Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,365)

Search Parameters:
Keywords = β cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 786 KiB  
Review
The Role of Vitamin D Supplementation in Type 1, Type 2, and Gestational Diabetes: A Comprehensive Updated Narrative Review
by Asala Nasser, Dimitrios Papandreou, Sousana K. Papadopoulou and Leila Cheikh Ismail
Clin. Pract. 2025, 15(8), 148; https://doi.org/10.3390/clinpract15080148 (registering DOI) - 7 Aug 2025
Abstract
Vitamin D has emerged as a modulatory factor in the pathogenesis and management of diabetes mellitus due to its influence on pancreatic β-cell function, immune regulation, and inflammatory pathways. This narrative review critically examines mechanistic and clinical evidence linking vitamin D status with [...] Read more.
Vitamin D has emerged as a modulatory factor in the pathogenesis and management of diabetes mellitus due to its influence on pancreatic β-cell function, immune regulation, and inflammatory pathways. This narrative review critically examines mechanistic and clinical evidence linking vitamin D status with type 1 diabetes (T1DM), type 2 diabetes (T2DM), and gestational diabetes (GDM). In T1DM, vitamin D’s immunomodulatory effects are thought to protect β-cells from autoimmune destruction; epidemiological studies associate vitamin D sufficiency with lower T1DM incidence and improved glycemic control, although causality remains under investigation. In T2DM, vitamin D deficiency is associated with worsened metabolic control and may contribute to disease development in at-risk individuals; however, it does not influence the initial onset of T2DM in patients who are already diagnosed. Intervention trials indicate that correcting the deficiency can modestly improve insulin sensitivity, β-cell function, and metabolic parameters. GDM has similarly been linked to hypovitaminosis D, with low maternal vitamin D levels associated with higher GDM risk and adverse perinatal outcomes; mechanistic insights suggest that adequate vitamin D supports glucose homeostasis in pregnancy, and emerging trials demonstrate improved insulin resistance with maternal vitamin D supplementation. Across these diabetes subtypes, maintaining sufficient vitamin D levels appears to confer metabolic benefits and may serve as an adjunct to current preventive and therapeutic strategies. However, definitive evidence from large-scale trials is required to establish optimal vitamin D supplementation protocols and confirm its efficacy in diabetes care. Full article
(This article belongs to the Special Issue The Effect of Dietary Compounds on Inflammation-Mediated Diseases)
Show Figures

Figure 1

13 pages, 1941 KiB  
Article
When Two Worlds Collide: The Contribution and Association Between Genetics (APOEε4) and Neuroinflammation (IL-1β) in Alzheimer’s Neuropathogenesis
by Jagadeesh Narasimhappagari, Ling Liu, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara and W. Sue T. Griffin
Cells 2025, 14(15), 1216; https://doi.org/10.3390/cells14151216 (registering DOI) - 7 Aug 2025
Abstract
Introduction: Here we consider the collision of a genetic factor and an essential instigator in Alzheimer’s neuropathogenesis: (i) the Alzheimer’s gene (APOEε4), which downregulates lysosomal autophagy and induces synthesis of (ii) the instigator, interleukin-1β (IL-1β), which drives synthesis of βAPP for Aβ plaques [...] Read more.
Introduction: Here we consider the collision of a genetic factor and an essential instigator in Alzheimer’s neuropathogenesis: (i) the Alzheimer’s gene (APOEε4), which downregulates lysosomal autophagy and induces synthesis of (ii) the instigator, interleukin-1β (IL-1β), which drives synthesis of βAPP for Aβ plaques and of MAPKp38 for phosphorylation of tau for formation of neurofibrillary tangles (NFTs), the two cardinal features of AD. Methods: RT-PCR, immunoblotting and immunohistochemistry techniques were used to assess the levels of IL-1β and its signaling cascade in ADε4,4, ε3,3, and age-matched controls (AMC3,3) in hippocampal regions of the brain. Results: IL-1β and its downstream signaling proteins TLR-2, MyD88, NFκB, COX-1, and COX-2 were greater in tissues from ADε4,4 than ADε3,3 or AMC3,3. Cathepsin B, D, and L levels, which play a pivotal role and are necessary for lysosomal autophagy, were lower in ADε4,4 than in ADε3,3 or AMC ε3,3. IL-1β and its downstream signaling cascade TLR-2, MyD88, NFκB, COX-1, and COX-2 expression levels were high in SH-SY5Y and T98G cells transfected with APOεE4. Conclusions: APOEε4 causes Alzheimer’s by downregulating autophagy, thus inducing IL-1β for Aβ plaque and neurofibrillary tangle formation. Full article
(This article belongs to the Special Issue Advanced Research in Neurogenesis and Neuroinflammation)
Show Figures

