Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,033)

Search Parameters:
Keywords = β-cell apoptosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4825 KiB  
Article
Tea Polyphenols Mitigate TBBPA-Induced Renal Injury Through Modulation of ROS-PI3K/AKT-NF-κB Signalling in Carp (Cyprinus carpio)
by Fuxin Han, Ran Xu, Hongru Wang, Xuejiao Gao and Mengyao Guo
Animals 2025, 15(15), 2307; https://doi.org/10.3390/ani15152307 - 6 Aug 2025
Abstract
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and [...] Read more.
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and serves as a target organ for toxic substances. This study evaluated the therapeutic potential of TPs in mitigating TBBPA-induced nephrotoxicity in common carp. Common carp were exposed to 0.5 mg/L TBBPA in water and/or fed a diet supplemented with 1 g/kg TPs for 14 days. In vitro, primary renal cells were treated with 60 μM TBBPA and/or 2.5 μg/L TPs for 24 h. Methods included histopathology, TUNEL assay for apoptosis, ROS detection, and molecular analyses. Antioxidant enzymes (SOD, CAT) and inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using ELISA kits. Results showed that TBBPA induced oxidative stress, and activated the ROS-PI3K/AKT-NF-κB pathway, thereby resulting in inflammatory responses. TBBPA upregulated apoptosis-related genes (Caspase-3, Bax, and Bcl-2) and induced apoptosis. TBBPA upregulated the expression of RIPK3/MLKL, thereby exacerbating necroptosis. TPs intervention significantly mitigated these effects by reducing ROS, suppressing NF-κB activation, and restoring antioxidant enzyme activities (SOD, CAT). Moreover, TPs attenuated apoptosis and necrosis in the carp kidney, thereby enhancing the survival ability and immunity of common carp. Full article
Show Figures

Graphical abstract

16 pages, 1674 KiB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 - 6 Aug 2025
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 2852 KiB  
Article
Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment
by Claudia Geanina Watz, Ciprian-Valentin Mihali, Camelia Oprean, Lavinia Krauss Maldea, Calin Adrian Tatu, Mirela Nicolov, Ioan-Ovidiu Sîrbu, Cristina A. Dehelean, Vlad Socoliuc and Elena-Alina Moacă
Nanomaterials 2025, 15(15), 1192; https://doi.org/10.3390/nano15151192 - 4 Aug 2025
Viewed by 179
Abstract
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous [...] Read more.
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous suspension of magnetite (Fe3O4) coated with β-cyclodextrin (Fe3O4@β-CD) as a potential innovative alternative nanosystem for melanoma therapy. The nanosystem exhibited physicochemical characteristics suitable for biological applications, revealing a successful complexation of Fe3O4 NPs with β-CD and an average size of 18.1 ± 2.1 nm. In addition, the in vitro evaluations revealed that the newly developed nanosystem presented high biocompatibility on a human keratinocyte (HaCaT) monolayer and selective antiproliferative activity on amelanotic human melanoma (A375) cells, inducing early apoptosis features when concentrations of 10, 15, and 20 μg/mL were employed for 48 h and 72 h. Collectively, the Fe3O4@β-CD nanosystem reveals promising features for an adjuvant approach in melanoma treatment, mainly due to its β-cyclodextrin coating, thus endorsing a potential co-loading of therapeutic drugs. Furthermore, the intrinsic magnetic core of Fe3O4 NPs supports the magnetically based cancer treatment strategies. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

