Synthesis and Biological Evaluation of β-Phenylalanine Derivatives Containing Sulphonamide and Azole Moieties as Antiproliferative Candidates in Lung Cancer Models
Abstract
1. Introduction
2. Results and Discussions
2.1. Chemistry
2.2. In Vitro Anticancer Activity of β-Phenylalanine Derivatives 2–14
2.3. Compounds 5 and 13b Induces Antiproliferative Activity in 3D A549 Spheroid Model
3. Materials and Methods
3.1. Chemistry
3.2. Cell Lines and Culture Conditions
3.3. Cell Viability Assay
3.4. Generation of A549 3D Spheroids
3.5. Acridine Orange/Propidium Iodide (AO/PI) Staining of A549 Spheroids
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Li, Y.; Ma, X.; Li, L.; Zeng, S.; Peng, Y.; Liang, H.; Zhang, G. Identification of Naphthalimide-Derivatives as Novel PBD-Targeted Polo-like Kinase 1 Inhibitors with Efficacy in Drug-Resistant Lung Cancer Cells. Eur. J. Med. Chem. 2024, 271, 116416. [Google Scholar] [CrossRef]
- Zhu, Q.; Tao, Y.; Han, Y.; He, Y.; Fu, Y.; Yang, H.; Chen, Y.; Shi, Y. Quercetin Alleviates Breast Cancer-Related Depression by Inhibiting Neutrophil Extracellular Traps via Inhibition of Sphingosine 1-Phosphate/Sphingosine 1-Phosphate Receptor Axis. Phytother. Res. 2025, 39, 2848–2862. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Ren, Y.; Gale, R.P.; Niu, L.T.; Huang, X.J. Sphingosine-1 Phosphate Receptor 1 (S1PR1) Expression Maintains Stemness of Acute Myeloid Leukemia Stem Cells. Cancer Lett. 2024, 600, 217158. [Google Scholar] [CrossRef]
- Yeon, M.; Kim, Y.; Pathak, D.; Kwon, E.; Kim, D.Y.; Jeong, M.S.; Jung, H.S.; Jeoung, D. The CAGE-MiR-181b-5p-S1PR1 Axis Regulates Anticancer Drug Resistance and Autophagy in Gastric Cancer Cells. Front. Cell Dev. Biol. 2021, 9, 666387. [Google Scholar] [CrossRef]
- Laroche, F.J.F.; Li, S.; Shen, N.; Hwang, S.K.; Nguyen, G.; Yu, W.; Wong, C.K.; Quinton, R.J.; Berman, J.N.; Liu, C.T.; et al. S1P1 Threonine 236 Phosphorylation Mediates the Invasiveness of Triple-Negative Breast Cancer and Sensitivity to FTY720. Cells 2023, 12, 980. [Google Scholar] [CrossRef]
- Hennessy, E.J.; Grewal, G.; Byth, K.; Kamhi, V.M.; Li, D.; Lyne, P.; Oza, V.; Ronco, L.; Rooney, M.T.; Saeh, J.C.; et al. Discovery of Heterocyclic Sulfonamides as Sphingosine 1-Phosphate Receptor 1 (S1P1) Antagonists. Bioorganic Med. Chem. Lett. 2015, 25, 2041–2045. [Google Scholar] [CrossRef]
- Facey, C.O.B.; Hunsu, V.O.; Zhang, C.; Osmond, B.; Opdenaker, L.M.; Boman, B.M. CYP26A1 Links WNT and Retinoic Acid Signaling: A Target to Differentiate ALDH+ Stem Cells in APC-Mutant CRC. Cancers 2024, 16, 264. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Sun, B.; Ren, J.; Li, F.; Song, S.; Lv, X.; Hao, C.; Cheng, M. Synthesis and Biological Evaluation of 3-Phenyl-3-Aryl Carboxamido Propanoic Acid Derivatives as Small Molecule Inhibitors of Retinoic Acid 4-Hydroxylase (CYP26A1). Bioorganic Med. Chem. 2015, 23, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Barnieh, F.M.; Loadman, P.M.; Falconer, R.A. Is Tumour-Expressed Aminopeptidase N (APN/CD13) Structurally and Functionally Unique? Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2021, 1876, 188641. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, J.; Feng, J.; Yuan, Y.; Fang, H.; Xu, W. Design, Synthesis and Preliminary Activity Evaluation of Novel 3-Amino-2-Hydroxyl-3-Phenylpropanoic Acid Derivatives as Aminopeptidase N/CD13 Inhibitors. J. Enzym. Inhib. Med. Chem. 2013, 28, 545–551. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Y.; Wang, G.; Chen, Y.; Jiang, Y.; Ouyang, L.; Liu, B. Design, Synthesis and Structure-Activity Relationship of a Focused Library of β-Phenylalanine Derivatives as Novel EEF2K Inhibitors with Apoptosis-Inducing Mechanisms in Breast Cancer. Eur. J. Med. Chem. 2018, 143, 402–418. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Cui, Z. Recent Development of Azole–Sulfonamide Hybrids with the Anticancer Potential. Future Med. Chem. 2024, 16, 1267–1281. [Google Scholar] [CrossRef]
- Al-Matarneh, C.M.; Simionescu, N.; Nicolescu, A.; Silion, M.; Angeli, A.; Paoletti, N.; Bonardi, A.; Gratteri, P.; Pinteala, M.; Supuran, C.T. Novel 3-Sulfonamide Dual-Tail Pyrrol-2-One Bridged Molecules as Potent Human Carbonic Anhydrase Isoform Inhibitors: Design, Synthesis, Molecular Modeling Investigation, and Anticancer Activity in MeWo, SK-BR-3, and MG-63 Cell Lines. J. Med. Chem. 2025, 68, 1863–1882. [Google Scholar] [CrossRef]
- Aly, H.M. Novel Pyrrolidinone and Pyrazolo [1,5-a][1,3,5]Triazine Derivatives Bearing a Biologically Active Sulfamoyl Moiety as a New Class of Antitumor Agents. Monatshefte Für Chem.-Chem. Mon. 2011, 142, 935–941. [Google Scholar] [CrossRef]
- Davis, F.A.; Reddy, R.E.; Szewczyk, J.M. Asymmetric Synthesis of (R)-(+)-.Beta.-Phenylalanine from (S)-(+)-Benzylidene-p-Toluenesulfinamide. Regeneration of the Sulfinimine Precursor. J. Org. Chem. 1995, 60, 7037–7039. [Google Scholar] [CrossRef]
- Elo, H.; Kuure, M.; Pelttari, E. Correlation of the Antimicrobial Activity of Salicylaldehydes with Broadening of the NMR Signal of the Hydroxyl Proton. Possible Involvement of Proton Exchange Processes in the Antimicrobial Activity. Eur. J. Med. Chem. 2015, 92, 750–753. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gil, S.; Suárez-Pantiga, S.; Pedrosa, M.R.; Sanz, R. Molybdenum-Catalyzed Direct Synthesis of Pyrroles from Nitroarenes with Glycols as Reductants. Adv. Synth. Catal. 2025, 367, e202401170. [Google Scholar] [CrossRef]
- Kavaliauskas, P.; Grybaitė, B.; Sapijanskaitė-Banevič, B.; Vaickelionienė, R.; Petraitis, V.; Petraitienė, R.; Naing, E.; Garcia, A.; Grigalevičiūtė, R.; Mickevičius, V. Synthesis of 3-((4-Hydroxyphenyl)Amino)Propanoic Acid Derivatives as Promising Scaffolds for the Development of Antimicrobial Candidates Targeting Multidrug-Resistant Bacterial and Fungal Pathogens. Antibiotics 2024, 13, 193. [Google Scholar] [CrossRef]
- Ismail, M.M.F.; Shawer, T.Z.; Ibrahim, R.S.; Elnagar, M.R.; Ammar, Y.A. New Molecular Hybrids Integrated with Quinoxaline and Pyrazole Structural Motifs: VGFR2 Inhibitors and Apoptosis Inducers. Bioorganic Chem. 2025, 156, 108182. [Google Scholar] [CrossRef]
