U. Replacement of soybean meal with yeast single cell protein in broiler ration: The effect on performance traits. Pak. J. Zool. 2014, 46, 1753–1758. [Google Scholar]
- Lee, J.; Goo, D.; Kumar Sharma, M.; Ko, H.; Shi, H.; Paneru, D.; Sesha, V.; Choppa, R.; Liu, G.; Kyun Kim, W. Effects of graded yeast cell wall supplementation on growth performance, immunity and intestinal development of broiler chickens raised in floor pens for 42 days. Poult. Sci. 2025, 104, 104695. [Google Scholar] [CrossRef]
- Zhang, A.W.; Lee, B.D.; Lee, S.K.; Lee, K.W.; An, G.H.; Song, K.B.; Lee, C.H. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poult. Sci. 2005, 84, 1015–1021. [Google Scholar] [CrossRef]
- Vohra, A.; Syal, P.; Madan, A. Probiotic yeasts in livestock sector. Anim. Feed Sci. Technol. 2016, 219, 31–47. [Google Scholar] [CrossRef]
- Leone, F.; Ferrante, V. Effects of prebiotics and precision biotics on performance, animal welfare and environmental impact. A review. Sci. Total Environ. 2023, 901, 165951. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. Open Vet. J. 2020, 10, 323–330. [Google Scholar] [CrossRef]
- Saeed, M.; Afzal, Z.; Afzal, F.; Khan, R.U.; Elnesr, S.S.; Alagawany, M.; Chen, H. Use of postbiotic as growth promoter in poultry industry: A review of current knowledge and future prospects. Food Sci. Anim. Resour. 2023, 43, 1111–1127. [Google Scholar] [CrossRef]
- Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Iji, P.; Choct, M. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Araujo, L.F.; Bonato, M.; Barbalho, R.; Araujo, C.S.S.; Zorzetto, P.S.; Granghelli, C.A.; Pereira, R.J.G.; Kawaoku, A.J.T. Evaluating hydrolyzed yeast in the diet of broiler breeder hens. J. Appl. Poult. Res. 2018, 27, 65–70. [Google Scholar] [CrossRef]
- Korolenko, T.A.; Bgatova, N.P.; Vetvicka, V. Glucan and Mannan—Two peas in a pod. Int. J. Mol. Sci. 2019, 20, 3189. [Google Scholar] [CrossRef]
- Pascual, A.; Pauletto, M.; Giantin, M.; Radaelli, G.; Ballarin, C.; Birolo, M.; Zomeno, C.; Dacasto, M.; Bortoletti, M.; Vascellari, M. Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens. J. Anim. Sci. Biotechnol. 2020, 11, 40. [Google Scholar] [CrossRef]
- Takalloo, Z.; Nikkhah, M.; Nemati, R.; Jalilian, N.; Sajedi, R.H. Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): A comparative study. World J. Microbiol. Biotechnol. 2020, 36, 68. [Google Scholar] [CrossRef]
- Walker, G.K.; Jalukar, S.; Brake, J. The effect of refined functional carbohydrates from enzymatically hydrolyzed yeast on the transmission of environmental Salmonella senftenberg among broilers and proliferation in broiler housing. Poult. Sci. 2018, 97, 1412–1419. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Mohammadigheisar, M.; Schulze, H. Effects of early feeding of enzymatically treated yeast on growth performance, organ weights, intestinal histomorphology, and ceca microbial metabolites in broiler chickens subjected to Eimeria challenge. Poult. Sci. 2022, 101, 101967. [Google Scholar] [CrossRef]
- Alagbe, E.O.; Schulze, H.; Adeola, O. Growth performance, nutrient digestibility, intestinal morphology, cecal mucosal cytokines and serum antioxidant responses of broiler chickens to dietary enzymatically treated yeast and coccidia challenge. J. Anim. Sci. Biotechnol. 2023, 14, 57. [Google Scholar] [CrossRef]
- De Cloet, C.A.; Maina, A.N.; Schulze, H.; Bédécarrats, G.Y.; Kiarie, E.G. Egg production, egg quality, organ weight, bone ash and plasma metabolites in 30-week-old Lohmann LSL lite hens fed corn and soybean meal-based diets supplemented with enzymatically treated yeast. Poult. Sci. 2023, 102, 102527. [Google Scholar] [CrossRef]
- Lin, J.; Comi, M.; Vera, P.; Alessandro, A.; Qiu, K.; Wang, J.; Wu, S.G.; Qi, G.H.; Zhang, H.J. Effects of Saccharomyces cerevisiae hydrolysate on growth performance, immunity function, and intestinal health in broilers. Poult. Sci. 2023, 102, 102237. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.; Rogiewicz, A.; Kiarie, E.G.; Slominski, B.A. Yeast derivatives as a source of bioactive components in animal nutrition: A brief review. Front. Vet. Sci. 2023, 9, 1949. [Google Scholar] [CrossRef] [PubMed]
- Maina, A.N.; Schulze, H.; Kiarie, E.G. Response of broiler breeder pullets when fed hydrolyzed whole yeast from placement to 22 wk of age. Poult. Sci. 2024, 103, 103383. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, H.J.; Yu, S.H.; Wu, S.G.; Yoon, I.; Quigley, J.; Gao, Y.P.; Qi, G.H. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci. 2008, 87, 1377–1384. [Google Scholar] [CrossRef]
- Bass, B.E.; Tsai, T.; Yang, H.; Perez, V.; Holzgraefe, D.; Chewning, J.; Frank, J.W.; Maxwell, C.V. Influence of a whole yeast product (Pichia guilliermondii) fed throughout gestation and lactation on performance and immune parameters of the sow and litter. J. Anim. Sci. 2019, 97, 1671–1678. [Google Scholar] [CrossRef]
- Rameshwari, K.S.; Karthikeyan, S. Distillery yeast sludge (DYS) as an alternative feed resource in poultry. Int. J. Poult. Sci. 2005, 4, 787–789. [Google Scholar] [CrossRef]
- Gheisari, A.; Kholeghipour, B. Effect of dietary inclusion of live yeast (Saccharomyces cerevisiae) on growth performance, immune responses and blood parameters of broiler chickens. In Proceedings of the XII European Poultry Conference, Verona, Italy, 10–14 September 2006; p. 6. [Google Scholar]
- An, B.K.; Cho, B.L.; You, S.J.; Paik, H.D.; Chang, H.I.; Kim, S.W.; Yun, C.W.; Kang, C.W. Growth performance and antibody response of broiler chicks fed yeast derived b-glucan and single-strain probiotics. Asian Australas. J. Anim. Sci. 2008, 21, 1027–1032. [Google Scholar] [CrossRef]
- Paryad, A.; Mahmoudi, M. Effect of different levels of supplemental yeast (Saccharomyces cerevisiae) on performance, blood constituents and carcass characteristics of broiler chicks. Afr. J. Agric. Res. 2008, 3, 835–842. [Google Scholar]
- Cox, C.; Sumners, L.; Kim, S.; Mcelroy, A.; Bedford, M.; Dalloul, R. Immune responses to dietary beta-glucan in broiler chicks during an Eimeria challenge. Poult. Sci. 2010, 89, 2597–2607. [Google Scholar] [CrossRef]
- Koc, F.; Samli, H.; Oku, A.; Ozduven, M.; Akyurek, H.; Senkoylu, N. Effects of Sacchromyces cerevesiae and/or Mannonoligosaccharides on performance, blood parameters and intestinal microbiota of broilers chicks. Bulg. J. Agric. Sci. 2010, 16, 643–650. [Google Scholar]
- Özsoy, B.; Yalcin, S. The effects of dietary supplementation of yeast culture on performance, blood parameters and immune system in broiler turkeys. Ankara Univ. Vet. Fak. Derg. 2011, 58, 117–122. [Google Scholar] [CrossRef]
- Mujahid, H.; Hashmi, A.; Anjum, A.; Waris, A.; Tipu, Y. Detoxification potential of ochratoxin by yeast sludge and evaluation in broiler chicks. J. Anim. Plant Sci. 2012, 22, 601–604. [Google Scholar]