23 pages, 8591 KiB  
Article
Targeting Cellular Senescence with Liposome-Encapsulated Fisetin: Evidence of Senomorphic Effect
by Agata Henschke, Bartosz Grześkowiak, Olena Ivashchenko, María Celina Sánchez-Cerviño, Emerson Coy and Sergio Moya
Int. J. Mol. Sci. 2025, 26(15), 7489; https://doi.org/10.3390/ijms26157489 - 2 Aug 2025
Viewed by 292
Abstract
Cellular senescence is closely connected with cancer progression, recurrence, and metastasis. Senotherapy aims to soothe the harmful effects of senescent cells either by inducing their apoptosis (senolytic) or by suppressing the senescence-associated secretory phenotype (SASP) (senomorphic). Fisetin, a well-studied senotherapeutic drug, was selected [...] Read more.
Cellular senescence is closely connected with cancer progression, recurrence, and metastasis. Senotherapy aims to soothe the harmful effects of senescent cells either by inducing their apoptosis (senolytic) or by suppressing the senescence-associated secretory phenotype (SASP) (senomorphic). Fisetin, a well-studied senotherapeutic drug, was selected for this study to evaluate its efficiency when delivered in a liposomal formulation. The experiment evaluated the impact of liposome-encapsulated fisetin on senescent cells induced by doxorubicin (DOX) from two cell lines: WI-38 (normal lung fibroblasts) and A549 (lung carcinoma). Senescence was characterized by SA-β-galactosidase (SA-β-gal) activity, proliferation, morphology, and secretion of pro-inflammatory interleukin 6 (IL-6) and interleukin 8 (IL-8). Due to fisetin’s hydrophobic nature, it was encapsulated in liposomes to enhance cellular delivery. Cellular uptake studies confirmed that the liposomes were effectively internalized by both senescent cell types. Treatment with fisetin-loaded liposomes revealed a lack of senolytic effects but showed senomorphic activity, as evidenced by a significant reduction in IL-6 and IL-8 secretion in senescent cells. The liposomal formulation enhanced fisetin’s therapeutic efficacy, showing comparable results even at the lowest tested concentration. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

23 pages, 5771 KiB  
Article
Photobiomodulation of 450 nm Blue Light on Human Keratinocytes, Fibroblasts, and Endothelial Cells: An In Vitro and Transcriptomic Study on Cells Involved in Wound Healing and Angiogenesis
by Jingbo Shao, Sophie Clément, Christoph Reissfelder, Patrick Téoule, Norbert Gretz, Feng Guo, Sabina Hajizada, Stefanie Uhlig, Katharina Mößinger, Carolina de la Torre, Carsten Sticht, Vugar Yagublu and Michael Keese
Biomedicines 2025, 13(8), 1876; https://doi.org/10.3390/biomedicines13081876 - 1 Aug 2025
Viewed by 191
Abstract
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human [...] Read more.
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical vein endothelial cells (HUVECs) after light treatment at 450 nm were analyzed by kinetic assays on cell viability, proliferation, ATP quantification, migration assay, and apoptosis assay. Gene expression was evaluated by transcriptome analysis. Results: A biphasic effect was observed on HaCaTs, NHDFs, and HUVECs. Low-fluence (4.5 J/cm2) irradiation stimulated cell viability, proliferation, and migration. mRNA sequencing indicated involvement of transforming growth factor beta (TGF-β), ErbB, and vascular endothelial growth factor (VEGF) pathways. High-fluence (18 J/cm2) irradiation inhibited these cellular activities by downregulating DNA replication, the cell cycle, and mismatch repair pathways. Conclusions: HaCaTs, NHDFs, and HUVECs exhibited a dose-dependent pattern after BL irradiation. These findings broaden the view of PBM following BL irradiation of these three cell types, thereby promoting their potential application in wound healing and angiogenesis. Our data on low-fluence BL at 450 nm indicates clinical potential for a novel modality in wound therapy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

25 pages, 681 KiB  
Review
Insights into the Molecular Mechanisms and Signaling Pathways of Epithelial to Mesenchymal Transition (EMT) in the Pathophysiology of Endometriosis
by Hossein Hosseinirad, Jae-Wook Jeong and Breton F. Barrier
Int. J. Mol. Sci. 2025, 26(15), 7460; https://doi.org/10.3390/ijms26157460 - 1 Aug 2025
Viewed by 269
Abstract
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and [...] Read more.
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and acquire mesenchymal traits, including migratory and invasive capabilities. During the process of EMT, epithelial traits are downregulated, while mesenchymal traits are acquired, with cells developing migratory ability, increasing proliferation, and resistance to apoptosis. EMT is promoted by exposure to hypoxia and stimulation by transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), and estradiol. Signaling pathways that promote EMT are activated in most ectopic lesions and involve transcription factors such as Snail, Slug, ZEB-1/2, and TWIST-1/2. EMT-specific molecules present in the serum of women with endometriosis appear to have diagnostic potential. Strategies targeting EMT in animal models of endometriosis have demonstrated regression of ectopic lesions, opening the door for novel therapeutic approaches. This review summarizes the current understanding of the role of EMT in endometriosis and highlights potential targets for EMT-related diagnosis and therapeutic interventions. Full article
(This article belongs to the Special Issue Endometriosis: Focusing on Molecular and Cellular Research)
Show Figures