- Sergeyev, S.A.; Hesse, M. A Novel Synthesis of the Macrocyclic Spermidine Alkaloid (+)-(S)-Dihydroperiphylline. Helv. Chim. Acta 2002, 85, 161–167. [Google Scholar] [CrossRef]
- Robinson, A.J.; Wyatt, P.B. Addition of a Reformatsky Reagent to N-Anthracene-9-Sulfonyl and Related Imines: Synthesis of Protected β-Amino Acids. Tetrahedron 1993, 49, 11329–11340. [Google Scholar] [CrossRef]
- Davis, F.A.; Song, M.; Augustine, A. Asymmetric Synthesis of Trans-2,5-Disubstituted Pyrrolidines from Enantiopure Homoallylic Amines. Synthesis of Pyrrolidine (−)-197B. J. Org. Chem. 2006, 71, 2779–2786. [Google Scholar] [CrossRef]
- Sen, A.B.; Yajnik, M.S. Synthesis of Peptides of β-Amino-Acids. J. Indian Chem. Soc. 1965, 42, 145–148. [Google Scholar]
- Kashima, C.; Fukusaka, K.; Takahashi, K. Synthesis of Optically Active Β-lactams by the Reaction of 2-acyl-3-phenyl-l-menthopyrazoles with C=N Compounds. J. Heterocycl. Chem. 1997, 34, 1559–1565. [Google Scholar] [CrossRef]
- Pitucha, M.; Karczmarzyk, Z.; Wysocki, W.; Kaczor, A.A.; Matosiuk, D. Experimental and Theoretical Investigations on the Keto–Enol Tautomerism of 4-Substituted 3-[1-Methylpyrrol-2-Yl)Methyl]-4,5-Dihydro-1H-1,2,4-Triazol-5-One Derivatives. J. Mol. Struct. 2011, 994, 313–320. [Google Scholar] [CrossRef]
- Liu, X.; Jia, W.; Liu, C.; Hua, Z. An NMR Study on the Keto-enol Tautomerism of 1,3-dicarbonyl Drug Precursors. Drug Test. Anal. 2025, 17, 850–857. [Google Scholar] [CrossRef]
- Toraman, G.Ö.; Bayrakdar, A.; Oğuz, E.; Beytur, M.; Türkan, F.; Manap, S.; Aras, A.; Yüksek, H. Synthesis, Characterization of Novel Mannich Bases and Their Acetylcholinesterase and Glutathione S-Transferase Inhibitory Properties: An in Vitro and in Silico Mechanism Research. J. Mol. Struct. 2025, 1321, 139733. [Google Scholar] [CrossRef]
- Özdemir, N.; Türkpençe, D. Theoretical Investigation of Thione-Thiol Tautomerism, Intermolecular Double Proton Transfer Reaction and Hydrogen Bonding Interactions in 4-Ethyl-5-(2-Hydroxyphenyl)-2H-1,2,4-Triazole-3(4H)-Thione. Comput. Theor. Chem. 2013, 1025, 35–45. [Google Scholar] [CrossRef]
- Tumosienė, I.; Kantminienė, K.; Jonuškienė, I.; Peleckis, A.; Belyakov, S.; Mickevičius, V. Synthesis of 1-(5-Chloro-2-Hydroxyphenyl)-5-Oxopyrrolidine-3-Carboxylic Acid Derivatives and Their Antioxidant Activity. Molecules 2019, 24, 971. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Yang, L.; Ding, N.; Li, G.; Cai, J.; An, X.; Wang, Z.; Qin, J.; Niu, Y. Recurrent Neural Network (RNN) Model Accelerates the Development of Antibacterial Metronidazole Derivatives. RSC Adv. 2022, 12, 22893–22901. [Google Scholar] [CrossRef]
- Hosseini Nasab, N.; Raza, H.; Eom, Y.S.; Hassan, M.; Kloczkowski, A.; Kim, S.J. Design and Synthesis of Thiadiazole-Oxadiazole-Acetamide Derivatives: Elastase Inhibition, Cytotoxicity, Kinetic Mechanism, and Computational Studies. Bioorganic Med. Chem. 2023, 86, 117292. [Google Scholar] [CrossRef]
