Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,998)

Search Parameters:
Keywords = α-oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2972 KiB  
Article
Flavonoids from Cercidiphyllum japonicum Exhibit Bioactive Potential Against Skin Aging and Inflammation in Human Dermal Fibroblasts
by Minseo Kang, Sanghyun Lee, Dae Sik Jang, Sullim Lee and Daeyoung Kim
Curr. Issues Mol. Biol. 2025, 47(8), 631; https://doi.org/10.3390/cimb47080631 - 7 Aug 2025
Abstract
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a [...] Read more.
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a tumor necrosis factor-alpha (TNF-α)-stimulated normal human dermal fibroblast (NHDF) model. The aerial parts of C. japonicum were extracted and analyzed by high-performance liquid chromatography (HPLC), leading to the identification of four major compounds: maltol, chlorogenic acid, ellagic acid, and quercitrin. Each compound was evaluated for its antioxidant and anti-aging activities in TNF-α-stimulated NHDFs. Among them, ellagic acid exhibited the most potent biological activity and was selected for further mechanistic analysis. Ellagic acid significantly suppressed intracellular reactive oxygen species (ROS) generation and matrix metalloproteinase-1 (MMP-1) secretion (both p < 0.001), while markedly increasing type I procollagen production (p < 0.01). Mechanistic studies demonstrated that ellagic acid inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinases (MAPKs), downregulated cyclooxygenase-2 (COX-2), and upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Additionally, ellagic acid attenuated the mRNA expression of inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8 (IL-8), indicating its broad modulatory effects on oxidative and inflammatory pathways. Collectively, these findings suggest that ellagic acid is a promising plant-derived bioactive compound with strong antioxidant and anti-inflammatory properties, offering potential as a therapeutic agent for the prevention and treatment of skin aging. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 3448 KiB  
Article
Fatty Acid-Rich Fraction of Hibiscus syriacus L. Alleviates Atopic Dermatitis-like Skin Lesions Mouse Model via Inflammatory Pathway Modulation: Integrative Docking and Experimental Validation
by Trang Thi Minh Nguyen, Bom Park, Xiangji Jin, Qiwen Zheng, Gyeong-Seon Yi, Su-Jin Yang and Tae-Hoo Yi
Plants 2025, 14(15), 2447; https://doi.org/10.3390/plants14152447 - 7 Aug 2025
Abstract
Atopic dermatitis (AD) remains a therapeutic challenge due to the limitations of current treatments, creating demand for safer multi-target alternatives to corticosteroids. Our integrated study establishes Hibiscus syriacus L. (H. syriacus) as a mechanistically validated solution through computational and biological validation. [...] Read more.
Atopic dermatitis (AD) remains a therapeutic challenge due to the limitations of current treatments, creating demand for safer multi-target alternatives to corticosteroids. Our integrated study establishes Hibiscus syriacus L. (H. syriacus) as a mechanistically validated solution through computational and biological validation. The fraction’s two main compounds, linoleic acid and palmitic acid, exhibit favorable drug-like properties including high lipophilicity (LogP 5.2) and 87% oral absorption. Molecular docking collectively predicts comprehensive NF-κB pathway blockade. Experimental validation showed that the fraction (100 μg/mL) inhibited LPS-induced nitric oxide (NO) by 78% and TNF-α/IFN-γ-induced reactive oxygen species (ROS) by 40%, while significantly downregulating the chemokines TARC (73%) and MDC (71%). In DNCB-induced AD mice, the treatment (200 mg/kg/day) produced a 62% improvement in clinical severity scores, reduced serum IgE by 27%, decreased transepidermal water loss by 36%, and doubled skin hydration while normalizing pH levels from the alkaline to physiological range. While both treatments reduced DNCB-induced epidermal hyperplasia, H. syriacus (62.9% reduction) restored the normal thickness without pathological thinning, a critical advantage over corticosteroids that cause atrophy. This dual-action therapeutic achieves corticosteroid-level anti-inflammatory effects while restoring skin barrier integrity to normal levels and avoiding corticosteroid-associated atrophy, positioning it as a next-generation AD treatment. Full article
Show Figures