Figure 1

21 pages, 4988 KiB  
Article
Ozone Exposure Induces Prediabetic Symptoms Through Hepatic Glycogen Metabolism and Insulin Resistance
by Yuchai Tian, Xiaoyun Wu, Zhihua Gong, Xiaomin Liang, Huizhen Zhu, Jiyue Zhang, Yangcheng Hu, Bin Li, Pengchong Xu, Kaiyue Guo and Huifeng Yue
Toxics 2025, 13(8), 652; https://doi.org/10.3390/toxics13080652 - 31 Jul 2025
Viewed by 299
Abstract
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related [...] Read more.
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related to impaired glucose tolerance and insulin resistance were screened through the Comparative Toxicogenomics Database (CTD), and verified using quantitative real-time PCR. In addition, liver histopathological observations and the determination of basic biochemical indicators were conducted, and targeted metabolomics analysis was performed on the liver to verify glycogen levels and gene expression. In vitro validation was conducted with HepG2 and Min6 cell lines. (3) Results: Fasting blood glucose and insulin resistance were elevated following O3 exposure. Given that the liver plays a critical role in glucose metabolism, we further investigated hepatocyte apoptosis and alterations in glycogen metabolism, including reduced glycogen levels and genetic dysregulation. Metabolomics analysis revealed abnormalities in fructose metabolism and glycogen synthesis in the livers of the O3-exposed group. In vitro studies demonstrated that oxidative stress enhances both liver cell apoptosis and insulin resistance in pancreatic islet β cells. (4) Conclusions: O3 triggers prediabetes symptoms via hepatic metabolic dysfunction and hepatocyte apoptosis. The identified metabolites and genes offer potential as early biomarkers and therapeutic targets. Full article
Show Figures

Graphical abstract

25 pages, 1749 KiB  
Review
TGF-β Signaling in Cancer: Mechanisms of Progression and Therapeutic Targets
by Elżbieta Cecerska-Heryć, Adrianna Jerzyk, Małgorzata Goszka, Aleksandra Polikowska, Julita Rachwalska, Natalia Serwin, Bartosz Wojciuk and Barbara Dołęgowska
Int. J. Mol. Sci. 2025, 26(15), 7326; https://doi.org/10.3390/ijms26157326 - 29 Jul 2025
Viewed by 468
Abstract
Transforming growth factor-β (TGF-β) is a key protein family member that includes activins, inhibins, and bone morphogenetic proteins (BMPs). It is essential in numerous biological processes, such as chemotaxis, apoptosis, differentiation, growth, and cell migration. TGF-β receptors initiate signaling through two primary pathways: [...] Read more.
Transforming growth factor-β (TGF-β) is a key protein family member that includes activins, inhibins, and bone morphogenetic proteins (BMPs). It is essential in numerous biological processes, such as chemotaxis, apoptosis, differentiation, growth, and cell migration. TGF-β receptors initiate signaling through two primary pathways: the canonical pathway involving Smad proteins and non-canonical pathways that utilize alternative signaling mechanisms. When TGF-β signaling is disrupted, it has been shown to contribute to the development of various diseases, including cancer. Initially, TGF-β effectively inhibits the cell cycle and promotes apoptosis. However, its role can transition to facilitating tumor growth and metastasis as the disease progresses. Moreover, TGF-β drives cancer progression through epithelial–mesenchymal transition (EMT), modulation of factor expression, and evasion of immune responses. This complexity establishes the need for further research, particularly into pharmacological agents targeting TGF-β, which are emerging as promising therapeutic options. Current clinical and preclinical studies are making significant strides toward mitigating the adverse effects of TGF-β. This underscores the critical importance of understanding its underlying mechanisms to enhance treatment effectiveness and improve survival rates for cancer patients. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Graphical abstract