- Abdelrahman, M.M. Effects of feeding dry fat and yeast culture on broiler chicken performance. Turk. J. Vet. Anim. Sci. 2013, 37, 31–37. [Google Scholar] [CrossRef]
- Bai, S.P.; Wu, A.M.; Ding, X.M.; Lei, Y.; Bai, J.; Zhang, K.Y.; Chio, J.S. Effects of probiotic supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poult. Sci. 2013, 92, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Lea, H.; Spring, P.; Pickard, J.T.; Burton, E. A natural carbohydrate fraction Actigen™ from Saccharomyces cerevisiae cell wall: Effects on goblet cells, gut morphology and performance of broiler chickens. J. Appl. Anim. Nutr. 2013, 1, e9. [Google Scholar] [CrossRef]
- Swamy, M.N.; Upendra, H.A. Growth performance, crude protein, ether extract and total ash in the breast muscle of broiler chickens supplemented with probiotics. Int. J. Sci. Environ. Technol. 2013, 2, 1000–1007. [Google Scholar]
- Biswas, A.; Mohan, N.; Raza, M.; Mir, N.A.; Mandal, A. Production performance, immune response and blood biochemical parameters in broiler chickens fed diet incorporated with prebiotics. J. Anim. Physiol. Anim. Nutr. 2014, 103, 493–500. [Google Scholar] [CrossRef]
- Sultan, A.; Uddin, I.; Khan, S.; Khan, N.A.; Khan, R.U. Effect of yeast derived carbohydrate fraction on growth performance, apparent metabolizable energy, mineral retention and gut histomorphology of broilers during starter phase. Pak. Vet. J. 2015, 35, 4. [Google Scholar]
- Chand, N.; Faheem, H.; Khan, R.U.; Qureshi, M.S.; Alhidary, I.A.; Abudabos, A.M. Anticoccidial effect of mananoligosacharide against experimentally induced coccidiosis in broiler. Environ. Sci. Pollut. Res. Int. 2016, 23, 14414–14421. [Google Scholar] [CrossRef]
- Aristides, L.G.A.; Venancio, E.J.; Alfieri, A.A.; Otonel, R.A.A.; Frank, W.J.; Oba, A. Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product. Poult. Sci. 2018, 97, 3337–3342. [Google Scholar] [CrossRef]
- Wulandari, S.; Syahniar, T.M. The effect of adding pro biotic Saccharomyces cerevisiae on dietary antibiotic free on production performance and intestinal lactic acid bacteria growth of broiler chicken. IOP Conf. Ser. Earth Environ. Sci. 2018, 207, 012034. [Google Scholar] [CrossRef]
- Ding, B.; Zheng, J.; Wang, X.; Zhang, L.; Sun, D.; Xing, Q.; Pirone, A.; Fronte, B. Effects of dietary yeast beta-1,3-1,6-glucan on growth performance, intestinal morphology and chosen immunity parameters changes in Haidong chicks. Asian Australas. J. Anim. Sci. 2019, 32, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Yadav, S.P.; Chandra, G.; Sahu, D.S.; Kumar, R.; Maurya, P.S.; Ranjan, K. Effect of dietary supplementation of yeast (Saccharomyces cerevisiae) on performance and hemato-biochemical status of broilers. Ind. J. Poult. Sci. 2019, 54, 15–19. [Google Scholar] [CrossRef]
- Sousa, R.F.; Dourado, L.R.B.; Lopes, J.B.; Fernandes, M.L.; Kato, R.K.; Nascimento, D.C.N.; Sakomura, N.K.; Lima, S.B.P.; Ferreira, G.J.B.C. Effect of an enzymatic blend and yeast on the performance, carcass yield and histomorphometry of the small intestine in broilers from 21 to 42 days of age. Braz. J. Poult. Sci. 2019, 21, eRBCA-2018. [Google Scholar] [CrossRef]
- Sun, H.Y.; Kim, I.H. Dietary supplementation of mixed yeast culture derived from Saccharomyces cerevisiae and Kluyveromyces maxianus: Effects on growth performance, nutrient digestibility, meat quality, blood parameters, and gut health in broilers. J. Poult. Sci. 2019, 56, 140–147. [Google Scholar] [CrossRef]
- Ullah, M.; Marri, G.M.; Jogi, Q.; Rasheed, M.; Rizwana, H.; Kaleri, R.R.; Goil, J.P.; Khoso, Z.A.; Kumar, D.; Shahab, A.; et al. Dietary effect of autolysed yeast on broilers (Levabon®, Biomin Austria) on broiler growth. Pure Appl. Biol. 2019, 8, 1223–1227. [Google Scholar] [CrossRef]
- Ahiwe, E.U.; Abdallh, M.E.; Chang’a, E.P.; Omede, A.A.; Al-Qahtani, M.; Gausi, H.; Graham, H.; Ade, I.P. Influence of dietary supplementation of autolyzed whole yeast and yeast cell wall products on broiler chickens. Asian Australas. J. Anim. Sci. 2020, 33, 579–587. [Google Scholar] [CrossRef]
- Al-Nasrawi, M.A.; Al-Kassie, G.A.; Ali, N.A. Role of yeast (Saccharomyces cerevisiae) as a source of probiotics in poultry diets. Europ. J. Mol. Clin. Med. 2020, 7, 6611–6617. [Google Scholar]
- Ogbuewu, I.P.; Okoro, V.M.; Mbajiorgu, C.A. Probiotic-yeast improves performance indicators in broiler chickens: Evidence from meta-analysis. Appl. Ecol. Environ. Res. 2020, 18, 2823–2843. [Google Scholar] [CrossRef]
- Rafique, K.; Rahman, A.; Mahmood, M. Effect of dietary supplementation of different levels of Saccharomyces cerevisiae on growth performance and hematology in broiler. Ind. J. Anim. Res. 2020, 54, 59–64. [Google Scholar] [CrossRef]
- Ciurescu, G.; Dumitru, M.; Gheorghe, A. Use of brewer’s yeast (Saccharomyces cerevisiae) in broiler feeds to replace corn gluten meal with or without probiotic additives. Arch. Zootech. 2021, 24, 66–83. [Google Scholar] [CrossRef]
- El-Manawey, M.A.; Yousif, E.Y.; Abo-Taleb, A.M.; Atta, A.M. The effect of dietary inclusion of whole yeast, extract, and cell wall on production performance and some immunological parameters of broiler chickens. World Vet. J. 2021, 11, 257–262. [Google Scholar] [CrossRef]
- He, T.; Mahfuz, S.; Piao, X.; Wu, D.; Wang, W.; Yan, H.; Liu, Y. Effects of live yeast (Saccharomyces cerevisiae) as a substitute to antibiotic on growth performance, immune function, serum biochemical parameters and intestinal morphology of broilers. J. Appl. Anim. Res. 2021, 49, 15–22. [Google Scholar] [CrossRef]
- Kumar, R.; Ali, N.; Siddique, R.A.; Sahu, D.S.; Fahim, A.; Singh, R.; Roy, D. Effect of different levels of mushroom powder (Agaricus bisporus) and probiotics (Saccharomyces cerevisiae) on carcass traits and hematological responses of broiler chickens. J. Entomol. Zool. Stud. 2021, 9, 244–248. [Google Scholar] [CrossRef]
- Mohamed, H.E.; Ibrahim, W.A.; Gaafar, R.E. Impact of Moringa olifera leaves or Saccharomyces supplementation on carcass quality, mRNA of heat shock proteins and antioxidants in broilers exposed to heat stress. SVU-Int. J. Vet. Sci. 2022, 5, 193–227. [Google Scholar] [CrossRef]
- M’Sadeq, S. A Ameliorative effect of yeast cell walls on broiler chickens’ performance and gut health under coccidiosis challenge. Czech J. Anim. Sci. 2023, 68, 346–355. [Google Scholar] [CrossRef]
- Okasha, E.G.; Hassan, H.A.; Ismail, Z.S.H. Effects of yeast (Saccharomyces cerevisiae) supplementations on the blood parameters and productive performance of broiler chickens. SVU-Int. J. Agric. Sci. 2023, 5, 130–140. [Google Scholar] [CrossRef]
- Yalçin, S.; Özsoy, B.; Erol, H. Yeast culture supplementation to laying hen diets containing soybean meal or sunflower seed meal and its effect on performance, egg quality traits, and blood chemistry. J. Appl. Anim. Res. 2008, 17, 229–236. [Google Scholar] [CrossRef]
