Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,514)

Search Parameters:
Journal = Sustainability
Section = Sustainability in Geographic Science

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12866 KiB  
Article
Integrating Spatial Autocorrelation and Greenest Images for Dynamic Analysis Urban Heat Islands Based on Google Earth Engine
by Dandan Yan, Yuqing Zhang, Peng Song, Xiaofang Zhang, Yu Wang, Wenyan Zhu and Qinghui Du
Sustainability 2025, 17(15), 7155; https://doi.org/10.3390/su17157155 (registering DOI) - 7 Aug 2025
Abstract
With rapid global urbanization development, impermeable surface increase, urban population growth, building area expansion, and rising energy consumption, the urban heat island (UHI) effect is becoming increasingly serious. However, the spatial distribution of the UHI cannot be accurately extracted. Therefore, we focused on [...] Read more.
With rapid global urbanization development, impermeable surface increase, urban population growth, building area expansion, and rising energy consumption, the urban heat island (UHI) effect is becoming increasingly serious. However, the spatial distribution of the UHI cannot be accurately extracted. Therefore, we focused on Luoyang City as the research area and combined the Getis-Ord-Gi* statistic and the greenest image to extract the UHI based on the Google Earth Engine using land surface temperature–spatial autocorrelation characteristics and seasonal changes in vegetation. As bare land considerably influenced the UHI extraction results, we combined the greenest image with the initial extraction results and applied the maximum normalized difference vegetation index threshold method to remove this effect on UHI distribution extraction, thereby achieving improved UHI extraction accuracy. Our results showed that the UHI of Luoyang continuously expanded outward, increasing from 361.69 km2 in 2000 to 912.58 km2 in 2023, with a continuous expansion rate of 22.95 km2/year. Furthermore, the urban area had a higher UHI area growth rate than the county area. Analysis indicates that the UHI effect in Luoyang has increased in parallel with the expansion of the building area. Intensive urban construction is a primary driver of this growth, directly exacerbating the UHI effect. Additionally, rising temperatures, population growth, and gross domestic product accumulation have collectively contributed to the ongoing expansion of this phenomenon. This study provides scientific guidance for future urban planning through the accurate extraction of the UHI effect, which promotes the development of sustainable human settlements. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

41 pages, 4303 KiB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

20 pages, 3618 KiB  
Article
Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador
by Marlon Ponce-Zambrano, Julio Garzón-Roca, Francisco J. Torrijo and Olegario Alonso-Pandavenes
Sustainability 2025, 17(15), 7080; https://doi.org/10.3390/su17157080 - 5 Aug 2025
Viewed by 64
Abstract
This paper presents a geomechanical characterization for unwelded volcanic bimrock materials. Bimrocks are geological materials consisting of blocks of rock of different sizes embedded in a finer matrix. Many volcanic deposits and outcrops can be classified as bimrocks, and some of them correspond [...] Read more.
This paper presents a geomechanical characterization for unwelded volcanic bimrock materials. Bimrocks are geological materials consisting of blocks of rock of different sizes embedded in a finer matrix. Many volcanic deposits and outcrops can be classified as bimrocks, and some of them correspond to unwelded bimrocks, i.e., with the absence of strong bonds between blocks of rock and matrix. The geomechanical characterization proposed is oriented towards bimrocks slopes, their stability and landslide hazard occurrence. It consists of five steps which includes the material description, the volcanic deposit classification, the definition of block size range, the computation of the volumetric block percentage, the geotechnical characterization of the blocks of rock, and the geological and geotechnical analysis of the matrix that surrounds the blocks. The geomechanical characterization proposed is applied to four slopes at the Western Cordillera of Ecuador, where slopes instabilities are common. Results show that the geomechanical characterization sets a reliable framework for geotechnically describing bimrocks materials, explaining the actual stability state of the slopes. It also enables taking appropriate and optimum decisions in the design and management of volcanic slopes, thus contributing to a sustainable approach of landslide mitigation. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