19 pages, 1553 KiB  
Article
Chrysin-Loaded Extracellular Vesicles Attenuate LPS-Induced Neuroinflammation in BV2 Microglial Cells In Vitro: A Novel Neuroprotective Strategy
by Francesca Martina Filannino, Raffaella Soleti, Melania Ruggiero, Maria Ida de Stefano, Maria Antonietta Panaro, Dario Domenico Lofrumento, Teresa Trotta, Angela Bruna Maffione, Tarek Benameur, Antonia Cianciulli, Rosa Calvello, Federico Zoila and Chiara Porro
Molecules 2025, 30(15), 3131; https://doi.org/10.3390/molecules30153131 - 25 Jul 2025
Viewed by 403
Abstract
Neuroinflammation, driven by activated microglia, contributes to the progression of neurodegenerative diseases. Extracellular vesicles mediate intercellular communication and influence immune responses. Chrysin, a natural flavone found in fruits and propolis, has demonstrated anti-inflammatory effects. This study explored the immunomodulatory potential of chrysin-loaded EVs [...] Read more.
Neuroinflammation, driven by activated microglia, contributes to the progression of neurodegenerative diseases. Extracellular vesicles mediate intercellular communication and influence immune responses. Chrysin, a natural flavone found in fruits and propolis, has demonstrated anti-inflammatory effects. This study explored the immunomodulatory potential of chrysin-loaded EVs (EVs-Chry) derived from BV2 microglial cells. BV2 cells were treated with chrysin for 24 h to assess cytotoxicity and proliferation. EVs were isolated from treated and untreated cells, characterized by nanoparticle tracking analysis, and applied to naïve BV2 cells prior to LPS stimulation. Effects on cell morphology, migration, cytokine expression (IL-1β, IL-6), inflammasome activity (caspase-1), and apoptosis-related protein Bcl-xL were investigated. Our results show that EVs-Chry significantly reduced LPS-induced cell proliferation, restored resting microglial morphology, and reduced migratory capacity. Furthermore, co-treatment with EVs-Chry and LPS reduced pro-inflammatory cytokines such as IL-1β, IL-6, and caspase-1 expression while enhancing anti-apoptotic Bcl-xL levels, indicating a shift toward an anti-inflammatory, neuroprotective micro-glial phenotype. Together, our results demonstrated that EVs-Chry have neuroprotective effects on LPS-induced microglial activation and modulate microglial responses to inflammatory stimuli, attenuating pro-inflammatory signaling and promoting cellular homeostasis. These findings support the therapeutic potential of EVs-Chry in the context of neuroinflammatory and neurodegenerative disorders. Full article
Show Figures

Graphical abstract

38 pages, 4533 KiB  
Review
A Narrative Review on the Multifaceted Roles of Galectins in Host–Pathogen Interactions During Helicobacter pylori Infection
by Bojan Stojanovic, Natasa Zdravkovic, Marko Petrovic, Ivan Jovanovic, Bojana S. Stojanovic, Milica Dimitrijevic Stojanovic, Jelena Nesic, Milan Paunovic, Ivana Milivojcevic Bevc, Nikola Mirkovic, Mladen Pavlovic, Nenad Zornic, Bojan Milosevic, Danijela Tasic-Uros, Jelena Zivic, Goran Colakovic and Aleksandar Cvetkovic
Int. J. Mol. Sci. 2025, 26(15), 7216; https://doi.org/10.3390/ijms26157216 - 25 Jul 2025
Viewed by 201
Abstract
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly [...] Read more.
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly galectins, in modulating host–pathogen interactions within the gastric mucosa. Galectins are β-galactoside-binding proteins with highly conserved structures but diverse biological functions, ranging from regulation of innate and adaptive immunity to modulation of cell signaling, apoptosis, and epithelial integrity. This review provides a comprehensive synthesis of current knowledge on the involvement of key galectin family members—especially Galectin-1, -2, -3, -8, and -9—in the context of H. pylori infection. Their dual roles in enhancing mucosal defense and facilitating bacterial persistence are examined along with their contributions to immune evasion, inflammation, and gastric carcinogenesis. Understanding the interplay between galectins and H. pylori enhances our knowledge of mucosal immunity. This interaction may also reveal potential biomarkers for disease progression and identify novel therapeutic targets. Modulating galectin-mediated pathways could improve outcomes in H. pylori-associated diseases. Full article
(This article belongs to the Special Issue New Insights into Lectins)
Show Figures