Figure 1

22 pages, 1479 KiB  
Article
Synthesis and Biological Evaluation of β-Phenylalanine Derivatives Containing Sulphonamide and Azole Moieties as Antiproliferative Candidates in Lung Cancer Models
by Vytautas Mickevičius, Kazimieras Anusevičius, Birutė Sapijanskaitė-Banevič, Ilona Jonuškienė, Linas Kapočius, Birutė Grybaitė, Ramunė Grigalevičiūtė and Povilas Kavaliauskas
Molecules 2025, 30(15), 3303; https://doi.org/10.3390/molecules30153303 (registering DOI) - 7 Aug 2025
Abstract
In this study, a series of novel β-phenylalanine derivatives were synthesised and evaluated for their anticancer activity. The 3-(4-methylbenzene-1-sulfonamido)-3-phenylpropanoic acid (2) was prepared using β-phenylalanine as a core scaffold. The β-amino acid derivative 2 was converted to the [...] Read more.
In this study, a series of novel β-phenylalanine derivatives were synthesised and evaluated for their anticancer activity. The 3-(4-methylbenzene-1-sulfonamido)-3-phenylpropanoic acid (2) was prepared using β-phenylalanine as a core scaffold. The β-amino acid derivative 2 was converted to the corresponding hydrazide 4, which enabled the development of structurally diverse heterocyclic derivatives including pyrrole 5, pyrazole 6, thiadiazole 8, oxadiazole 11, triazoles 9 and 12 with Schiff base analogues 13 and series1,2,4-triazolo [3,4-b][1,3,4]thiadiazines 14. These modifications were designed to enhance chemical stability, solubility, and biological activity. All compounds were initially screened for cytotoxicity against the A549 human lung adenocarcinoma cell line, identifying N-[3-(3,5-dimethyl-1H-pyrazol-1-yl)-3-oxo-1-phenylpropyl]-4-methylbenzenesulfonamide (5) and (E)-N-{2-[4-[(4-chlorobenzylidene)amino]-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]-1-phenylethyl}-4-methylbenzenesulfonamide (13b) as the most active. The two lead candidates were further evaluated in H69 and H69AR small cell lung cancer lines to assess activity in drug-sensitive and multidrug-resistant models. Schiff base 13b containing a 4-chlorophenyl moiety, retained potent antiproliferative activity in both H69 and H69AR cells, comparable to cisplatin, while compound 5 lost efficacy in the resistant phenotype. These findings suggest Schiff base derivative 13b may overcome drug resistance mechanisms, a limitation commonly encountered with standard chemotherapeutics such as doxorubicin. These results demonstrate the potential role of β-phenylalanine derivatives, azole-containing sulphonamides, as promising scaffolds for the development of novel anticancer agents, particularly in the context of lung cancer and drug-resistant tumours. Full article
Show Figures

Graphical abstract

24 pages, 30723 KiB  
Article
Camellia japonica Flower Extract and the Active Constituent Hyperoside Repair DNA Damage Through FUNDC1-Mediated Mitophagy Pathway for Skin Anti-Aging
by Hongqi Gao, Jiahui Shi, Guangtao Li, Zhifang Lai, Yan Liu, Chanling Yuan and Wenjie Mei
Antioxidants 2025, 14(8), 968; https://doi.org/10.3390/antiox14080968 (registering DOI) - 6 Aug 2025
Abstract
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its [...] Read more.
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its active ingredient hyperoside based on a doxorubicin (DOX)-induced endogenous senescence model in human skin fibroblasts (HSFs). LC-MS proteomics analysis revealed that CJF extract and hyperoside specifically activated the FUNDC1-mediated mitochondrial autophagy pathway, significantly ameliorated the DOX-induced decrease in mitochondrial membrane potential and the accumulation of reactive oxygen species (ROS), and alleviated the cellular S-phase blockade and reversed the high expression of senescence-associated β-galactosidase (SA-β-gal). Further studies showed that the two cleared damaged mitochondria by enhancing mitochondrial autophagy and restoring cellular energy metabolism homeostasis while promoting type III collagen and elastin synthesis and repairing the expression of Claudin 1 related to skin barrier function. For the first time, the present study reveals the molecular mechanism of CJF extract in delaying skin aging by regulating the FUNDC1-dependent mitochondrial autophagy pathway, which provides a theoretical basis and a candidate strategy for developing novel anti-aging agents targeting mitochondrial quality control. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