17 pages, 11770 KiB  
Article
Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy and Naji Rikan
Sustainability 2025, 17(15), 6914; https://doi.org/10.3390/su17156914 - 30 Jul 2025
Viewed by 254
Abstract
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using [...] Read more.
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using high-resolution remote sensing data and expert-assigned weights. The output susceptibility map categorized the region into three zones: low (93.5 million m2), moderate (271.2 million m2), and high risk (33.1 million m2). Approximately 29% of the road corridor lies within the low-risk zone, 48% in the moderate zone, and 23% in the high-risk zone. Ten critical sites with potential landslide activity were detected along the road, correlating well with the high-risk zones on the map. Structural weaknesses in the area, such as faults, joints, foliation planes, and shear zones in both igneous and metamorphic rock units, were key contributors to slope instability. The findings offer practical guidance for infrastructure planning and geohazard mitigation in arid, mountainous environments and demonstrate the applicability of WOA in data-scarce regions. Full article
(This article belongs to the Special Issue Sustainable Assessment and Risk Analysis on Landslide Hazards)
Show Figures

Figure 1

31 pages, 28883 KiB  
Article
Exploring Precipitable Water Vapor (PWV) Variability and Subregional Declines in Eastern China
by Taixin Zhang, Jiayu Xiong, Shunqiang Hu, Wenjie Zhao, Min Huang, Li Zhang and Yu Xia
Sustainability 2025, 17(15), 6699; https://doi.org/10.3390/su17156699 - 23 Jul 2025
Viewed by 327
Abstract
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite [...] Read more.
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite System (GNSS) observations in typical cities in eastern China and proposes a comprehensive multiscale frequency-domain analysis framework that integrates the Fourier transform, Bayesian spectral estimation, and wavelet decomposition to extract the dominant PWV periodicities. Time-series analysis reveals an overall increasing trend in PWV across most regions, with notably declining trends in Beijing, Wuhan, and southern Taiwan, primarily attributed to groundwater depletion, rapid urban expansion, and ENSO-related anomalies, respectively. Frequency-domain results indicate distinct latitudinal and coastal–inland differences in the PWV periodicities. Inland stations (Beijing, Changchun, and Wuhan) display annual signals alongside weaker semi-annual components, while coastal stations (Shanghai, Kinmen County, Hong Kong, and Taiwan) mainly exhibit annual cycles. High-latitude stations show stronger seasonal and monthly fluctuations, mid-latitude stations present moderate-scale changes, and low-latitude regions display more diverse medium- and short-term fluctuations. In the short-term frequency domain, GNSS stations in most regions demonstrate significant PWV periodic variations over 0.5 days, 1 day, or both timescales, except for Changchun, where weak diurnal patterns are attributed to local topography and reduced solar radiation. Furthermore, ERA5-derived vertical temperature profiles are incorporated to reveal the thermodynamic mechanisms driving these variations, underscoring region-specific controls on surface evaporation and atmospheric moisture capacity. These findings offer novel insights into how human-induced environmental changes modulate the behavior of atmospheric water vapor. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

37 pages, 12718 KiB  
Article
Empirical Investigation of the Motivation and Perceptions of Tourists Visiting Spa Resorts in the Vâlcea Subcarpathians, Romania
by Amalia Niță and Ionuț-Adrian Drăguleasa
Sustainability 2025, 17(14), 6590; https://doi.org/10.3390/su17146590 - 18 Jul 2025
Viewed by 486
Abstract
The Vâlcea Subcarpathians, known for their wealth of natural resources and their spa tradition, are distinguished by renowned spa resorts such as Băile Olănești, Călimănești, Ocnele Mari and Băile Govora. These destinations provide tourists with a variety of treatment, relaxation, and recreational options. [...] Read more.
The Vâlcea Subcarpathians, known for their wealth of natural resources and their spa tradition, are distinguished by renowned spa resorts such as Băile Olănești, Călimănești, Ocnele Mari and Băile Govora. These destinations provide tourists with a variety of treatment, relaxation, and recreational options. This research aims to explore the factors influencing tourist behavior at spa resorts in the Vâlcea Subcarpathians, Romania. Specifically, the relationships between tourists’ residential environment and frequency of visits, the influence of participation in cultural activities on the average duration of trips, and the impact of information sources and vacation planning methods on why tourists choose to visit spa resorts in the Vâlcea Subcarpathians, Romania, will be examined. As part of this study, a questionnaire was developed to collect relevant data on the perceptions and behaviors of visitors to spa resorts in the Vâlcea Subcarpathians, Romania. To analyze the collected data and test the research hypotheses, the following statistical methods were used: Chi-Square Test, Independent Samples t-Test and Analysis of Variance (ANOVA). The results obtained from the statistical tests largely confirmed the proposed hypotheses. There is a significant relationship between the age range of tourists and the frequency of visits, suggesting that different age groups have distinct visiting behaviors. Also, the perception of service quality varies by the gender of tourists, indicating that men and women have different experiences and expectations. Full article
Show Figures