Figure 1

15 pages, 8949 KiB  
Article
Protein Expression of TXNIP in the Dopaminergic Neurons of Subjects with Parkinson’s Disease: Evidence from a Pilot Study
by Francesca A. Schillaci, Giuseppe Lanza, Maria Grazia Salluzzo, Raffaele Ferri and Michele Salemi
Life 2025, 15(8), 1252; https://doi.org/10.3390/life15081252 - 7 Aug 2025
Abstract
Parkinson’s disease (PD) is a progressive, multisystemic α-synucleinopathy, recognized as the second most prevalent neurodegenerative disorder globally. Its neuropathology is characterized by the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta (SNpc), and the intraneuronal accumulation of α-synuclein-forming Lewy bodies. [...] Read more.
Parkinson’s disease (PD) is a progressive, multisystemic α-synucleinopathy, recognized as the second most prevalent neurodegenerative disorder globally. Its neuropathology is characterized by the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta (SNpc), and the intraneuronal accumulation of α-synuclein-forming Lewy bodies. Oxidative stress is a key contributor to PD pathogenesis. Thioredoxin-interacting protein (TXNIP) is a crucial regulator of cellular redox balance, inhibiting the antioxidant function of thioredoxin. This pilot study aimed to investigate the protein expression and localization of TXNIP in the SNpc of PD patients compared to healthy controls. We performed immunohistochemical analyses on 12 post-mortem human brain sections (formalin-fixed, paraffin-embedded) from six subjects with PD and six healthy controls. The study was performed on PD subjects with Braak stage 6. Our findings revealed that in control samples, TXNIP protein was distinctly and closely associated with neuromelanin (NM) pigment within the cytoplasm of SNpc dopaminergic neurons. Conversely, in PD samples, there was a markedly weak cytoplasmic expression of TXNIP, and critically, this association with NM pigment was absent. Furthermore, PD samples exhibited a significant reduction in both dopaminergic neurons and NM content, consistent with advanced disease. These findings, which mirror previous transcriptomic data showing TXNIP gene under-expression in the same subjects, suggest that altered TXNIP expression and localization in SNpc dopaminergic neurons are features of late-stage PD, potentially reflecting neuronal dysfunction and loss. Full article
(This article belongs to the Special Issue Regulation of Cellular Signaling Pathways in the Metabolic Syndrome)
Show Figures

Figure 1

17 pages, 4825 KiB  
Article
Tea Polyphenols Mitigate TBBPA-Induced Renal Injury Through Modulation of ROS-PI3K/AKT-NF-κB Signalling in Carp (Cyprinus carpio)
by Fuxin Han, Ran Xu, Hongru Wang, Xuejiao Gao and Mengyao Guo
Animals 2025, 15(15), 2307; https://doi.org/10.3390/ani15152307 - 6 Aug 2025
Abstract
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and [...] Read more.
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and serves as a target organ for toxic substances. This study evaluated the therapeutic potential of TPs in mitigating TBBPA-induced nephrotoxicity in common carp. Common carp were exposed to 0.5 mg/L TBBPA in water and/or fed a diet supplemented with 1 g/kg TPs for 14 days. In vitro, primary renal cells were treated with 60 μM TBBPA and/or 2.5 μg/L TPs for 24 h. Methods included histopathology, TUNEL assay for apoptosis, ROS detection, and molecular analyses. Antioxidant enzymes (SOD, CAT) and inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using ELISA kits. Results showed that TBBPA induced oxidative stress, and activated the ROS-PI3K/AKT-NF-κB pathway, thereby resulting in inflammatory responses. TBBPA upregulated apoptosis-related genes (Caspase-3, Bax, and Bcl-2) and induced apoptosis. TBBPA upregulated the expression of RIPK3/MLKL, thereby exacerbating necroptosis. TPs intervention significantly mitigated these effects by reducing ROS, suppressing NF-κB activation, and restoring antioxidant enzyme activities (SOD, CAT). Moreover, TPs attenuated apoptosis and necrosis in the carp kidney, thereby enhancing the survival ability and immunity of common carp. Full article
Show Figures