Figure 1

18 pages, 8559 KiB  
Article
Recombinant Type XVII Collagen Promotes Hair Growth by Activating the Wnt/β-Catenin and SHH/GLI Signaling Pathways
by Yuyao Zhang, Shiyu Yin, Ru Xu, Jiayu Xiao, Rui Yi, Jiahui Mao, Zhiguang Duan and Daidi Fan
Cosmetics 2025, 12(4), 156; https://doi.org/10.3390/cosmetics12040156 - 23 Jul 2025
Viewed by 723
Abstract
(1) Background: As society progresses, increasing numbers of individuals are experiencing hair loss, which can be attributed to factors such as unhealthy diets, insufficient sleep, stress, and hormonal imbalances. Currently available pharmacological treatments for hair loss often cause undesirable side effects, highlighting the [...] Read more.
(1) Background: As society progresses, increasing numbers of individuals are experiencing hair loss, which can be attributed to factors such as unhealthy diets, insufficient sleep, stress, and hormonal imbalances. Currently available pharmacological treatments for hair loss often cause undesirable side effects, highlighting the urgent need to explore safer and more effective agents to promote hair restoration. This study investigated the role of recombinant human type XVII collagen derived from the α1 chain (rhCOL17A1) in facilitating hair growth and restoration. (2) Methods: We analyzed the impact of rhCOL17A1 on the mRNA expression of several growth factors, as well as Bcl-2 and Bax, at the cellular level. Moreover, the effects of rhCOL17A1 on the expression of key proteins in the Wnt/β-catenin and Sonic Hedgehog (SHH)/GLI signaling pathways were examined by Western blotting (WB). At the organismal level, we established a model in C57BL/6 mice through chronic subcutaneous administration of 5% testosterone propionate. We subsequently assessed the effect of rhCOL17A1 on hair regrowth via histological analysis using hematoxylin and eosin (H&E) staining and immunofluorescence staining. (3) Results: rhCOL17A1 contributes to the resistance of hair follicle dermal papilla cells (HFDPCs) to apoptosis. rhCOL17A1 activates the Wnt/β-catenin and SHH/GLI signaling pathways, and increases the expression of type XVII collagen (COLXVII), thereby creating a favorable environment for hair growth. Furthermore, rhCOL17A1 exerts a significant growth-promoting effect at the animal level. (4) Conclusions: rhCOL17 promotes hair growth by activating the Wnt/β-catenin and SHH/GLI signaling pathways and upregulating COLXVII expression. Full article
Show Figures