Figure 1

19 pages, 6796 KiB  
Article
Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management
by Dai Chen, Zhounan Dong and Jingnan Chen
Sustainability 2025, 17(14), 6482; https://doi.org/10.3390/su17146482 - 15 Jul 2025
Viewed by 239
Abstract
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic [...] Read more.
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China. Full article
Show Figures

Figure 1

21 pages, 3497 KiB  
Review
Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport
by Prodeo Yao Agbotui, Farnam Firouzbehi and Giacomo Medici
Sustainability 2025, 17(14), 6469; https://doi.org/10.3390/su17146469 - 15 Jul 2025
Viewed by 335
Abstract
Assessment of contaminant dispersal in sandstones requires hydraulic characterization with a combination of datasets that span from the core plugs to wellbores and up to the field scale as the matrix and fractures are both hydraulically conductive. Characterizing the hydraulic properties of the [...] Read more.
Assessment of contaminant dispersal in sandstones requires hydraulic characterization with a combination of datasets that span from the core plugs to wellbores and up to the field scale as the matrix and fractures are both hydraulically conductive. Characterizing the hydraulic properties of the matrix is fundamental because contaminants diffuse into the fractured porous blocks. Fractures are highly conductive, and the determination of the number of hydraulically active rock discontinuities makes discrete fracture network models of solute transport reliable. Recent advances (e.g., active line source temperature logs) in hydro-geophysics have allowed the detection of 40% of hydraulically active fractures in a lithified sandstone. Tracer testing has revealed high (~10−4–10−2 ms−1) flow velocities and low (~10−2–10−4) effective porosities. Contaminants can therefore move rapidly in the subsurface. The petrophysical characterization of the plugs extracted from the cores, in combination with borehole hydro-geophysics, allows the characterization of either matrix or fracture porosity, but the volume of sandstone characterized is low. Tracer tests cannot quantify matrix or fracture porosity, but the observation scale is larger and covers the minimum representative volume. Hence, the combination of petrophysics, borehole hydro-geophysics, and tracer testing is encouraged for the sustainable management of solute transport in dual porosity sandstones. Full article
Show Figures