17 pages, 2609 KiB  
Article
Residual Tumor Resection After Anti-PD-1 Therapy: A Promising Treatment Strategy for Overcoming Immune Evasive Phenotype Induced by Anti-PD-1 Therapy in Gastric Cancer
by Hajime Matsuida, Kosaku Mimura, Shotaro Nakajima, Katsuharu Saito, Sohei Hayashishita, Chiaki Takiguchi, Azuma Nirei, Tomohiro Kikuchi, Hiroyuki Hanayama, Hirokazu Okayama, Motonobu Saito, Tomoyuki Momma, Zenichiro Saze and Koji Kono
Cells 2025, 14(15), 1212; https://doi.org/10.3390/cells14151212 - 6 Aug 2025
Abstract
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy [...] Read more.
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy would be important. Methods: We evaluated the clinical efficacy of tumor resection (TR) after chemotherapy or anti-PD-1 therapy in patients with unresectable advanced or recurrent G/GEJ cancer and analyzed the immune status of tumor microenvironment (TME) by immunohistochemistry using their surgically resected specimens. Results: Patients treated with TR after anti-PD-1 therapy had significantly longer survival compared to those treated with chemotherapy and anti-PD-1 therapy alone. Expression of human leukocyte antigen (HLA) class I and major histocompatibility complex (MHC) class II on tumor cells was markedly downregulated after anti-PD-1 therapy compared to chemotherapy. Furthermore, the downregulation of HLA class I may be associated with the activation of transforming growth factor-β signaling pathway in the TME. Conclusions: Immune escape from cytotoxic T lymphocytes may be induced in the TME in patients with unresectable advanced or recurrent G/GEJ cancer after anti-PD-1 therapy due to the downregulation of HLA class I and MHC class II expression on tumor cells. TR may be a promising treatment strategy for these patients when TR is feasible after anti-PD-1 therapy. Full article
Show Figures

Figure 1

17 pages, 4825 KiB  
Article
Tea Polyphenols Mitigate TBBPA-Induced Renal Injury Through Modulation of ROS-PI3K/AKT-NF-κB Signalling in Carp (Cyprinus carpio)
by Fuxin Han, Ran Xu, Hongru Wang, Xuejiao Gao and Mengyao Guo
Animals 2025, 15(15), 2307; https://doi.org/10.3390/ani15152307 - 6 Aug 2025
Abstract
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and [...] Read more.
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and serves as a target organ for toxic substances. This study evaluated the therapeutic potential of TPs in mitigating TBBPA-induced nephrotoxicity in common carp. Common carp were exposed to 0.5 mg/L TBBPA in water and/or fed a diet supplemented with 1 g/kg TPs for 14 days. In vitro, primary renal cells were treated with 60 μM TBBPA and/or 2.5 μg/L TPs for 24 h. Methods included histopathology, TUNEL assay for apoptosis, ROS detection, and molecular analyses. Antioxidant enzymes (SOD, CAT) and inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using ELISA kits. Results showed that TBBPA induced oxidative stress, and activated the ROS-PI3K/AKT-NF-κB pathway, thereby resulting in inflammatory responses. TBBPA upregulated apoptosis-related genes (Caspase-3, Bax, and Bcl-2) and induced apoptosis. TBBPA upregulated the expression of RIPK3/MLKL, thereby exacerbating necroptosis. TPs intervention significantly mitigated these effects by reducing ROS, suppressing NF-κB activation, and restoring antioxidant enzyme activities (SOD, CAT). Moreover, TPs attenuated apoptosis and necrosis in the carp kidney, thereby enhancing the survival ability and immunity of common carp. Full article
Show Figures