Figure 1

18 pages, 8370 KiB  
Article
High-Fructose High-Fat Diet Renders the Retina More Susceptible to Blue Light Photodamage in Mice
by Meng-Wei Kao, Wan-Ju Yeh, Hsin-Yi Yang and Chi-Hao Wu
Antioxidants 2025, 14(8), 898; https://doi.org/10.3390/antiox14080898 - 22 Jul 2025
Viewed by 367
Abstract
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL [...] Read more.
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL plus HFHF diet (BL + HFHF). The BL + HFHF group consumed the HFHF diet for 40 weeks, followed by 8 weeks of low-intensity BL exposure (465 nm, 37.7 lux, 0.8 μW/cm2) for 6 h daily. The BL group underwent the same BL exposure while kept on a standard diet. Histopathological analysis showed that, under BL exposure, the HFHF diet significantly reduced the number of photoreceptor nuclei and the thickness of the outer nuclear layer and inner/outer segments compared to the BL group (p < 0.05). While BL exposure alone caused oxidative DNA damage, rhodopsin loss, and Müller cell activation, the combination with an HFHF diet significantly amplified the oxidative DNA damage and Müller cell activation. Moreover, the HFHF diet increased blood–retinal barrier permeability and triggered apoptosis under BL exposure. Mechanistically, the BL + HFHF group exhibited increased retinal advanced glycated end product (AGE) deposition, accompanied by the activation of the receptor for AGE (RAGE), NFκB, and the NLRP3 inflammasome-dependent IL-1β pathway. In conclusion, this study underscores that unhealthy dietary factors, particularly those high in fructose and fat, may intensify the hazard of BL and adversely impact visual health. Full article
(This article belongs to the Special Issue Oxidative Stress in Eye Diseases)
Show Figures

Graphical abstract

34 pages, 6295 KiB  
Article
ROS/Enzyme Dual-Responsive Drug Delivery System for Targeted Colorectal Cancer Therapy: Synergistic Chemotherapy, Anti-Inflammatory, and Gut Microbiota Modulation
by Xin Zhang, Ruonan Lian, Bingbing Fan, Lei Meng, Pengxia Zhang, Yu Zhang and Weitong Sun
Pharmaceutics 2025, 17(7), 940; https://doi.org/10.3390/pharmaceutics17070940 - 21 Jul 2025
Viewed by 434
Abstract
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral [...] Read more.
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral drug delivery system, KGM-CUR/PSM microspheres, to achieve precise drug release in CRC and enhance tumor-specific drug accumulation, which leverages high ROS levels in CRC and the β-mannanase overexpression in colorectal tissues. Methods: In this study, we synthesized a ROS-responsive prodrug polymer (PSM) by conjugating polyethylene glycol monomethyl ether (mPEG) and mesalazine (MSL) via a thioether bond. CUR was then encapsulated into PSM using thin-film hydration to form tumor microenvironment-responsive micelles (CUR/PSM). Subsequently, konjac glucomannan (KGM) was employed to fabricate KGM-CUR/PSM microspheres, enabling targeted delivery for colorectal cancer therapy. The ROS/enzyme dual-response properties were confirmed through in vitro drug release studies. Cytotoxicity, cellular uptake, and cell migration were assessed in SW480 cells. In vivo efficacy was evaluated in AOM/DSS-induced CRC mice, monitoring tumor growth, inflammatory markers (TNF-α, IL-1β, IL-6, MPO), and gut microbiota composition. Results: In vitro drug release studies demonstrated that KGM-CUR/PSM microspheres exhibited ROS/enzyme-responsive release profiles. CUR/PSM micelles demonstrated significant anti-CRC efficacy in cytotoxicity assays, cellular uptake studies, and cell migration assays. In AOM/DSS-induced CRC mice, KGM-CUR/PSM microspheres significantly improved survival and inhibited CRC tumor growth, and effectively reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and myeloperoxidase (MPO). Histopathological and microbiological analyses revealed near-normal colon architecture and microbial diversity in the KGM-CUR/PSM group, confirming the system’s ability to disrupt the “inflammation-microbiota-tumor” axis. Conclusions: The KGM-CUR/PSM microspheres demonstrated a synergistic enhancement of anti-tumor efficacy by inducing apoptosis, alleviating inflammation, and modulating the intestinal microbiota, which offers a promising stimuli-responsive drug delivery system for future clinical treatment of CRC. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