- Hassanein, S.M.; Soliman, N.K. Effect of probiotic (Saccharomyces cerevisiae) adding to diets on intestinal microflora and performance of Hy-Line laying hens. J. Amer. Sci. 2010, 6, 159–169. [Google Scholar]
- Yalçın, S.; Yalçın, S.; Cakin, K.; Eltan, O.; Dagasan, L. Effects of dietary yeast autolysate (Saccharomyces cerevisiae) on performance, egg traits, egg cholesterol content, egg yolk fatty acid composition and humoral immune response of laying hens. J. Sci. Food Agric. 2010, 90, 1695–1701. [Google Scholar] [CrossRef]
- Koiyama, N.T.G.; Utimi, N.B.P.; Santos, B.R.L.; Bonato, M.A.; Barbalho, R.; Gameiro, A.H.; Araújo, C.S.D.S.; Araújo, L.F. Effect of yeast cell wall supplementation in laying hen feed on economic viability, egg production, and egg quality. J. Appl. Poult. Res. 2017, 27, 116–123. [Google Scholar] [CrossRef]
- Özsoy, B.; Karadaðoðlu, O.; Yakan, A.; Önk, K.; Çelik, E.; Þahin, T. The role of yeast culture (Saccharomyces cerevisiae) on performance, egg yolk fatty acid composition, and fecal microflora of laying hens. Rev. Bras. Zootec. 2018, 47, e20170159. [Google Scholar] [CrossRef]
- Hameed, R.; Tahir, M.; Khan, S.H.; Ahmad, T.; Iqbal, J. Effect of yeast supplementation on production parameters, egg quality characteristics and crude protein digestibility in hens. Adv. Life Sci. 2019, 6, 147–151. [Google Scholar]
- Santin, E.; Maiorka, A.; Macari, M.; Grecco, M.; Sanchezi, J.C.; Okada, T.M.; Myasaka, A.M. Performance and intestinal mucosa development of broiler chickens fed diets containing Saccharomyces cerevisiae cell wall. J. Appl. Poult. Res. 2001, 10, 236–244. [Google Scholar] [CrossRef]
- Benites, V.; Gilharry, R.; Gernat, A.; Murillo, J. Effect of dietary mannanoligosaccharide from Bio-Mos or SAF mannan on live performance of broiler chickens. J. Appl. Poult. Res. 2008, 17, 471–475. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Talha, E.A.; Mojahid, A.A.; Dafaalla, E.M. Effect of dietary yeast (Saccharomyces cerevisiae) supplementation on performance, carcass characteristics and some metabolic responses of broilers. Anim. Vet. Sci. 2015, 3, 5–10. [Google Scholar] [CrossRef]
- Roto, S.M.; Rubinelli, P.M.; Ricke, S.C. An introduction to the avian gut microbiota and the effects of yeast-based prebiotic-type compounds as potential feed additives. Front. Vet. Sci. 2015, 2, 28. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, S.W.; Wang, H.T. Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens. Asian Australas. J. Anim. Sci. 2017, 30, 211–220. [Google Scholar] [CrossRef]
- Patane, A.S.; Premavalli, K.; Omprakash, A.V.; John Kirubakaran, J.; Hudson, G.H. Effect of dietary yeast supplementation on the production performance of broilers. Int. J. Adv. Biol. Res. 2017, 7, 222–228. [Google Scholar]
- Thongsong, B.; Kalandakano, S.T.; Chavananikul, V. Effects of the addition of probiotic containing both bacteria and yeast or an antibiotic on performance parameters, mortality rate and antibiotic residue in broilers. Thai J. Vet. Med. 2008, 38, 17–26. [Google Scholar] [CrossRef]
- Bilal, R.M.; Hassan, F.; Saeed, M.; Ayasan, T.; Rashed, N.; Akhtar, M.U.; Seidavi, A. Prospects of yeast based feed additives in poultry nutrition: Potential effects and applications. Ind. J. Anim. Sci. 2020, 90, 495–505. [Google Scholar] [CrossRef]
- Yalçın, S.; Eser, H.; Yalçın, S.; Cengiz, S.; Eltan, Ö. Effects of dietary yeast autolysate (Saccharomyces cerevisiae) on performance, carcass and gut characteristics, blood profile, and antibody production to sheep red blood cells in broilers. J. Appl. Poult. Res. 2013, 22, 55–61. [Google Scholar] [CrossRef]
- Muthusamy, N.; Haldar, S.; Ghosh, T.K.; Bedford, M.R. Effects of hydrolysed Saccharomyces cerevisiae yeast and yeast cell wall components on live performance, intestinal histo-morphology and humoral immune response of broilers. Br. Poult. Sci. 2011, 52, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.D.; Wu, S.B.; Choct, M.; Swick, R.A. Effects of yeast cell wall on growth performance, immune responses and intestinal short chain fatty acid concentrations of broilers in an experimental necrotic enteritis model. Anim. Nutr. 2017, 3, 399–405. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Barbosa, J.G.M.; Pereira, R.; Fagundes, N.S.; Rafael, J.M.; Menten, J.F.M. Autolyzed yeast (Saccharomyces cerevisiae) supplementation improves performance while modulating the intestinal immune-system and microbiology of broiler chickens. Front. Sustain. Food Syst. 2018, 2, 85. [Google Scholar] [CrossRef]
- Gomez-Verduzco, G.; Cortes-Cuevas, A.; Lopez-Coello, C.; Avila-Gonzalez, E.; Nava, G.M. Dietary supplementation of mannan-oligosaccharide enhances neonatal immune responses in chickens during natural exposure to Eimeria spp. Acta Vet. Scand. 2009, 51, 11. [Google Scholar] [CrossRef]
- Yang, Y.; Iji, P.A.; Choct, M. Effects of different dietary levels of mannanoligosaccharide on growth performance and gut development of broiler chickens. Asian Australas. J. Anim. Sci. 2007, 20, 1084–1091. [Google Scholar] [CrossRef]
- Hooge, D.M.; Connolly, A. Meta-analysis summary of broiler chicken trials with dietary Actigen (2009−2011). Int. J. Poult. Sci. 2013, 12, 1–8. [Google Scholar] [CrossRef]
- Gomez, S.; Angeles, M.D.L. Effects of an enzymatically hydrolyzed yeast and yeast culture combined with flavomycin and monensin on finishing broiler chickens. Int. J. Poult. Sci. 2011, 10, 433–439. [Google Scholar] [CrossRef]
- Ahiwe, E.U.; Abdallh, M.E.; Chang’a, E.P.; Al-Qahtani, M.; Omede, A.A.; Graham, H.; Iji, P.A. Influence of autolyzed whole yeast and yeast components on broiler chickens challenged with salmonella lipopolysaccharide. Poult. Sci. 2019, 98, 7129–7138. [Google Scholar] [CrossRef]
- Pahlavanzadeh, M.; Sadeghi, A.A.; Mousavi, S.N.; Chamani, M. Influence of spleen meal and hydrolyzed yeast on growth performance, blood cells, antibody titres and IL-2 gene expression in broiler chickens. J. Appl. Anim. Res. 2021, 49, 289–294. [Google Scholar] [CrossRef]
- Sampath, V.; Han, K.; Kim, I.H. Influence of yeast hydrolysate supplement on growth performance, nutrient digestibility, microflora, gas emission, blood profile, and meat quality in broilers. J. Anim. Sci. Technol. 2021, 63, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Bolacali, M.; Irak, K. Effect of dietary yeast autolysate on performance, slaughter, and carcass characteristics, as well as blood parameters, in quail of both genders. S. Afr. J. Anim. Sci. 2017, 47, 460–470. [Google Scholar] [CrossRef]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What makes it tick as successful probiotic? J. Fungi 2020, 6, 78. [Google Scholar] [CrossRef]