Graphical abstract

15 pages, 3316 KiB  
Article
Evaluation of Collagenic Porcine Bone Blended with a Collagen Gel for Bone Regeneration: An In Vitro Study
by Tania Vanessa Pierfelice, Chiara Cinquini, Morena Petrini, Emira D’Amico, Camillo D’Arcangelo, Antonio Barone and Giovanna Iezzi
Int. J. Mol. Sci. 2025, 26(15), 7621; https://doi.org/10.3390/ijms26157621 - 6 Aug 2025
Abstract
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response [...] Read more.
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response of human oral osteoblasts to four bone substitutes: OsteoBiol® GTO® (larger granules with 20% TSV gel), Gen-OS® (smaller granules), Gen-OS® combined with 50% TSV gel (Gen-OS®+TSV), and TSV gel alone. Cell proliferation, adhesion, morphology, collagen and calcium deposition, alkaline phosphatase (ALP) activity, gene expression of osteogenic markers and integrins, and changes in pH and extracellular calcium and phosphate levels were investigated. All materials supported osteoblast activity, but Gen-OS+TSV and GTO showed the most pronounced effects. These two groups promoted better cell adhesion and proliferation, higher ALP activity, and greater matrix mineralization. GTO improved cell adhesion, while the addition of TSV gel to Gen-OS enhanced biological responses compared with Gen-OS alone. Integrins α2, α5, β1, and β3, important for cell attachment to collagen, were notably upregulated in Gen-OS+TSV and GTO. Both groups also showed increased expression of osteogenic markers such as BMP-2, ALP, and osteocalcin (OCN). Higher extracellular ion concentrations and a more alkaline pH were observed, particularly in conditions without cells, suggesting active ion uptake by osteoblasts. In conclusion, combining TSV gel with collagen-based granules improves the cellular environment for osteoblast activity and may support bone regeneration more effectively than using either component alone. Full article
(This article belongs to the Special Issue Molecular Studies of Bone Biology and Bone Tissue: 2nd Edition)
Show Figures

Graphical abstract

19 pages, 1680 KiB  
Article
Role of Endogenous Galectin-3 on Cell Biology of Immortalized Retinal Pigment Epithelial Cells In Vitro †
by Caspar Liesenhoff, Marlene Hillenmayer, Caroline Havertz, Arie Geerlof, Daniela Hartmann, Siegfried G. Priglinger, Claudia S. Priglinger and Andreas Ohlmann
Int. J. Mol. Sci. 2025, 26(15), 7622; https://doi.org/10.3390/ijms26157622 - 6 Aug 2025
Abstract
 Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, [...] Read more.
 Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, we developed an immortalized human RPE cell line (ARPE-19) with a knockdown for galectin-3 expression (ARPE-19/LGALS3+/−) using a sgRNA/Cas9 all-in-one expression vector. By Western blot analysis, a reduced galectin-3 expression of approximately 48 to 60% in heterozygous ARPE-19/LGALS3+/− cells was observed when compared to native controls. Furthermore, ARPE-19/LGALS3+/− cells displayed a flattened, elongated phenotype with decreased E-cadherin as well as enhanced N-cadherin and α-smooth muscle actin mRNA expression, indicating an epithelial–mesenchymal transition of the cells. Compared to wildtype controls, ARPE-19/LGALS3+/− cells had significantly reduced metabolic activity to 86% and a substantially decreased proliferation to 73%. Furthermore, an enhanced cell adhesion and a diminished migration of immortalized galectin-3 knockdown RPE cells was observed compared to native ARPE-19 cells. Finally, by Western blot analysis, reduced pAKT, pERK1/2, and β-catenin signaling were detected in ARPE-19/LGALS3+/− cells when compared to wildtype controls. In summary, in RPE cells, endogenous galectin-3 appears to be essential for maintaining the epithelial phenotype as well as cell biological functions such as metabolism, proliferation, or migration, effects that might be mediated via a decreased activity of the AKT, ERK1/2, and β-catenin signaling pathways.  Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
14 pages, 1372 KiB  
Article
Risk Factors of Histopathological Crescent Formation in Pediatric IgA Vasculitis Nephritis
by Yanyan Jin, Yi Xie, Qian Lin, Yu Zhu, Limin Huang, Yang He and Haidong Fu
Medicina 2025, 61(8), 1421; https://doi.org/10.3390/medicina61081421 - 6 Aug 2025
Abstract
Background and Objectives: This study aimed to explore the risk factors of histopathological crescent formation in pediatric IgA vasculitis nephritis (IgAVN). Materials and Methods: Enrolled patients with biopsy-proven IgAVN from Zhejiang University’s hospital were split into two groups: 377 with no [...] Read more.
Background and Objectives: This study aimed to explore the risk factors of histopathological crescent formation in pediatric IgA vasculitis nephritis (IgAVN). Materials and Methods: Enrolled patients with biopsy-proven IgAVN from Zhejiang University’s hospital were split into two groups: 377 with no crescents on histopathology (Group 1) and 364 with crescentic nephritis (Group 2). Collected data included clinical features, lab indicators, histopathological grading, and factors causing glomerular sclerosis. Logistic regression was used to assess factors affecting crescent formation in IgAVN. Double-immunofluorescence assay was used to detect TGF-β1, MCP-1, α-SMA, Collagen I, and FN1 in kidney biopsy specimens. The relationship between kidney fibrosis factors and histopathological grade were analyzed using Chi-square and Pearson tests. Results: A total of 741 patients with IgAVN were included in the study. Univariate logistic regression identified potential factors related to crescent formation, including age, gender, clinical classification, hematuria grade, 24 h urine protein level, peripheral white blood cells (WBCs), serum albumin, Cystatin-C, APTT, and PT. Multivariate analysis revealed statistical significance for age, 24 h urine protein, and WBCs across pathological grades (p < 0.05). Mantel–Haenszel Chi-square tests indicated a linear relationship between IgAVN pathological grade and α-SMA, TGF-β1, MCP-1, and FN1. Pearson correlation analysis confirmed a positive correlation between pathological grade and these markers. Conclusions: Age, 24 h urinary protein, and blood WBCs are identified as risk factors for histopathological crescent formation in children with IgAVN. Additionally, a higher pathological grade is associated with more pronounced fibrosis indicators. Full article
(This article belongs to the Section Pediatrics)
Show Figures