Figure 1

20 pages, 12984 KiB  
Article
Spatial and Temporal Characterization of the Development and Pollution Emissions of Key Heavy Metal-Related Industries in Typical Regions of China: A Case Study of Hunan Province
by Liying Yang, Xia Li, Jianan Luo, Xuechun Ma, Xiaoyan Zhang, Jiamin Zhao, Zhicheng Shen and Jingwen Xu
Sustainability 2025, 17(14), 6275; https://doi.org/10.3390/su17146275 - 9 Jul 2025
Viewed by 357
Abstract
At present, there is a lack of in-depth knowledge of the effects of heavy metal-related industries (HMIs) in China on the environment. Hunan Province, as a representative gathering place of HMIs, is among the regions in China that are the most severely polluted [...] Read more.
At present, there is a lack of in-depth knowledge of the effects of heavy metal-related industries (HMIs) in China on the environment. Hunan Province, as a representative gathering place of HMIs, is among the regions in China that are the most severely polluted with heavy metals. This paper selected Hunan Province as the study area to analyze the development trend, characteristics of pollution emissions, and environmental impacts of seven HMIs based on emission permit information data from Hunan Province. The results of this study show that (1) from 2000 to 2022, the number of heavy metal-related enterprises in Hunan Province increased overall. Among the seven industries, the chemical product manufacturing industry (CPMI) had the largest number of enterprises, whereas the nonferrous metal smelting and rolling industry (NSRI) had the highest gross industrial product (27.6%). (2) HMIs in Hunan Province had significant emissions of cadmium (Cd), arsenic (As), and hydargyrum (Hg) from exhaust gas and wastewater. Heavy metal-related exhaust gas and wastewater outlets from the NSRI constituted 43.9% and 35.3%, respectively, of all outlets of the corresponding type. The proportions of exhaust gas outlets involving Cd, Hg, and As from the NSRI to total exhaust gas outlets were 44.27%, 60.54%, and 34.23%, respectively. The proportions of wastewater outlets involving Cd, Hg, and As from the NSRI to total wastewater outlets were 61.13%, 57.89%, and 75.30%, respectively. (3) The average distances of heavy metal-related enterprises from arable land, rivers, and flooded areas in Hunan Province were 256 m, 1763 m, and 3352 m, respectively. Counties with high environmental risk (H-L type) were situated mainly in eastern Hunan. Among them, Chenzhou had the most heavy metal-related wastewater outlets (22.7%), and Hengyang had the most heavy metal-related exhaust gas outlets (23.1%). The results provide a scientific basis for the prevention and control of heavy metal pollution and an enhancement in environmental sustainability in typical Chinese areas where HMIs are concentrated. Full article
Show Figures

Figure 1

28 pages, 13059 KiB  
Article
Transformation of Arable Lands in Russia over Last Half Century—Analysis Based on Detailed Mapping and Retrospective Monitoring of Soil–Land Cover and Decipherment of Big Remote Sensing Data
by Dmitry I. Rukhovich, Polina V. Koroleva, Dmitry A. Shapovalov, Mikhail A. Komissarov and Tung Gia Pham
Sustainability 2025, 17(13), 6203; https://doi.org/10.3390/su17136203 - 7 Jul 2025
Viewed by 546
Abstract
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in [...] Read more.
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in sown areas by 38% (from 119.7 to 74.7 million ha) and a synchronous drop in gross harvests of grain and leguminous crops by 48% (from 117 to 61 million tons). The situation stabilized in 2020, with a sowing area of 80.2 million ha and gross harvests of grain and leguminous crops of 120–150 million tons. This process was not formalized legally, and the official (legal) area of arable land decreased by only 8% from 132.8 to 122.3 million ha. Legal conflict arose for 35 million ha for unused arable land, for which there was no classification of its condition categories and no monitoring of the withdrawal time of the arable land from actual agricultural use. The aim of this study was to resolve the challenges in the method of retrospective monitoring of soil–land cover, which allowed for the achievement of the aims of the investigation—to elucidate the history of land use on arable lands from 1985 to 2025 with a time step of 5 years and to obtain a detailed classification of the arable lands’ abandonment degrees. It was also established that on most of the abandoned arable land, carbon sequestration occurs in the form of secondary forests. In the course of this work, it was shown that the reasons for the formation of an array of abandoned arable land and the stabilization of agricultural production turned out to be interrelated. The abandonment of arable land occurred proportionally to changes in the soil’s natural fertility and the degree of land degradation. Economically unprofitable lands spontaneously (without centralized planning) left the sowing zone. The efficiency of land use on the remaining lands has increased and has allowed for the mass application of modern farming systems (smart, precise, landscape-adaptive, differentiated, no-till, strip-till, etc.), which has further increased the profitability of crop production. The prospect of using abandoned lands as a carbon sequestration zone in areas of forest overgrowth has arisen. Full article
Show Figures