- Al-Afifi, S.H.; Manal, I.; Bayomi, A. Bio chemical effects of Saccharomyces cerevisiae (biological product) and hydrated sodium calcium alimono-silicate “HSCAS” (chemical compound) as anti-aflatoxin in chicken rations. Anim. Health Res. J. 2018, 6, 19–38. [Google Scholar]
- Al-Mansour, S.; Al-Khalf, A.; Al-Homidan, I.I.; Fathi, M. Feed efficiency and blood hematology of broiler chicks given a diet supplemented with yeast culture. Int. J. Poult. Sci. 2011, 10, 603–607. [Google Scholar] [CrossRef]
- Hosseini, S. The effect of utilization of different levels of Saccharomyces cerevisiae on broiler chicken’s performance. Glob. Vet. 2011, 6, 233–236. [Google Scholar]
- Aluwong, T.; Hassan, F.; Dzenda, T.; Kawu, M.; Ayo, J. Effect of different levels of supplemental yeast on body weight, thyroid hormone metabolism and lipid profile of broiler chickens. J. Vet. Med. Sci. 2013, 75, 291–298. [Google Scholar] [CrossRef]
- Abdel-Azeem, A.F. Digestion, neomycin and yeast supplementation in broiler diets under Egyptian summer conditions. J. Egypt. Poult. Sci. 2002, 22, 235–257. [Google Scholar]
- Fasina, Y.; Thanissery, R. Comparative efficacy of a yeast product and bacitracin methylene disalicylate in enhancing early growth and intestinal maturation in broiler chicks from breeder hens of different ages. Poult. Sci. 2011, 90, 1067–1073. [Google Scholar] [CrossRef]
- Jazi, V.; Foroozandeh, A.D.; Toghyani, M.; Dastar, B.; Rezaie-Koochaksaraie, R.; Toghyani, M. Effects of Pediococcusacidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella typhimurium. Poult. Sci. 2018, 97, 2034–2043. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.M.E.; Thabet, H.A.; Abdelaziz, M.A.M. Effect of bio-mos utilization in broiler chick diets on performance, microbial and histological alteration of small intestine and economic efficiency. Asian J. Anim. Sci. 2015, 10, 323–334. [Google Scholar] [CrossRef]
- Shareef, A.; Al-Dabbagh, A. Effect of probiotic (Saccharomyces cerevisiae) on performance of broiler chicks. Iraq. J. Vet. Sci. 2009, 23, 23–29. [Google Scholar]
- Jensen, G.S.; Patterson, K.M.; Yoon, I. Yeast culture has anti-inflammatory effects and specifically activates NK cells. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 487–500. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, B.; Li, X.; Li, L.; Ma, L.; Yan, X. Effects of yeast cell walls on performance and immune responses of cyclosporine A-treated, immune-suppressed broiler chickens. Br. J. Nutr. 2012, 107, 858–866. [Google Scholar] [CrossRef]
- Sedghi, M.; Mohammadi, I.; Sarrami, Z.; Ghasemi, R.; Azarfar, A. Effects of a yeast cell wall product on the performance of broiler chickens and PGC-1α, TLR4, IL-10 and PPARγ genes expression. Ital. J. Anim. Sci. 2022, 21, 263–278. [Google Scholar] [CrossRef]
- Haldar, S.; Ghosh, T.; Bedford, M. Effects of yeast (Saccharomyces cerevisiae) and yeast protein concentrate on production performance of broiler chickens exposed to heat stress and challenged with Salmonella enteritidis. Anim. Feed Sci. Technol. 2011, 168, 61–71. [Google Scholar] [CrossRef]
- Bradley, G.L.; Savage, T.F. The effect of autoclaving a yeast culture of Saccharomyces cerevisiae on turkey poult GAO ET AL.1384 performance and the retention of gross energy, and selected minerals. Anim. Feed Sci. Technol. 1995, 55, 1–7. [Google Scholar] [CrossRef]
- Bilal, M.; Sarwar, M.; Javaid, I.S. Effect of replacing dietary soybean meal with various levels of dried distillery yeast sludge on gut health, immunity, egg quality and performance of layers. Transylv. Rev. 2016, 10, 2626–2638. [Google Scholar]
- Bilal, R.M.; Akhtar, M. Impact of replacement of dietary soybean with dried distillery yeast sludge on performance and health of layer chicks. Gomal Univ. J. Res. 2018, 34, 20–29. [Google Scholar]
- Bilal, R.M.; Akhtar, M.; Javaid, A. Effect of replacement of soybean meal with dried distillery yeast sludge on performance, immunity gut health of layer pullets. Gomal Univ. J. Res. 2018, 34, 7–14. [Google Scholar]
- Marien, M.; De Gussem, M.; Vancraeynest, D. Evaluation of a yeast extract product, containing a guaranteed range of glucans, in free range laying hens. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2007. [Google Scholar]
- Yalçın, S.; Yalçın, S.; Uzunoğlu, K.; Duyum, H.M.; Eltan, Ö. Effects of dietary yeast autolysate (Saccharomyces cerevisiae) and black cumin seed (Nigella sativa L.) on performance, egg traits, some blood characteristics and antibody production of laying hens. Livest. Sci. 2012, 145, 13–20. [Google Scholar] [CrossRef]
- Yalçın, S.S.; Yalçýn, A.; Þahin, H.M.; Duyum, A.; Çalýk, A.; Gümüþ, H. Effects of dietary inactive yeast and live yeast on performance, egg quality traits, some blood parameters and antibody production to SRBC of laying hens. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 345–350. [Google Scholar] [CrossRef]
- Shashidhara, R.G.; Devegowda, G. Effect of dietary mannanoligosaccharide on broiler breeder production traits and immunity. Poult. Sci. 2003, 82, 1319–1325. [Google Scholar] [CrossRef]
- Mi, J.; Chen, X.; Liao, X. Screening of single or combined administration of 9 probiotics to reduce ammonia emissions from laying hens. Poult. Sci. 2019, 98, 3977–3988. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, V. Growth and response to Escherichia coli lipopolysaccharide challenge in Lohmann LSL-Lite pullets when fed a source of omega-3 fatty acids and yeast bioactives from hatch through to 16 wk of age. Poult. Sci. 2023, 102, 102940. [Google Scholar] [CrossRef]
- Eltazi, S.M.; Mohamed, K.A.; Mohamed, M.A. Response of broiler chicks to diets containing live yeast as probiotic natural feed additive. Int. J. Pharm. Res. Allied Sci. 2014, 3, 40–46. [Google Scholar]
- Onifade, A.A.; Odunsi, A.A.; Babatunde, G.M.; Olorede, B.R.; Muma, E. Comparison of the supplemental effects of Saccharomyces cerevisiae and antibiotics in low protein and high fibre diets fed to broiler chickens. Arch. Tierernahr. 1999, 52, 29–39. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhou, T.X.; Ao, X.; Kim, I.H. Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize−soybean meal based diets. Livest. Sci. 2012, 150, 419–424. [Google Scholar] [CrossRef]
- Hoque, M.R.; Jung, H.I.; Kim, I.H. Effect of yeast culture (Saccharomyces cerevisiae) supplementation on growth performance, excreta microbes, noxious gas, nutrient utilization, and meat quality of broiler chicken. J. Poult. Sci. 2021, 58, 216–221. [Google Scholar] [CrossRef]
- Firman, J.D.; Moore, D.; Broomhead, J.; McIntyre, D. Effects of dietary inclusion of a Saccharomyces cerevisiae fermentation product on performance and gut characteristics of male turkeys to market weight. Int. J. Poult. Sci. 2013, 12, 141–143. [Google Scholar] [CrossRef]