Figure 1

18 pages, 2476 KiB  
Article
Fucoidan Modulates Osteoarthritis Progression Through miR-22/HO-1 Pathway
by Tsung-Hsun Hsieh, Jar-Yi Ho, Chih-Chien Wang, Feng-Cheng Liu, Chian-Her Lee, Herng-Sheng Lee and Yi-Jen Peng
Cells 2025, 14(15), 1208; https://doi.org/10.3390/cells14151208 - 6 Aug 2025
Abstract
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. [...] Read more.
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. Methods: Human primary chondrocytes and synovial fibroblasts were pre-treated with 100 μg/mL fucoidan before stimulation with 1 ng/mL of IL-1β. The protective effects of fucoidan were assessed by measuring oxidative stress markers and catabolic enzyme levels. These in vitro findings were corroborated using a rat anterior cruciate ligament transection-induced OA model. To explore the underlying mechanisms, particularly the interaction between microRNAs (miRs) and heme oxygenase-1 (HO-1), five candidate miRs were identified in silico and experimentally validated. Luciferase reporter assays were used to confirm direct interactions. Results: Fucoidan exhibited protective effects against IL-1β-induced oxidative stress and catabolic processes in both chondrocytes and synovial fibroblasts, consistent with in vivo observations. Fucoidan treatment restored HO-1 expression while reducing inducible nitric oxide synthase and matrix metalloproteinase levels in IL-1β-stimulated cells. Notably, this study revealed that fucoidan modulates the miR-22/HO-1 pathway, a previously uncharacterized mechanism in OA. Specifically, miR-22 was upregulated by IL-1β and subsequently attenuated by fucoidan. Luciferase reporter assays confirmed a direct interaction between miR-22 and HO-1. Conclusion: The results demonstrate that fucoidan mitigates OA-related oxidative stress in chondrocytes and synovial fibroblasts through the novel modulation of the miR-22/HO-1 axis. The miR-22/HO-1 pathway represents a crucial therapeutic target for OA, and fucoidan may offer a promising therapeutic intervention. Full article
Show Figures