Graphical abstract

12 pages, 441 KiB  
Article
Cytokine Regulation and Oxidative Stress in Helicobacter Pylori-Associated Gastric Adenocarcinoma at Different Stages: Insights from a Cross-Sectional Study
by Olga Smirnova, Aleksander Sinyakov and Eduard Kasparov
Int. J. Mol. Sci. 2025, 26(15), 7609; https://doi.org/10.3390/ijms26157609 - 6 Aug 2025
Abstract
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was [...] Read more.
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was to investigate the differences in the content of cytokines and oxidative stress markers in patients with gastric adenocarcinoma associated with H. pylori infection depending on the stage. The study included 281 patients with gastric cancer. At stage I of the disease—75 people, stage II—70 people, stage III—69 people, and stage IV of the disease—67 people. The levels of TNF-α, IL-2, IL-8, IFNγ, TNF-β, IL-17A, IL-6, IL-10, and IL-4 in the blood serum of patients and healthy individuals were determined by enzyme immunoassay and plasma oxidative stress scores (MDA, SOD, CAT, GST, GPO, CP). The present study revealed that H. pylori-infected gastric adenocarcinoma at different stages is associated with different plasma levels of cytokines, lipid peroxidation products, and antioxidant defense factors. Further studies are needed to evaluate the effectiveness of therapeutic strategies combining cytokine regulation and oxidative stress to improve clinical outcomes in gastric cancer. Full article
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

19 pages, 8344 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1 mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

23 pages, 5217 KiB  
Article
High-Performance Pd-Pt/α-MnO2 Catalysts for the Oxidation of Toluene
by Ning Dong, Wenjin Wang, Xuelong Zheng, Huan Liu, Jingjing Zhang, Qing Ye and Hongxing Dai
Catalysts 2025, 15(8), 746; https://doi.org/10.3390/catal15080746 - 5 Aug 2025
Abstract
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, [...] Read more.
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, 0.46, 0.89, and 0 wt%) catalysts were prepared using the polyvinyl alcohol-protected NaBH4 reduction method. The physicochemical properties of the catalysts were determined by means of various techniques and their catalytic activities for toluene oxidation were evaluated. It was found that among the xPd-yPt/α-MnO2 samples, 0.93Pd-0.89Pt/α-MnO2 showed the best catalytic performance, with the toluene oxidation rate at 156 °C (rcat) and space velocity = 60,000 mL/(g h) being 6.34 × 10−4 mol/(g s), much higher than that of 0.91Pt/α-MnO2 (1.31 × 10−4 mol/(g s)) and that of 0.92Pd/α-MnO2 (6.13 × 10−5 mol/(g s)) at the same temperature. The supported Pd-Pt bimetallic catalysts possessed higher Mn3+/Mn4+ and Oads/Olatt molar ratios, which favored the enhancement in catalytic activity of the supported Pd-Pt bimetallic catalysts. Furthermore, the 0.47Pd-0.46Pt/α-MnO2 sample showed better resistance to sulfur dioxide poisoning. The partial deactivation of 0.47Pd-0.46Pt/α-MnO2 was attributed to the formation of sulfate species on the sample surface, which covered the active site of the sample, thus decreasing its toluene oxidation activity. In addition, the in situ DRIFTS results demonstrated that benzaldehyde and benzoate were the intermediate products of toluene oxidation. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