- Nidamanuri, A.L.; Prince, L.L.L.; Mahapatra, R.K.; Murugesan, S. Effect on physiological and production parameters upon supplementation of fermented yeast culture to Nicobari chickens during and post summer. J. Anim. Physiol. Anim. Nutr. 2022, 106, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Sacakli, P.; Ergun, A.; Koksal, B.H.; Bayraktaroglu, A.G.; Sizmaz, O. Effects of diets supplemented with yeast (Saccharomyces cerevisiae) products or/and hops (Humulus iupulus) on growth performance and intestinal morphology in broilers. Rev. Med. Vet. 2011, 162, 531–537. [Google Scholar]
- Fathi, M.M.; Al-Mansour, S.; Al-Homidan, A.; Al-Khalaf, A.; Al-Damegh, M. Effect of yeast culture supplementation on carcass yield and humoral immune response of broiler chicks. Vet. World J. 2012, 5, 651. [Google Scholar] [CrossRef]
- Awaad, M.H.; Atta, A.M.; Elmenawey, M.A.; Gharib, H.B.; Abd El-Ghany, W.A.; Nada, A.A. The effect of a combination of β (1-3) D-glucan and Propionibacterium granulosum on productive performance and immune modulation of immunocompromised and non-immunocompromised broiler chickens. Vet. World J. 2013, 6, 31–38. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Waosek, A.; Jozefiak, D. Immunomodulatory efficacy of yeast cell products in poultry: A current review. World’s Poult. Sci. J. 2014, 70, 57–68. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Hosseini, S.A.; Lotfollahian, H.; Shariatmadan, F. Effect of probiotics, yeast, vitamin E and vitamin C supplements on performance and immune response of laying hen during high environmental temperature. Int. J. Poult. Sci. 2007, 6, 895–900. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, K.; Yu, C.Y.; Li, Q.M.; Tong, Y.C.; Wang, C.; Yang, Z.B.; Wang, T. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poult. Sci. 2021, 100, 101343. [Google Scholar] [CrossRef]
- Huang, Q.; Wei, Y.; Lv, Y.; Wang, Y.; Hu, T. Effect of dietary inulin supplements on growth performance and intestinal immunological parameters of broiler chickens. Livest. Sci. 2015, 180, 172–176. [Google Scholar] [CrossRef]
- Pontón, J.; Omaetxebarria, M.J.; Elguezabal, N.; Alvarez, M.; Moragues, M.D. Immunoreactivity of the fungal cell wall. Med. Mycol. 2001, 39, 101–110. [Google Scholar] [CrossRef]
- McCaffrey, C.; Corrigan, A.; Moynagh, P.; Murphy, R. Effect of yeast cell wall supplementation on intestinal integrity, digestive enzyme activity and immune traits of broilers. Br. Poult. Sci. 2021, 62, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Kim, W.K. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Reis e Sousa, C.R. Activation of dendritic cells: Translating innate into adaptive immunity. Curr. Opin. Immunol. 2004, 16, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Shokryazdan, P.; Faseleh Jahromi, M.; Navidshad, B.; Liang, J.B. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. 2017, 206, 1–9. [Google Scholar] [CrossRef]
- Rajput, I.R.; Hussain, A.; Li, Y.L.; Zhang, X.; Xu, X.; Long, M.Y.; You, D.Y.; Li, W.F. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs mediated signaling to induce immunity by chicken BMDCs. J. Cell. Biochem. 2014, 115, 189–198. [Google Scholar] [CrossRef]
- Yitbarek, A.; Echeverry, H.; Brady, J.; Hernandez-Doria, J.; Camelo-Jaimes, G.; Sharif, S.; Guenter, W.; House, J.D.; Rodriguez-Lecompte, J.C. Innate immune response to yeast-derived carbohydrates in broiler chickens fed organic diets and challenged with Clostridium perfringens. Poult. Sci. 2012, 91, 1105–1112. [Google Scholar] [CrossRef]
- Tsukada, C.; Yokoyama, H.; Miyaji, C.; Ishimoto, Y.; Kawamura, H.; Abo, T. Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of β-glucan. Cell. Immunol. 2003, 221, 1–5. [Google Scholar] [CrossRef]
- Bohn, J.A.; BeMiller, J.M. (1-3)-β-D-glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Polym. 1995, 28, 3–14. [Google Scholar] [CrossRef]
- Chae, B.; Lohakare, J.; Moon, W.; Lee, S.; Park, Y.; Hahn, T.W. Effects of supplementation of β-glucan on the growth performance and immunity in broilers. Res. Vet. Sci. 2006, 80, 291–298. [Google Scholar] [CrossRef]
- Rajapakse, J.R.; Buddhika, M.; Nagataki, M.; Nomura, H.; Watanabe, Y.; Ikeue, Y.; Agatsuma, T. Effect of Sophy β-glucan on immunity and growth performance in broiler chicken. J. Vet. Med. Sci. 2010, 72, 1629–1632. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Lee, D.N.; Wen, C.M.; Weng, C.F. Effects of beta-glucan supplementation on lymphocyte proliferation, macrophage chemotaxis and specific immune responses in broilers. Asian Australas. J. Anim. Sci. 2004, 17, 1145–1149. [Google Scholar] [CrossRef]
- Schwartz, B.; Vetvicka, V. Review: β-glucans as effective antibiotic alternatives in poultry. Molecules 2021, 26, 3560. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Zhang, J.; Zhang, L.; Huang, K.; Li, J.; Cao, L. Yeast cell wall upregulated cell-mediated immune responses to Newcastle disease virus vaccine. Poult. Sci. 2022, 101, 101712. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, J.; Zhang, J.; Huang, H.; Gui, F.; Xu, W.; Zhang, L.; Bi, S. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens. Poult. Sci. 2023, 102, 102414. [Google Scholar] [CrossRef]
- Alizadeh, M.; Rogiewicz, A.; McMillan, E.; Rodriguez-Lecompte, J.C.; Patterson, R.; Slominski, B.A. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on growth performance and local innate immune response of broiler chickens challenged with Clostridium perfringens. Avian Pathol. 2016, 45, 334–345. [Google Scholar] [CrossRef]
- Thomas, S.; Rezoagli, E.; Abidin, I.Z.; Major, I.; Murray, P.; Murphy, E.J. β-Glucans from yeast—Immunomodulators from novel waste resources. Appl. Sci. 2022, 12, 5208. [Google Scholar] [CrossRef]
- Volman, J.J.; Ramakers, J.D.; Plat, J. Dietary modulation of immune function by β-glucans. Physiol. Behav. 2008, 94, 276–284. [Google Scholar] [CrossRef]
- Lowry, V.; Farnell, M.; Ferro, P.; Swaggerty, C.; Bahl, A.; Kogut, M. Purified β-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enterica serovar Enteritidis. Int. J. Food Microbiol. 2005, 98, 309–318. [Google Scholar] [CrossRef]
- Liz-Wang, W.; Lv, Z.; Liu, D.; Guo, Y. Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens. Br. Poult. Sci. 2017, 58, 635–643. [Google Scholar] [CrossRef]
- Vandeplas, S.; Dubois Dauphin, R.; Beckers, Y.; Thonart, P.; Thewis, A. Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. J. Food Prot. 2010, 73, 774–785. [Google Scholar] [CrossRef]
- Ferket, P.; Parks, C.; Grimes, J. Benefits of dietary antibiotic and mannanoligosaccharide supplementation for poultry. In Proceedings of the Multi-State Poultry Meeting, Chicago, IL, USA, 14–16 May 2002. [Google Scholar]
- Synytsya, A.; Mickova, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Kováříková, E.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Samudovska, A.; Spisakova, V.; Demeterova, M.; Hresko, S. The influence of fungal β-glucan on nonspecific immunity in broiler chicks. Acta Vet. 2012, 62, 511–519. [Google Scholar] [CrossRef]