Figure 1

27 pages, 6583 KiB  
Article
Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China
by Nana Zhang, Kun Zeng, Xingsheng Xia and Gang Jiang
Sustainability 2025, 17(13), 6134; https://doi.org/10.3390/su17136134 - 4 Jul 2025
Viewed by 321
Abstract
The evolutionary patterns and influencing factors of the coupling coordination among multiple functions of cultivated land serve as an important basis for emphasizing the value of cultivated land utilization and promoting coordinated regional development. The entropy weight TOPSIS model, coupling coordination degree (CCD) [...] Read more.
The evolutionary patterns and influencing factors of the coupling coordination among multiple functions of cultivated land serve as an important basis for emphasizing the value of cultivated land utilization and promoting coordinated regional development. The entropy weight TOPSIS model, coupling coordination degree (CCD) model, spatial autocorrelation analysis, and Geodetector were employed in this study along with panel data from 125 cities in the Yangtze River Economic Belt (YREB) for 2010, 2015, 2020, and 2022. Three key aspects in the region were investigated: the spatiotemporal evolution of cultivated land functions, characteristics of coupling coordination, and their underlying influencing factors. The results show the following: (1) The functions of cultivated land for food production, social support, and ecological maintenance are within the ranges of [0.023, 0.460], [0.071, 0.451], and [0.134, 0.836], respectively. The grain production function (GPF) shows a continuous increase, the social carrying function (SCF) first decreases and then increases, and the ecological maintenance function (EMF) first increases and then decreases. Spatially, these functions exhibit non-equilibrium characteristics: the grain production function is higher in the central and eastern regions and lower in the western region; the social support function is higher in the eastern and western regions and lower in the central region; and the ecological maintenance function is higher in the central and eastern regions and lower in the western region. (2) The coupling coordination degree of multiple functions of cultivated land is within the range of [0.158, 0.907], forming a spatial pattern where the eastern region takes the lead, the central region is rising, and the western region is catching up. (3) Moran’s I index increased from 0.376 in 2010 to 0.437 in 2022, indicating that the spatial agglomeration of the cultivated land multifunctionality coupling coordination degree has been continuously strengthening over time. (4) The spatial evolution of the coupling coordination of cultivated land multifunctionality is mainly influenced by the average elevation and average slope. However, the explanatory power of socioeconomic factors is continuously increasing. Interaction detection reveals characteristics of nonlinear enhancement or double-factor enhancement. The research results enrich the study of cultivated land multifunctionality and provide a decision-making basis for implementing the differentiated management of cultivated land resources and promoting mutual enhancement among different functions of cultivated land. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

30 pages, 18280 KiB  
Article
The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model
by Hu Chen, Yi Sun, Diwei Tang, Jian Song, Yi Tu and Qi Zhang
Sustainability 2025, 17(13), 6067; https://doi.org/10.3390/su17136067 - 2 Jul 2025
Viewed by 416
Abstract
The middle reaches of the Yangtze River are important bases for high-tech, advanced manufacturing, and modern service industries in China, as well as a demonstration area for the coordination of economic and ecological construction, which plays an important role in the ecosystem carbon [...] Read more.
The middle reaches of the Yangtze River are important bases for high-tech, advanced manufacturing, and modern service industries in China, as well as a demonstration area for the coordination of economic and ecological construction, which plays an important role in the ecosystem carbon cycle. With the steady progress of social and economic development and urbanization, the supply capacity of ecosystem services has sharply decreased, and the carbon cycle mechanism has changed, further reducing the sustainability of regional ecosystem services. In this study, carbon storage in the middle reaches of the Yangtze River was estimated from 2000 to 2020 based on the InVEST model, and the temporal and spatial evolution characteristics of carbon storage in the middle reaches of the Yangtze River were summarized using the coefficient of variation and spatial autocorrelation. The coupled InVEST-PLUS model was used to simulate the carbon storage characteristics of the middle reaches of the Yangtze River under natural development, ecological protection, cultivated land protection, and urban development scenarios in 2035. The results show the following: (1) The main land-use types in the middle reaches of the Yangtze River are cultivated and forest land, and the land-use types in the study area show the characteristics of “two increases and four decreases” in the past 20 years. (2) The carbon storage level in the middle reaches of the Yangtze River has decreased by 83.65 × 106 t in the past 20 years (approximately 1.16%). The coefficient of variation showed that the carbon storage level in the middle reaches of the Yangtze River was high, with the fluctuating area accounting for 8.79% of the total area. The results of local spatial autocorrelation show that the high-value areas of carbon storage are mainly distributed in the west and southeast of the study area, and the low-value areas are mainly distributed in the middle of the study area, exhibiting characteristics of “high values surrounding low values” in space. (3) The simulation results of carbon storage in the middle reaches of the Yangtze River in 2035 showed that the ecological protection scenario was better than the other scenarios in terms of the mean level, functional performance, and patch presentation. Full article
Show Figures