23 pages, 2316 KiB  
Article
Effect of Callistemon citrinus Phytosomes on Oxidative Stress in the Brains of Rats Fed a High-Fat–Fructose Diet
by Oliver Rafid Magaña-Rodríguez, Luis Gerardo Ortega-Pérez, Aram Josué García-Calderón, Luis Alberto Ayala-Ruiz, Jonathan Saúl Piñón-Simental, Asdrubal Aguilera-Méndez, Daniel Godínez-Hernández and Patricia Rios-Chavez
Biomolecules 2025, 15(8), 1129; https://doi.org/10.3390/biom15081129 - 5 Aug 2025
Viewed by 22
Abstract
Callistemon citrinus has shown antioxidant and anti-inflammatory properties in certain tissues. However, its impact on the brain remains unproven. This study investigates the effect of C. citrinus extract and phytosomes on the oxidative status of the brains of rats fed a high-fat–fructose diet [...] Read more.
Callistemon citrinus has shown antioxidant and anti-inflammatory properties in certain tissues. However, its impact on the brain remains unproven. This study investigates the effect of C. citrinus extract and phytosomes on the oxidative status of the brains of rats fed a high-fat–fructose diet (HFD). Fifty-four male Wistar rats were randomly divided into nine groups (n = 6). Groups 1, 2, and 3 received a standard chow diet; Group 2 also received the vehicle, and Group 3 was supplemented with C. citrinus extract (200 mg/kg). Groups 4, 5, 6, 7, 8, and 9 received a high-fat diet (HFD). Additionally, groups 5, 6, 7, 8, and 9 were supplemented with orlistat at 5 mg/kg, C. citrinus extract at 200 mg/kg, and phytosomes loaded with C. citrinus at doses of 50, 100, and 200 mg/kg, respectively. Administration was oral for 16 weeks. Antioxidant enzymes, biomarkers of oxidative stress, and fatty acid content in the brain were determined. A parallel artificial membrane permeability assay (PAMPA) was employed to identify compounds that can cross the intestinal and blood–brain barriers. The HFD group (group 4) increased body weight and adipose tissue, unlike the other groups. The brain fatty acid profile showed slight variations in all of the groups. On the other hand, group 4 showed a decrease in the activities of antioxidant enzymes SOD, CAT, and PON. It reduced GSH level, while increasing GPx activity as well as MDA, 4-HNE, and AOPP levels. C. citrinus extract and phytosomes restore the antioxidant enzyme activities and mitigate oxidative stress in the brain. C. citrinus modulates oxidative stress in brain tissue through 1.8-cineole and α-terpineol, which possess antioxidant and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Natural Bioactives as Leading Molecules for Drug Development)
Show Figures

Figure 1

23 pages, 1757 KiB  
Article
Antifungal and Immunomodulatory Activities of Brazilian Savannah Solanum lypocarpum Tree-Associated Streptomyces Isolates
by Camila Bontempo Nunes, Kunal Ranjan, Fernando Pacheco Rodrigues, Marjorie de Carvalho Vieira Queiroz, Clara Luna Freitas Marina, Luis Alexandre Muehlmann, Anamélia Lorenzetti Bocca and Marcio José Poças-Fonseca
Pharmaceuticals 2025, 18(8), 1158; https://doi.org/10.3390/ph18081158 - 5 Aug 2025
Viewed by 152
Abstract
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for [...] Read more.
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for hydrolytic enzyme-producing microbes. Solanum lycocarpum (lobeira) is a tree widely employed in regional gastronomy and pharmacopeia in Central Brazil. Methods: In this work, 60 actinobacteria isolates were purified from the rhizosphere of S. lycocarpum. Eight Streptomyces spp. isolates were selected for in vitro antifungal activity against Cryptococcus neoformans H99, the C. neoformans 89-610 fluconazole-tolerant strain, C. gattii NIH198, Candida albicans, C. glabrata, and C. parapsilosis. The ability of the aqueous extracts of the isolates to induce the in vitro secretion of tumor necrosis factor (TNF-α), nitric oxide (NO), interleukin-6 (IL-6), and IL-10 by murine macrophages was also evaluated. Results: All extracts showed antifungal activity against at least two yeast species. Streptomyces spp. LAP11, LDB2, and LDB17 inhibited C. neoformans growth by 40–93%. Most extracts (except LAP2) also inhibited C. gattii. None inhibited C. albicans, but all inhibited C. glabrata (40–90%). Streptomyces sp. LAP8 extract increased nitric oxide production by approximately 347-fold in murine macrophages, while LDB11 extract suppressed LPS-induced TNF-α production by 70% and simultaneously increased IL-10 secretion, suggesting immunosuppressive potential. Conclusions: The results revealed that Cerrado actinobacteria-derived aqueous extracts are potential sources of antifungal and immunomodulatory biocompounds. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Viewed by 106
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Viewed by 127
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