- Cardozo, P.; Torras, M.C.; Less, J.; Peisker, M. The aggregation capacity of oligo saccharides from different yeast preparations to bind different pathogenic bacteria. J. Anim. Sci. 2018, 96, 304. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Sifri, M.; Selvaraj, R.K. Effect of yeast cell product (CitriStim) supplementation on broiler performance and intestinal immune cell parameters during an experimental coccidial infection. Poult. Sci. 2013, 92, 358–363. [Google Scholar] [CrossRef]
- Lensing, M.; Van-Der-Klis, J.; Yoon, J.; Moore, D. Efficacy of Saccharomyces cerevisiae fermentation product on intestinal health and productivity of coccidian-challenged laying hens. Poult. Sci. 2012, 9, 1590–1597. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Figueiredo-Lima, D.F.; Faria-Filho, D.E.; Marques, R.H.; Moraes, V.M.B.D. Effect of mannanoligo saccharides and/or enzymes on antibody titers against infectious bursal and Newcastle disease viruses. Arq. Bras. Med. Vet. Zootec. 2009, 61, 6–11. [Google Scholar] [CrossRef]
- Ghosh, T.; Haldar, S.; Bedford, M.; Muthusami, N.; Samanta, I. Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: Effects on performance, intestinal histomorphology and humoral immune responses. J. Anim. Physiol. Anim. Nutr. 2012, 96, 275–284. [Google Scholar] [CrossRef]
- Ozpinar, H.; Erhard, M.; Ahrens, F.; Kutay, C.; Eseceli, H. Effect of vitamin E, vitamin C and mannanoligosaccharide (Bio-Mos) supplements on performance and immune system in broiler chicks. J. Anim. Vet. Adv. 2010, 9, 2647–2654. [Google Scholar] [CrossRef]
- Zakeri, A.; Kashefi, P. The comparative effects of five growth promoters on broiler chickens humoral immunity and performance. J. Anim. Vet. Adv. 2011, 10, 1097–1101. [Google Scholar] [CrossRef]
- Zhenping, S.; Wenting, L.; Ruikui, Y.; Jia, L.; Honghong, L.; Wei, S. Effect of a straw-derived xylooligosaccharide on broiler growth performance, endocrine metabolism, and immune response. Canad. J. Vet. Res. 2013, 77, 105–109. [Google Scholar]
- Tohid, T.; Hasan, G.; Alireza, T. Efficacy of mannanoligo saccharides and humate on immune response to Avian Influenza (H9) disease vaccination in broiler chickens. Vet. Res. Commun. 2010, 34, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.K.; da Silva, J.D.T.; Torres, K.A.A.; de Faria Filho, D.E.; Hada, F.H.; de Moraes, V.M.B. Humoral immune response of broilers fed diets containing yeast extract and prebiotics in the prestarter phase and raised at different temperatures. J. Appl. Poult. Res. 2009, 18, 530–540. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Lv, Z.; Zhang, B.; Lv, H.; Guo, Y. Effects of Kluyveromyces marxianus supplementation on immune responses, intestinal structure and microbiota in broiler chickens. PLoS ONE 2017, 127, e0180884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, Y.; Wang, Z. The modulating effect of beta-1, 3/1, 6-Glucan supplementation in the diet on performance and immunological responses of broiler chickens. Asian Australas. J. Anim. Sci. 2008, 21, 237–244. [Google Scholar] [CrossRef]
- Mountzouris, K.; Tsirtsikos, P.; Kalamara, E.; Nitsch, S.; Schatzmayr, G.; Fegeros, K. Evaluation of the efficacy of probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 2007, 86, 309–317. [Google Scholar] [CrossRef]
- Baurhoo, B.; Ferket, P.R.; Zaho, X. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, caecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 2009, 88, 2262–2272. [Google Scholar] [CrossRef]
- Lu, Z.; Thanabalan, A.; Leung, H.; Akbari Moghaddam Kakhki, R.R. The effects of feeding yeast bioactives to broiler breeders and/or their offspring on growth performance, gut development, and immune function in broiler chickens challenged with Eimeria. Poult. Sci. 2019, 98, 6411–6421. [Google Scholar] [CrossRef]
- Javadi, A.; Mirzaei, H.; Safarmashaei, S.; Vahdatpour, S. Effects of probiotic (live and inactive Saccharomyces cerevisiae) on meat and intestinal microbial properties of Japanese quails. Afr. J. Biotechnol. 2012, 11, 12083–12087. [Google Scholar] [CrossRef]
- Baurhoo, B.; Letellier, A.; Zhao, X.; Ruiz-Feria, C.A. Caecal populations of Lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult. Sci. 2007, 86, 2509–2516. [Google Scholar] [CrossRef]
- Spring, P.; Wenk, C.; Dawson, K.A.; Newman, K.E. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poult. Sci. 2000, 79, 205–211. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Adams, D.; Selvaraj, R.K. Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods 2022, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Offei, B.; Vandecruys, P.; De Graeve, S.; Foulquie-Moreno, M.R.; Thevelein, J.M. Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res. 2019, 29, 1478–1494. [Google Scholar] [CrossRef] [PubMed]
- Murzyn, A.; Krasowska, A.; Stefanowicz, P.; Dziadkowiec, D.; Łukaszewicz, M. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS ONE 2010, 5, e12050. [Google Scholar] [CrossRef] [PubMed]
- Zaouche, A.; Loukil, C.; De Lagausie, P.; Peuchmaur, M.; Macry, J.; Fitoussi, F.; Bernasconi, P.; Bingen, E.; Cezard, J.P. Effects of oral Saccharomyces boulardii on bacterial overgrowth, translocation, and intestinal adaptation after small-bowel resection in rats. Scand. J. Gastroenterol. 2000, 35, 160–165. [Google Scholar] [CrossRef]
- Li, R.; Yassami, S.; Kiviniemi, E.A.; Qiao, W.; Takala, T.M.; Saris, P.E. Listeria decontamination of chicken meat with beer brewed with bacteriocin producing Saccharomyces boulardii. LWT-Food Sci. Technol. 2021, 152, 112323. [Google Scholar] [CrossRef]
- Wang, B.; Hussain, A.; Zhou, Y.; Zeng, Z.; Wang, Q.; Zou, P.; Gong, L.; Zhao, P.; Li, W. Saccharomyces boulardii attenuates inflammatory response induced by Clostridium perfringens via TLR4/TLR15 MyD8 pathway in HD11 avian macrophages. Poult. Sci. 2020, 99, 5356–5365. [Google Scholar] [CrossRef]
- Badia, R.; Brufau, M.T.; Guerrero-Zamora, A.M.; Lizardo, R.; Dobrescu, I.; Martin-Venegas, R.; Ferrer, R.; Salmon, H.; Martınez, P.; Brufau, J. b-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells. Clin. Vaccine Immunol. 2012, 19, 368–376. [Google Scholar] [CrossRef]
- Corrigan, A.; Fay, B.J.; Corcionivoschi, N.; Murphy, R.A. Effect of yeast mannan-rich fractions on reducing Campylobacter colonization in broiler chickens. J. Appl. Poult. Res. 2017, 26, 350–357. [Google Scholar] [CrossRef]
- Massacci, F.R.; Lovito, C.; Tofani, S.; Tentellini, M.; Genovese, D.A.; De Leo, A.A.P.; Papa, P.; Magistrali, C.F.; Manuali, E.; Trabalza-Marinucci, M. Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 positively affects performance and intestinal ecosystem in broilers during a Campylobacter jejuni infection. Microorganisms 2019, 7, 596. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto oligosaccharides and other prebiotics. J. Appl. Microbiol. 2008, 104, 305–344. [Google Scholar] [CrossRef]