- Rouzi, K.; Brandán, S.A.; El Houssni, I.; Poyraz, E.B.; El Hassani, I.A.; Dege, N.; Abuelizz, H.A.; Oulmidi, A.; Bouatia, M.; Karrouchi, K. 4-Amino-5-(Pyridin-4-Yl)-4H-1,2,4-Triazole-3-Thiol as Potent Antimicrobial Agent: Synthesis, X-Ray, Antimicrobial Activity and Computational Studies. J. Mol. Struct. 2025, 1320, 139613. [Google Scholar] [CrossRef]
- Li, L.; Ding, H.; Wang, B.; Yu, S.; Zou, Y.; Chai, X.; Wu, Q. Synthesis and Evaluation of Novel Azoles as Potent Antifungal Agents. Bioorganic Med. Chem. Lett. 2014, 24, 192–194. [Google Scholar] [CrossRef]
- Missioui, M.; Jelsch, C.; Mortada, S.; Al-Sulami, A.I.; Basha, M.T.; Allehyani, B.H.; Mague, J.T.; Faouzi, M.E.A.; Ramli, Y. Novel Hybrid Quinoxaline-1,3,4-Oxadiazole: Synthesis, Crystal Structure, Computational and Pharmacological Studies. J. Mol. Struct. 2025, 1343, 142777. [Google Scholar] [CrossRef]
- Yang, L.; Ding, M.; Shi, J.; Luo, N.; Wang, Y.; Lin, D.; Bao, X. Design, Synthesis, X-Ray Crystal Structure, and Antimicrobial Evaluation of Novel Quinazolinone Derivatives Containing the 1,2,4-Triazole Schiff Base Moiety and an Isopropanol Linker. Mol. Divers. 2023, 28, 3215–3224. [Google Scholar] [CrossRef]
- Keskin, E.; Uzgoren-Baran, A. Synthesis and Characterization of Novel 1,2,4-Triazole-3-Thione Schiff Bases Compounds Containing Tetrahydrocarbazole Moiety. J. Mol. Struct. 2025, 1322, 140616. [Google Scholar] [CrossRef]
- Huo, X.; Tang-Yang, J.; Zeng, W.; Jian, X.; Ma, X.; Yue-Yang, P.; Wen-Wei, Y.; Zhao, P. Synthesis and Biological Evaluation of Novel 5-substituted/Unsubstituted Triazolothiadiazines as Tubulin Depolymerizing and Vascular Disrupting Agents with Promising Antitumor Activity. Drug Dev. Res. 2023, 84, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Kumar, R.; Dureja, P.; Khurana, J.M. Synthesis, Antimicrobial Evaluation and QSAR Analysis of Novel Nalidixic Acid Based 1,2,4-Triazole Derivatives. Eur. J. Med. Chem. 2011, 46, 4089–4099. [Google Scholar] [CrossRef]
- Charignon, D.; Späth, P.; Martin, L.; Drouet, C. Icatibant, the Bradykinin B2 Receptor Antagonist with Target to the Interconnected Kinin Systems. Expert Opin. Pharmacother. 2012, 13, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Casavant, B.J.; Khoder, Z.M.; Berhane, I.A.; Chemler, S.R. Copper(II)-Promoted Cyclization/Difunctionalization of Allenols and Allenylsulfonamides: Synthesis of Heterocycle-Functionalized Vinyl Carboxylate Esters. Org. Lett. 2015, 17, 5958–5961. [Google Scholar] [CrossRef]
- Shi, Y.J.; Song, X.J.; Li, X.; Ye, T.H.; Xiong, Y.; Yu, L.T. Synthesis and Biological Evaluation of 1,2,4-Triazole and 1,3,4-Thiadiazole Derivatives as Potential Cytotoxic Agents. Chem. Pharm. Bull. 2013, 61, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, C.; Zhang, N.; Fan, R.; Ye, Y.; Xu, J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2023, 24, 12724. [Google Scholar] [CrossRef] [PubMed]