Figure 1

12 pages, 441 KiB  
Article
Cytokine Regulation and Oxidative Stress in Helicobacter Pylori-Associated Gastric Adenocarcinoma at Different Stages: Insights from a Cross-Sectional Study
by Olga Smirnova, Aleksander Sinyakov and Eduard Kasparov
Int. J. Mol. Sci. 2025, 26(15), 7609; https://doi.org/10.3390/ijms26157609 - 6 Aug 2025
Abstract
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was [...] Read more.
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was to investigate the differences in the content of cytokines and oxidative stress markers in patients with gastric adenocarcinoma associated with H. pylori infection depending on the stage. The study included 281 patients with gastric cancer. At stage I of the disease—75 people, stage II—70 people, stage III—69 people, and stage IV of the disease—67 people. The levels of TNF-α, IL-2, IL-8, IFNγ, TNF-β, IL-17A, IL-6, IL-10, and IL-4 in the blood serum of patients and healthy individuals were determined by enzyme immunoassay and plasma oxidative stress scores (MDA, SOD, CAT, GST, GPO, CP). The present study revealed that H. pylori-infected gastric adenocarcinoma at different stages is associated with different plasma levels of cytokines, lipid peroxidation products, and antioxidant defense factors. Further studies are needed to evaluate the effectiveness of therapeutic strategies combining cytokine regulation and oxidative stress to improve clinical outcomes in gastric cancer. Full article
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Vitamin E Enhances Immune Function and the Intestinal Histological Structure by Regulating the Nodal-Mediated Signaling Pathway: A Case Study on the Sea Cucumber Apostichopus japonicus
by Zitong Wang, Yan Wang, Xianyu Wang, Guangyao Zhao, Haiqing Zeng, Haoran Xiao, Lingshu Han, Jun Ding, Yaqing Chang and Rantao Zuo
Biology 2025, 14(8), 1008; https://doi.org/10.3390/biology14081008 - 6 Aug 2025
Abstract
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections [...] Read more.
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections between adjacent cells but also serves as an anchoring platform for cell adhesion and regeneration processes. Therefore, a 21-day feeding trial was conducted using RNA interference to investigate the role of the Nodal gene in regulating intestinal collagen synthesis and histological structure integrity in juvenile A. japonicus fed diets containing graded levels of vitamin E (VE) (0, 200, and 400 mg/kg). The results showed that the addition of 200 mg/kg VE significantly improved the growth rate, immune enzyme activities and related gene expression, as well as intestinal villus morphology. Additionally, the addition of 200 mg/kg VE upregulated the expression of Nodal, which activated the expression of collagen synthesis-related genes and promoted collagen deposition in the intestines of A. japonicus. After Nodal gene knockdown, A. japonicus presented a decreased growth rate, damage to the intestinal histological structure, and impaired collagen synthesis, with the most notable findings observed in A. japonicus fed diets without VE addition. However, these detrimental effects were eliminated to some extent by the addition of 200 mg/kg VE. These findings indicate that VE improves immune function and intestinal histological structure in A. japonicus through a Nodal-dependent pathway. Full article
(This article belongs to the Special Issue Current Advances in Echinoderm Research (2nd Edition))
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 - 6 Aug 2025
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 1831 KiB  
Article
Saccharomyces boulardii CNCM I-745 Supernatant Improves Markers of Gut Barrier Function and Inflammatory Response in Small Intestinal Organoids
by Louisa Filipe Rosa, Steffen Gonda, Nadine Roese and Stephan C. Bischoff
Pharmaceuticals 2025, 18(8), 1167; https://doi.org/10.3390/ph18081167 - 6 Aug 2025
Abstract
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic [...] Read more.
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic and regulatory effects on the intestinal barrier, mediated either by the yeast or yeast-derived substrates, have been discussed. Methods: To examine the effects of Saccharomyces boulardii released substrates (S.b.S) on gastrointestinal (GI) barrier function, a murine small intestinal organoid cell model under stress was used. Stress was induced by lipopolysaccharide (LPS) exposure or withdrawal of growth factors from cell culture medium (GFRed). Stressed organoids were treated with S.b.S (200 µg/mL), and markers of GI barrier and inflammatory response were assessed. Results: GFRed-induced stress was characterized by disturbances in selected tight junction (TJ) (p < 0.05), adherent junction (AJ) (p < 0.001), and mucin (Muc) formation (p < 0.01), measured by gene expressions, whereby additional S.b.S treatment was found to reverse these effects by increasing Muc2 (from 0.22 to 0.97-fold change, p < 0.05), Occludin (Ocln) (from 0.37 to 3.5-fold change, p < 0.0001), and Claudin (Cldn)7 expression (from 0.13 ± 0.066-fold change, p < 0.05) and by decreasing Muc1, Cldn2, Cldn5, and junctional adhesion molecule A (JAM-A) expression (all p < 0.01). Further, S.b.S normalized expression of nucleotide binding oligomerization domain (Nod)2- (from 44.5 to 0.51, p < 0.0001) and matrix metalloproteinase (Mmp)7-dependent activation (from 28.3 to 0.02875 ± 0.0044 ** p < 0.01) of antimicrobial peptide defense and reduced the expression of several inflammatory markers, such as myeloid differentiation primary response 88 (Myd88) (p < 0.01), tumor necrosis factor α (Tnfα) (p < 0.01), interleukin (IL)-6 (p < 0.01), and IL-1β (p < 0.001). Conclusions: Our data provide new insights into the molecular mechanisms by which Saccharomyces boulardii CNCM I-745-derived secretome attenuates inflammatory responses and restores GI barrier function in small intestinal organoids. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Graphical abstract

Back to TopTop