- Lan, Y.; Xun, S.; Tnmminga, S.; Williams, B.A.; Verstegen, M.W.A.; Eridi, G. Real-time PCR detection of lactic acid bacteria in caecal contents of Eimeria tenella-infected broilers fed soybean oligosaccharides and soluble soybean polysaccharides. Poult. Sci. 2004, 83, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Macfariane, G.T.; Englyst, H.N. Prebiotic digestion and fermentation. Am. J. Clin. Nutr. 2001, 73, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo Monroy, J.; Salem, A. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: A review. J. Appl. Microbiol. 2020, 128, 658–674. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.; Kakani, R.; Haq, A.; Byrd, J.A.; Bailey, C.A. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge. J. Appl. Poult. Res. 2015, 24, 66–72. [Google Scholar] [CrossRef]
- Li, Y.B.; Xu, Q.Q.; Yang, C.J.; Yang, X.; Lv, L.; Yin, C.H.; Liu, X.L.; Yan, H. Effects of probiotics on the growth performance and intestinal microflora of broiler chickens. Pak. J. Pharm. Sci. 2014, 27, 713–717. [Google Scholar]
- Fernandez, F.; Hinton, M.; Van-Gils, B. Dietary mannanoligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonisation. Avian Pathol. 2002, 31, 49–58. [Google Scholar] [CrossRef]
- Kumar, B.S.; Vijayasarath, S.K.; Gowda, R.N.S.; Satyanarayana, M.L. Probiotics in the prevention of experimental fowl typhoid in broilers- a pathomorphological study. Ind. J. Anim. Sci. 2002, 72, 528–531. [Google Scholar]
- Zhang, H.; Zhou, Y.; Xu, H.; Liang, C.; Zhai, Z. Bacillus amyloliquefaciens BLCC1-0238 alone or in combination with mannan-oligosaccharides alleviates subclinical necrotic enteritis in broilers. Prob. Antimicrob. Proteins 2022, 14, 158–168. [Google Scholar] [CrossRef]
- Yang, Y.; Iji, P.A.; Kocher, A.; Mikkelsen, L.L.; Choct, M. Effects of mannanoligosaccharide and fructooligosaccharide on the response of broilers to pathogenic Escherichia coli challenge. Br. Poult. Sci. 2008, 49, 550–559. [Google Scholar] [CrossRef]
- Baurhoo, B.; Goldflus, F.; Zhao, X. Purified cell wall 392 of Saccharomyces cerevisiae increases protection against intestinal pathogens in broiler chickens. Int. J. Poult. Sci. 2009, 8, 133–137. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ho, S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Hooge, D. Broiler chicken performance may improve with MOS. Feedstuffs 2005, 75, 11–13. [Google Scholar]
- Audisio, M.C.; Oliver, G.; Apella, M.C. Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J. Food Prot. 2000, 63, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ma, L.; Doyle, M.P. Salmonellae reduction in poultry by competitive exclusion bacteria Lactobacillus salivarius and Streptococcus cristatus. J. Food Prot. 2007, 70, 874–878. [Google Scholar] [CrossRef]
- Markazi, A.D.; Perez, V.; Sifri, M.; Shanmugasundaram, R.; Selvaraj, R.K. Effect of whole yeast cell product supplementation (CitriStim) on immune responses and cecal microflora species in pullet and layer chickens during an experimental coccidial challenge. Poult. Sci. 2017, 96, 2049–2056. [Google Scholar] [CrossRef]
- Katayama, T.; Fujita, K.; Yamamoto, K. Novel bifidobacterial glycosidases acting on sugar chains of mucin l glycoprotein. J. Biosci. Bioeng. 2005, 99, 457–465. [Google Scholar] [CrossRef]
- Rolfe, R.D. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 2000, 130, 396–402. [Google Scholar] [CrossRef]
- Joerger, R.D. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef]
- Gibson, G.R.; Wang, X. Regulatory effects of Bifidobacteria on the growth of other colonic bacteria. J. Appl. Bacteriol. 1994, 77, 412–420. [Google Scholar] [CrossRef]
- Dantan-Gonzalez, R.E.; Quiroz-Castaneda, R.E.; Cobaxin-Cardenas, M.; Valle-Hernandez, J.; Gama-Martınez, Y.; Tinoco-Valencia, J.; Serrano-Carreon, L.; Ortiz-Hernandez, L. Impact of Meyerozyma guilliermon dii isolated from chickens against Eimeria sp. protozoan, an in vitro analysis. BMC Vet. Res. 2015, 11, 278. [Google Scholar] [CrossRef]
- Santin, E.; Paulillo, A.C.; Maiorka, A.; Nakaghi, L.S.; Macari, M. Evaluation of the efficacy of Saccharomyces cerevısiae cell wall to ameliorate the. Int. J. Poult. Sci. 2003, 2, 341–344. [Google Scholar] [CrossRef]
- Awaad, M.H.; Atta, A.M.; Abd El-Ghany, A.A.; Elmenawey, M.; Ahmed, K.; Hassan, A.A.; Nada, A.A.; Abdelaleem, G.A. Effect of a specific combination of mannan-oligosaccharides and â-glucans extracted from yeast cell wall on the health status and growth performance of ochratoxicated broiler chickens. J. Am. Sci. 2011, 7, 82–96. [Google Scholar]
- Agazzi, A.; Perricone, V.; Omodei Zorini, F.; Sandrini, S.; Mariani, E.; Jiang, X.R.; Ferrari, A.; Crestani, M.; Nguyen, T.X.; Bontempo, V.; et al. Dietary mannan oligosaccharides modulate gut inflammatory response and improve duodenal villi height in post-weaning piglets improving feed efficiency. Animals 2020, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Pourabedin, M.; Xu, Z.; Baurhoo, B.; Chevaux, E.; Zhao, X. Effects of mannanoligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Canad. J. Microbiol. 2014, 60, 255–266. [Google Scholar] [CrossRef]
- Wang, W.; Ren, W.; Li, Z.; Yue, Y.; Guo, Y. Effects of live yeast on immune responses and intestinal morphological structure in lipopolysaccharide-challenged broilers. Canad. J. Anim. Sci. 2016, 97, 136–144. [Google Scholar] [CrossRef]
- Sims, M.; Dawson, K.; Newman, K.; Spring, P.; Hoogell, D. Effects of dietary mannan oligosaccharide, bacitracin methylene disalicylate, or both on the live performance and intestinal microbiology of turkeys. Poult. Sci. 2004, 83, 1148–1154. [Google Scholar] [CrossRef]
- Luquetti, B.C.; Furlan, R.L.; Alarcon, M.F.F.; Macari, M. Saccharomyces cerevisiae cell wall dietary supplementation on the performance and intestinal mucosa development and integrity of broiler chickens vaccinated against coccidiosis. Rev. Bras. Ciên. Avícol. 2012, 14, 89–95. [Google Scholar] [CrossRef]
- Leung, H.; Yitbarek, A.; Snyder, R.; Patterson, R.; Barta, J.R.; Karrow, N.; Kiarie, E. Responses of broiler chickens to Eimeria challenge when fed a nucleotide-rich yeast extract. Poult. Sci. 2019, 98, 1622–1633. [Google Scholar] [CrossRef]
- Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef]
- Hussein, S.M.; M’Sadeq, S.A.; Beski, S.S.M.; Mahmood, A.L.; Frankel, T.L. Different combinations of peppermint, chamomile and a yeast prebiotic have different impacts on production and severity of intestinal and bursal abnormalities of broilers challenged with coccidiosis. Ital. J. Anim. Sci. 2021, 20, 1924–1934. [Google Scholar] [CrossRef]