Figure 1

19 pages, 3344 KiB  
Article
Terrestrial LiDAR Technology to Evaluate the Vertical Structure of Stands of Bertholletia excelsa Bonpl., a Species Symbol of Conservation Through Sustainable Use in the Brazilian Amazon
by Felipe Felix Costa, Raimundo Cosme de Oliveira Júnior, Danilo Roberti Alves de Almeida, Diogo Martins Rosa, Kátia Emídio da Silva, Hélio Tonini, Troy Patrick Beldini, Darlisson Bentes dos Santos and Marcelino Carneiro Guedes
Sustainability 2025, 17(13), 6049; https://doi.org/10.3390/su17136049 - 2 Jul 2025
Viewed by 306
Abstract
The Amazon rainforest hosts a diverse array of forest types, including those where Brazil nut (Bertholletia excelsa) occurs, which plays a crucial ecological and economic role. The Brazil nut is the second most important non-timber forest product in the Amazon, a [...] Read more.
The Amazon rainforest hosts a diverse array of forest types, including those where Brazil nut (Bertholletia excelsa) occurs, which plays a crucial ecological and economic role. The Brazil nut is the second most important non-timber forest product in the Amazon, a symbol of development and sustainable use in the region, promoting the conservation of the standing forest. Understanding the vertical structure of these forests is essential to assess their ecological complexity and inform sustainable management strategies. We used terrestrial laser scanning (TLS) to assess the vertical structure of Amazonian forests with the occurrence of Brazil nut (Bertholletia excelsa) at regional (Amazonas, Mato Grosso, Pará, and Amapá) and local scales (forest typologies in Amapá). TLS allowed high-resolution three-dimensional characterization of canopy layers, enabling the extraction of structural metrics such as canopy height, rugosity, and leaf area index (LAI). These metrics were analyzed to quantify the forest vertical complexity and compare structural variability across spatial scales. These findings demonstrate the utility of TLS as a precise tool for quantifying forest structure and highlight the importance of integrating structural data in conservation planning and forest monitoring initiatives involving B. excelsa. Full article
Show Figures