14 pages, 1777 KiB  
Article
The Seminal Role of the Proinflammatory Cytokine IL-1β and Its Signaling Cascade in Glioblastoma Pathogenesis and the Therapeutic Effect of Interleukin-1β Receptor Antagonist (IL-1RA) and Tolcapone
by Jagadeesh Narasimhappagari, Ling Liu, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara, Orwa Aboud and W. Sue T. Griffin
Int. J. Mol. Sci. 2025, 26(14), 6893; https://doi.org/10.3390/ijms26146893 - 18 Jul 2025
Viewed by 364
Abstract
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor [...] Read more.
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor Antagonist (IL-1RA) and Tolcapone against untoward aspects of tumor pathogenesis. Here, we report that IL-1β treatment at 50 ng/mL for 48 h increased proliferation and metastasis by 30-fold (p ≤ 0.05), leading to the formation of clones of rapidly dividing cancer cells, leading to the formation of organized glial fibrillary acid protein (GFAP)-immunoreactive, clone-like structures with protruding spikes. Further, IL-1β treatment significantly increased the expression of mRNA levels of the IL-1β-driven pathway TLR-MyD88-NF-κB-TNFα and IL-6 (p ≤ 0.05). IL-1β also increased autophagy via elevation of mRNA and protein levels of cathepsin B, LAMP-2, and LC3B. In contrast, IL-1RA and Tolcapone inhibited this proliferation and the expression of these mRNAs and proteins, inhibiting autophagy by downregulating these autophagy proteins and inducing apoptosis by upregulating the expression of pro-apoptotic proteins like caspase-8 and caspase-3. IL-1β and its receptor can be targeted for successful anticancer therapy, as shown here with the use of IL-1RA and/or Tolcapone. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

17 pages, 919 KiB  
Article
Necroptotic and Apoptotic Pathways in Sepsis: A Comparative Analysis of Pediatric and Adult ICU Patients
by George Briassoulis, Konstantina Tzermia, Kalliopi Bastaki, Marianna Miliaraki, Panagiotis Briassoulis, Athina Damianaki, Eumorfia Kondili and Stavroula Ilia
Biomedicines 2025, 13(7), 1747; https://doi.org/10.3390/biomedicines13071747 - 17 Jul 2025
Viewed by 370
Abstract
Background: Necroptosis, a regulated form of inflammatory cell death, is increasingly recognized as a key driver of sepsis and critical illness. The balance between necroptosis and apoptosis may influence immune responses and outcomes in ICU patients. Objective: To evaluate necroptosis- and apoptosis-related protein [...] Read more.
Background: Necroptosis, a regulated form of inflammatory cell death, is increasingly recognized as a key driver of sepsis and critical illness. The balance between necroptosis and apoptosis may influence immune responses and outcomes in ICU patients. Objective: To evaluate necroptosis- and apoptosis-related protein expression in critically ill pediatric and adult patients with sepsis/septic shock, trauma/SIRS, or cardiac conditions, and assess their association with clinical outcomes. Methods: In this prospective, observational study, 88 patients admitted to a tertiary ICU were categorized into four groups: sepsis/septic shock, trauma/SIRS, cardiac disease, and healthy controls. Serum levels of RIPK1, RIPK3, MLKL, A20, caspase-8, IL-1β, and IL-18 were measured within 24 h of admission using ELISA. Biomarkers were analyzed by disease group, age, and severity indices. Results: Patients with sepsis—both adults and children—exhibited significantly elevated levels of RIPK1, IL-1β, and IL-18 (p < 0.001) and reduced levels of caspase-8 (p = 0.015), indicating activation of the necroptosis pathway. A20 was significantly upregulated (p < 0.001) and independently associated with lactate levels. RIPK1, IL-1β, and IL-18 were positively correlated with ICU length of stay and illness severity, whereas caspase-8 showed an inverse correlation. ROC analysis demonstrated strong predictive performance for sepsis/septic shock using RIPK1 (AUC = 0.81), IL-18 (AUC = 0.71), and A20 (AUC = 0.71); conversely, caspase-8 was inversely associated with sepsis (AUC = 0.32). Conclusions: Necroptosis appears to play a central role in the pathophysiology of sepsis across age groups. Elevated levels of RIPK1, IL-1β, IL-18, and A20 may serve as biomarkers of disease severity, while reduced caspase-8 supports a shift away from apoptosis toward necroptotic cell death. These findings highlight the potential of necroptosis-related pathways as targets for risk stratification and therapeutic intervention in critically ill patients of all ages. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

Back to TopTop