- Alkhulaifi, M.M.; Alqhtani, A.H.; Alharthi, A.S.; Al Sulaiman, A.R.; Abudabos, A.M. Influence of prebiotic yeast cell wall ex tracts on growth performance, carcase attributes, bio chemical metabolites, and intestinal morphology and bacteriology of broiler chickens challenged with Salmonella typhimurium and Clostridium perfringens. Ital. J. Anim. Sci. 2022, 21, 1190–1199. [Google Scholar] [CrossRef]
- Mohamed, F.F.; Hady, M.M.; Kamel, N.F.; Ragaa, N.M. The impact of exogenous dietary nucleotides in ameliorating Clostridium perfringens infection and improving intestinal barriers gene expression in broiler chicken. Vet. Anim. Sci. 2020, 10, 100130. [Google Scholar] [CrossRef] [PubMed]
- Krizkova, L.; Durackova, Z.; Sandula, J.; Sasinkova, V.; Krajcovic, J. Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutat. Res. 2001, 497, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Ferencik, M.; Kotulova, D.; Masler, L.; Bergendi, L.; Sandula, J.; Stefanovic, J. Modulatory effect of glucans on the functional and biochemical activities of guinea-pig macrophages. Methods Find. Exp. Clin. Pharmacol. 1986, 8, 163–166. [Google Scholar]
Type and Concentration of Yeast/Kg Feed | Effects | Reference |
---|---|---|
DYS (30, 50, and 70%) | ✓ ↓ FI and BW ✓ Poor FCR ✓ ↓ Phosphorus absorption | [46] |
S. cerevisiae (0.1, 0.2, and 0.3%) | ✓ No effect on BW, BWG, FI, and FCR ✓ ↑ bursa of Fabricius weight | [47] |
S. boulardii (6.5 × 1010 CFU/kg) | ✓ ↑ growth indices ✓ ↑ meat quality ✓ ↑ Ileal mucosa development | [26] |
β-glucans (0.05%) | ✓ ↑ antibody titers against NDV and IBDV | [48] |
Yeast culture (2.5 g) | ✓ ↑ feed-to-gain ratio ✓ ↑ small intestine weight | [44] |
S. cerevisiae (2%) | ✓ ↑ serum albumin ✓ ↑ carcass and meat yield | [49] |
β-glucans (0.02–0.1%) | ✓ ↓ lesion scores of coccidiosis | [50] |
S. cerevisiae (0.2%) | ✓ ↑ BWG and FI | [51] |
S. cerevisiae (1 g/kg) | ✓ ↓ BWG ✓ No effect on carcass traits | [52] |
Yeast (1.5 g/kg) | ✓ ↑ VH, cryptal depth, mucosal height, and area of cryptal glands | [13] |
DYS 2% + 500 ppb ochratoxin | ✓ Improved FCR | [53] |
Yeast culture (3 kg/t) | ✓ Improved growth performance ✓ No effect on carcass characteristics ✓ ↓ reduced abdominal fat | [54] |
S. cerevisiae (2 × 106 CFU/g) + Lactobacillus fermentum (1 × 107 CFU/g) | ✓ ↑ CD3, CD4, and CD8 T lymphocytes in the intestine | [55] |
Yeast cell wall (200 g/ton) | ✓ ↑ FI | [56] |
S. cerevisiae (0.1%) | ✓ ↑ BWG | [57] |
MOS (0.1% and 0.2%) | ✓ ↑ humoral and cell-mediated immune responses ✓ ↑ weights of the bursa of Fabricius and thymus glands | [58] |
Yeast single-cell protein (10.5 g/kg) | ✓ ↑ BW ✓ Improved FCR | [24] |
Yeast–carbohydrate fraction (1 g/kg diet) | ✓ ↑ performance traits | [59] |
MOS (50 and 100 g/kg) | ✓ ↑ FI and BWG ✓ Improved FCR ✓ ↑ VH, CD, and goblet cells | [60] |
Yeast culture (0.25, 0.75, and 1.5 g/kg) | ✓ ↑ drumstick yield | [61] |
S. cerevisiae (1.5 g/kg) | ✓ Optimum production of lactic acid bacteria ✓ ↓ gut pH and E. coli growth | [62] |
MOS and FOS (0.25% for each) | ✓ ↑ growth of Lactobacilli ✓ ↓ C. perfringens and E. coli | [63] |
S. cerevisiae (1, 1.5, and 2 g/kg) | ✓ ↑ serum albumin | [64] |
S. cerevisiae (2.5%) | ✓ ↑ FI and BWG ✓ Improved FCR ✓ ↑ carcass evisceration percentages ✓ ↑ WBC, PCV, and Hb | [17] |
Yeast (6%) | ✓ ↑ BWG ✓ ↓ FCR ✓ No effect on FI | [65] |
S. cerevisiae + Kluyveromyces maxianus (1:1) at 0.1% and 0.2% | ✓ No effect on FI ✓ No effect on serum glucose | [66] |
AY (1.5 g) | ✓ ↑ BWG ✓ Improved FCR ✓ No effect on carcass traits | [67] |
Whole yeast and yeast cell walls (1.5–2 g/kg) | ✓ Improved growth performance ✓ Improved meat yield | [68] |
S. cerevisiae (0.5, 0.75, and 1%) | ✓ ↑ BWG | [69] |
Yeast (<10 g/kg) | ✓ ↑ BWG and FI ✓ ↓ FCR | [70] |
S. cerevisiae (0.5, 1.0, 1.5, and 2.0 g/kg) | ✓ No effect on BW ✓ ↓ serum glucose | [71] |
S. cerevisiae (25%) | ✓ Improved BWG, FI, and FCR ✓ No effect on carcass traits ✓ ↑ Bacillus spp. and Enterococcus spp. count ✓ ↓ total coliforms and Clostridium spp. count | [72] |
S. cerevisiae (0.1%), yeast cell wall (0.3%), and yeast extract (0.07%) | ✓ Improved BW, BWG, and FCR ✓ ↑ serum protein and albumin ✓ ↓ serum lipids, cholesterol, ALT, AST, and ALP ✓ ↑ spleen, bursa of Fabricius, and thymus weights ✓ ↑ antibody titers against SRBCs and NDV | [73] |
S. cerevisiae (0.5 and 1 g/kg) | ✓ No effect on FI and FCR ✓ No effect on protein, triglyceride, and urea nitrogen | [74] |
S. cerevisiae (0.3%) | ✓ ↑ relative weight of liver | [75] |
S. cerevisiae (5%) | ✓ ↓ BW and BWG ✓ ↑ serum creatinine | [76] |
Yeast cell wall (0.1% or 0.2%) + salinomycin (60 mg/kg) | ✓ ↑ BWG ✓ Improved FCR ✓ ↓ intestinal CD, villous tip width, villous base width, villus surface area ✓ ↑ VH and VH:CD ratio ✓ ↓ bursa of Fabricius follicle length ✓ ↓ serum ALT and AST | [77] |
S. cerevisiae (0.25, 0.5, and 0.75%) | ✓ No effect on FI, BWG, and FCR ✓ Improved carcass characteristics ✓ ↑ serum albumin and creatinine ✓ No changes in protein, glucose, triglyceride, and urea | [78] |
Type and Concentration of Yeast/Kg Feed | Type of Birds | Effects | Reference |
---|---|---|---|
Yeast culture (2 g/kg) | Laying hens | ✓ ↓ cholesterol content in egg yolk | [79] |
Yeast culture (0.4, 0.8, 1.2, and 1.6%) | Laying hens | ✓ ↑ number of eggs | [80] |
Yeast autolysate (2, 3, or 4 g/kg) | Laying hens | ✓ ↑ antibody titer | [81] |
Yeast cell wall components (225, 450, and 900 ppm) | Laying hens | ✓ ↑ 4.9% higher egg production with a 3.68% better FCR/dozen eggs | [82] |
HY (5 g) | Broiler breeder hens | ✓ ↑ BWG ✓ Improved FCR ✓ ↑ egg production (+2.14%), fertility (+1.77%), and hatchability for incubated and fertile eggs (+4.79% and +2.56%, respectively) | [33] |
S. cerevisiae (0.05, 0.1, and 0.2%) | Laying hens | ✓ ↑ BWG ✓ Improved FCR ✓ ↑ egg production | [83] |
S. cerevisiae (0.15 and 0.20%) | Laying hens | ✓ ↑ egg production rate | [84] |
HY (0.05%) | Broiler breeder pullets | ✓ No effects on growth, BW, or BW uniformity ✓ No effects on breast, gastrointestinal, liver and bursa weights, serum antibody titers to NDV and IBV, plasma biochemistry, SCFA and bone attributes ✓ ↑ spleen weight and AST | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Ghany, W.A. Yeasts and Their Derivatives as Functional Feed Additives in Poultry Nutrition. Agriculture 2025, 15, 1003. https://doi.org/10.3390/agriculture15091003
Abd El-Ghany WA. Yeasts and Their Derivatives as Functional Feed Additives in Poultry Nutrition. Agriculture. 2025; 15(9):1003. https://doi.org/10.3390/agriculture15091003
Chicago/Turabian StyleAbd El-Ghany, Wafaa A. 2025. "Yeasts and Their Derivatives as Functional Feed Additives in Poultry Nutrition" Agriculture 15, no. 9: 1003. https://doi.org/10.3390/agriculture15091003
APA StyleAbd El-Ghany, W. A. (2025). Yeasts and Their Derivatives as Functional Feed Additives in Poultry Nutrition. Agriculture, 15(9), 1003. https://doi.org/10.3390/agriculture15091003