Figure 1

29 pages, 5148 KiB  
Article
Assessing Rural Development Vulnerability Index: A Spatio-Temporal Analysis of Post-Poverty Alleviation Areas in Hunan, China
by Guangyu Li, Shaoyao He, Wei Ma, Zhenrong Huang, Yiyan Peng and Guosheng Ding
Sustainability 2025, 17(13), 6033; https://doi.org/10.3390/su17136033 - 1 Jul 2025
Viewed by 536
Abstract
Rural post-poverty alleviation areas are not on a solid developmental footing and therefore remain at risk of returning to poverty in the midst of rapid urbanization. Vulnerability assessment of socio-ecological systems is critical for identifying risks and enhancing resilience in rural areas transitioning [...] Read more.
Rural post-poverty alleviation areas are not on a solid developmental footing and therefore remain at risk of returning to poverty in the midst of rapid urbanization. Vulnerability assessment of socio-ecological systems is critical for identifying risks and enhancing resilience in rural areas transitioning out of poverty. Based on research data from 2012, 2017, and 2022 in the post-poverty alleviation areas of Hunan Province, this research establishes a Vulnerability-Scoping-Diagram (VSD) assessment framework for rural development vulnerability and Spatially-Explicit-Resilience-Vulnerability (SERV) analysis model from a socio-ecological system perspective. It comprehensively analyzes the spatial and temporal variations of the Rural Development Vulnerability Index (RDVI) in the study area. Geodetector is used to explore the main factors influencing the spatial and temporal variability of RDVI, and vulnerability type zones are classified by combining the dominant elements method. The findings indicate that: (1) The rural development vulnerability index of post-poverty alleviation areas in Hunan Province has obvious characteristics of spatial and temporal differentiation. The RDVI in western Hunan and southern Hunan is always high, while the RDVI in ChangZhuTan and Dongting Lake regions decreases year by year. (2) The RDVI of post-poverty alleviation areas in Hunan Province is determined by the three dimensions of exposure, sensitivity, and adaptability, exhibiting significant spatial and temporal variations. (3) Spatial autocorrelation analysis showed that areas with similar rural socio-ecological vulnerability in post-poverty alleviation areas of Hunan Province were significantly clustered spatially. (4) The core influencing factors of RDVI in Hunan’s post-poverty alleviation areas have shifted from natural disaster risk to multiple risk dimensions encompassing social resource load and ecological environment risk superimposition, resulting in more complex and diversified influencing factors. (5) By combining results from the RDVI assessment with the dominant elements method, the regions can be classified into multiple vulnerability type districts dominated by multiple elements or single-element dominance, leading to corresponding development suggestions. The study aims to examine the process of changes in vulnerability within rural development in post-poverty alleviation areas and its causal factors from a socio-ecological system perspective. This will provide a foundation for policy formulation to consolidate the results of post-poverty alleviation and promote the sustainable development of rural areas. Full article
(This article belongs to the Special Issue Sustainable and Resilient Regional Development: A Spatial Perspective)
Show Figures

Figure 1

26 pages, 25577 KiB  
Article
Stintino (Sardinia, Italy): A Destination Balancing Tourist Gaze and Local Heritage
by Sonia Malvica, Valentina Arru, Nicoletta Pinna, Andreea Andra-Topârceanu and Donatella Carboni
Sustainability 2025, 17(12), 5650; https://doi.org/10.3390/su17125650 - 19 Jun 2025
Viewed by 914
Abstract
The present study explores residents’ perceptions of Stintino (Sardinia, Italy) as a tourist destination. The municipality is predominantly known for La Pelosa beach, widely regarded as one of the most attractive coastal sites in Europe. However, its popularity has raised critical issues related [...] Read more.
The present study explores residents’ perceptions of Stintino (Sardinia, Italy) as a tourist destination. The municipality is predominantly known for La Pelosa beach, widely regarded as one of the most attractive coastal sites in Europe. However, its popularity has raised critical issues related to carrying capacity and seasonal overcrowding, contributing to a tourism model centered almost exclusively on beach-related activities. This study aims to investigate how locals conceptualize their place beyond the dominant seaside narrative, particularly considering Stintino’s identity as a former fishing village with a strong maritime tradition. As part of Italy’s designated inner areas, Stintino also embodies a deep-rooted connection to cultural heritage, further reinforcing the need for its preservation. Adopting a photovoice-based participatory visual methodology, this study engaged 15 local stakeholders from key sectors (hospitality, fishing tourism, retail, gastronomy, and cultural institutions) who produced and discussed photographic representations of their lived experience of the territory. The visual material was thematically analyzed using a conceptual framework informed by theories of place perception and social representations. The findings suggested a multifaceted territorial storytelling rooted in local heritage, symbolic spaces, and everyday practices. Tourism governance strategies could incorporate community-based approaches, such as participatory mapping and inclusive narrative development, to foster more sustainable and place-sensitive promotion models. Full article
Show Figures

Figure 1

Back to TopTop