16 pages, 1287 KiB  
Review
Oxidative Stress in the Regulation of Autosis-Related Proteins
by María Guerra-Andrés, Inés Martínez-Rojo, Alejandra Piedra-Macías, Elena Lavado-Fernández, Marina García-Macia and Álvaro F. Fernández
Antioxidants 2025, 14(8), 958; https://doi.org/10.3390/antiox14080958 - 4 Aug 2025
Viewed by 188
Abstract
Physiological levels of reactive oxygen species (ROS) play a crucial role as intracellular signaling molecules, helping to maintain cellular homeostasis. However, when ROS accumulate excessively, they become toxic to cells, leading to damage to lipids, proteins, and DNA. This oxidative stress can impair [...] Read more.
Physiological levels of reactive oxygen species (ROS) play a crucial role as intracellular signaling molecules, helping to maintain cellular homeostasis. However, when ROS accumulate excessively, they become toxic to cells, leading to damage to lipids, proteins, and DNA. This oxidative stress can impair cellular function and lead to various forms of cell death, including apoptosis, necroptosis, ferroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis. Despite their significance, the role of ROS in autosis (an autophagy-dependent form of cell death) remains largely unexplored. In this review, we gather current knowledge on autotic cell death and summarize how oxidative stress influences the activity of Beclin-1 and the Na+,K+-ATPase pump, both of which are critical effectors of this pathway. Finally, we discuss the theoretical potential for ROS to modulate this type of cell death, proposing a possible dual role for these species in autosis regulation through effectors such as HIF-1α, TFEB, or the FOXO family, and highlighting the need to experimentally address cellular redox status when working on autotic cell death. Full article
(This article belongs to the Special Issue Crosstalk between Autophagy and Oxidative Stress)
Show Figures

Figure 1

13 pages, 745 KiB  
Review
Salivary Biomarkers for Early Detection of Autism Spectrum Disorder: A Scoping Review
by Margherita Tumedei, Niccolò Cenzato, Sourav Panda, Funda Goker and Massimo Del Fabbro
Oral 2025, 5(3), 56; https://doi.org/10.3390/oral5030056 - 4 Aug 2025
Viewed by 94
Abstract
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and [...] Read more.
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and methods: A search was conducted on the electronic databases PUBMED/Medline, Google Scholar and Scopus for the retrieval of articles concerning the study topic. Results: A total of 22 studies have been included in the present review considering 21 articles identified from databases and 1 article included using a manual search. A wide range of biomarkers have been proposed for early detection of ASD diseases including nonspecific inflammation markers like interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNFα), oxidative stress markers like superoxide dismutase and glutathione peroxidase, hormones such as cortisol and oxytocin, various microRNAs including miR-21, miR-132 and miR-137, and exosomes. The techniques used for biomarke detection may vary according to molecule type and concentration. Conclusions: salivary biomarkers could represent a potential useful tool for the primary detection of several systemic diseases including ASD, taking advantage of non-invasiveness and cost-effective capability compared to other biofluid-based diagnostic techniques. Full article
Show Figures

Figure 1

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 184
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

Back to TopTop