- Rapetti, F.; Spallarossa, A.; Russo, E.; Caviglia, D.; Villa, C.; Tasso, B.; Signorello, M.G.; Rosano, C.; Iervasi, E.; Ponassi, M.; et al. Investigations of Antioxidant and Anti-Cancer Activities of 5-Aminopyrazole Derivatives. Molecules 2024, 29, 2298. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, A.; Sever, B.; Altıntop, M.D.; Temel, H.E.; Atlı, Ö.; Baysal, M.; Demirci, F. Synthesis and Evaluation of New Oxadiazole, Thiadiazole, and Triazole Derivatives as Potential Anticancer Agents Targeting MMP-9. Molecules 2017, 22, 1109. [Google Scholar] [CrossRef]
- Pascua-Maestro, R.; Corraliza-Gomez, M.; Diez-Hermano, S.; Perez-Segurado, C.; Ganfornina, M.D.; Sanchez, D. The MTT-Formazan Assay: Complementary Technical Approaches and in Vivo Validation in Drosophila Larvae. Acta Histochem. 2018, 120, 179–186. [Google Scholar] [CrossRef]
- Kavaliauskas, P.; Opazo, F.S.; Acevedo, W.; Petraitiene, R.; Grybaitė, B.; Anusevičius, K.; Mickevičius, V.; Belyakov, S.; Petraitis, V. Synthesis, Biological Activity, and Molecular Modelling Studies of Naphthoquinone Derivatives as Promising Anticancer Candidates Targeting COX-2. Pharmaceuticals 2022, 15, 541. [Google Scholar] [CrossRef]
- Babij, N.R.; Mccusker, E.O.; Whiteker, G.T.; Canturk, B.; Choy, N.; Creemer, L.C.; De Amicis, C.V.; Hewlett, N.M.; Johnson, P.L.; Knobelsdorf, J.A.; et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 2016, 20, 661–667. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mickevičius, V.; Anusevičius, K.; Sapijanskaitė-Banevič, B.; Jonuškienė, I.; Kapočius, L.; Grybaitė, B.; Grigalevičiūtė, R.; Kavaliauskas, P. Synthesis and Biological Evaluation of β-Phenylalanine Derivatives Containing Sulphonamide and Azole Moieties as Antiproliferative Candidates in Lung Cancer Models. Molecules 2025, 30, 3303. https://doi.org/10.3390/molecules30153303
Mickevičius V, Anusevičius K, Sapijanskaitė-Banevič B, Jonuškienė I, Kapočius L, Grybaitė B, Grigalevičiūtė R, Kavaliauskas P. Synthesis and Biological Evaluation of β-Phenylalanine Derivatives Containing Sulphonamide and Azole Moieties as Antiproliferative Candidates in Lung Cancer Models. Molecules. 2025; 30(15):3303. https://doi.org/10.3390/molecules30153303
Chicago/Turabian StyleMickevičius, Vytautas, Kazimieras Anusevičius, Birutė Sapijanskaitė-Banevič, Ilona Jonuškienė, Linas Kapočius, Birutė Grybaitė, Ramunė Grigalevičiūtė, and Povilas Kavaliauskas. 2025. "Synthesis and Biological Evaluation of β-Phenylalanine Derivatives Containing Sulphonamide and Azole Moieties as Antiproliferative Candidates in Lung Cancer Models" Molecules 30, no. 15: 3303. https://doi.org/10.3390/molecules30153303
APA StyleMickevičius, V., Anusevičius, K., Sapijanskaitė-Banevič, B., Jonuškienė, I., Kapočius, L., Grybaitė, B., Grigalevičiūtė, R., & Kavaliauskas, P. (2025). Synthesis and Biological Evaluation of β-Phenylalanine Derivatives Containing Sulphonamide and Azole Moieties as Antiproliferative Candidates in Lung Cancer Models. Molecules, 30(15), 3303. https://doi.org/10.3390/molecules30153303