The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model
Abstract
1. Introduction
1.1. Study Area Overview
1.2. Data Sources and Data Processing
1.3. Research Methods
1.3.1. Land-Use Transfer Matrix
1.3.2. InVEST Model
1.3.3. Coefficient of Variation
1.3.4. Spatial Autocorrelation Analysis
- (1)
- Global Moran’s I:
- (2)
- Local Moran’s I:
1.3.5. Geoprobe with Optimal Parameters
1.3.6. PLUS Model
- (1)
- Land demand and scenario setting
- (2)
- Domain Weight
- (3)
- Transition matrix
- (4)
- Accuracy verification
1.3.7. Mechanisms for Coupling InVEST and PLUS Models
2. Results
2.1. Land-Use Transfer in the Middle Reaches of the Yangtze River
2.2. Assessment Results of Carbon Storage in the Middle Reaches of the Yangtze River
2.3. Spatial and Temporal Evolution of Carbon Stocks in the Middle Reaches of the Yangtze River from 2000 to 2020
2.3.1. Characteristics of Temporal Changes in Carbon Stocks in the Middle Reaches of the Yangtze River
2.3.2. Analysis of the Volatility of Spatial and Temporal Changes in Carbon Stocks Based on the Coefficient of Variation
2.3.3. Spatial Autocorrelation Analysis of Carbon Storage in the Middle Reaches of the Yangtze River
2.4. Driving Force Analysis of Carbon Storage Changes in the Middle Reaches of the Yangtze River
2.4.1. Single-Factor Detection Analysis
2.4.2. Factor Interaction Detection Analysis
2.5. Accuracy Verification Before Land-Use Simulation of Future Years
2.6. Multi-Scenario Modeling of Carbon Stocks in the Middle Reaches of the Yangtze River
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, J.Y.; Chen, A.P. Dynamic Forest Biomass Carbon Pools in China and Their Significance. Acta Bot. Sin. 2001, 43, 967–973. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Liu, Y. Changes in Forest Biomass Carbon Storage in Hainan Island over the Last 20 Years. Geogr. Res. 2002, 21, 551–560. [Google Scholar]
- Duncanson, L.; Liang, M.; Leitold, V.; Armston, J.; Krishna Moorthy, S.M.; Dubayah, R.; Costedoat, S.; Enquist, B.J.; Fatoyinbo, L.; Goetz, S.J.; et al. The Effectiveness of Global Protected Areas for Climate Change Mitigation. Nat. Commun. 2023, 14, 2908. [Google Scholar] [CrossRef]
- Niroumand Fard, F.; Khashei Siuki, A.; Hashemi, S.R.; Ghorbani, K. Evaluation of the Effect of Scenarios in the 6th Report of IPCC on the Prediction Groundwater Level Using the Non-Linear Model of the Input-Output Time Series. Environ. Monit. Assess. 2023, 195, 1359. [Google Scholar] [CrossRef] [PubMed]
- Baidya, A.; Saha, A.K. Exploring the Research Trends in Climate Change and Sustainable Development: A Bibliometric Study. Clean. Eng. Technol. 2024, 18, 100720. [Google Scholar] [CrossRef]
- Montràs-Janer, T.; Suggitt, A.J.; Fox, R.; Jönsson, M.; Martay, B.; Roy, D.B.; Walker, K.J.; Auffret, A.G. Anthropogenic Climate and Land-Use Change Drive Short- and Long-Term Biodiversity Shifts across Taxa. Nat. Ecol. Evol. 2024, 8, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Stranadko, N. Global Climate Governance: Rising Trend of Translateral Cooperation. Int. Environ. Agreem. Politics Law Econ. 2022, 22, 639–657. [Google Scholar] [CrossRef]
- He, X.; Xu, Y.; Fan, X.; Geng, Q.; Tian, Z. Temporal and Spatial Variation and Prediction of Regional Carbon Storage in Zhongyuan Urban Agglomeration. China Environ. Sci. 2022, 42, 2965–2976. [Google Scholar]
- Nakakaawa, C.A.; Vedeld, P.O.; Aune, J.B. Spatial and Temporal Land Use and Carbon Stock Changes in Uganda: Implications for a Future REDD Strategy. Mitig. Adapt. Strat. Glob. Change 2011, 16, 25–62. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Cui, Y.; Zheng, H.; Zhu, L. Assessment of Territorial Ecosystem Carbon Storage Based on Land Use Change Scenario: A Case Study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Guan, D. Value Chain Carbon Footprints of Chinese Listed Companies. Nat. Commun. 2023, 14, 2794. [Google Scholar] [CrossRef]
- Murray, B.C. Carbon Values, Reforestation, and ‘perverse’ Incentives under the Kyoto Protocol: An Empirical Analysis. Mitig. Adapt. Strateg. Glob. Chang. 2000, 5, 271–295. [Google Scholar] [CrossRef]
- Lin, Z.H.; Liu, X.F.; Ren, Z.Y. Estimation of Soil Organic Carbon in Shaanxi Province and Analysis of Its Spatial Difference Based on GIS. Resour. Sci. 2012, 34, 911–918. [Google Scholar]
- Wang, R.-Y.; Mo, X.; Ji, H.; Zhu, Z.; Wang, Y.-S.; Bao, Z.; Li, T. Comparison of the CASA and InVEST Models’ Effects for Estimating Spatiotemporal Differences in Carbon Storage of Green Spaces in Megacities. Sci. Rep. 2024, 14, 5456. [Google Scholar] [CrossRef] [PubMed]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Spatial Assessment and Mapping of Biodiversity and Conservation Priorities in a Heavily Modified and Fragmented Production Landscape in North-Central Victoria, Australia. Ecol. Indic. 2014, 36, 552–562. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating Multi-Scenario Urban Growth Boundaries with a CA-Based FLUS Model and Morphological Method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Ji, Y.; Bai, Y. Spatiotemporal Dynamic Simulation of Grassland Carbon Storage in China. Sci. China Earth Sci. 2016, 59, 1946–1958. [Google Scholar] [CrossRef]
- Xiang, M.; Wang, C.; Tan, Y.; Yang, J.; Duan, L.; Fang, Y.; Li, W.; Shu, Y.; Liu, M. Spatio-Temporal Evolution and Driving Factors of Carbon Storage in the Western Sichuan Plateau. Sci. Rep. 2022, 12, 8114. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Lamei, X.; Wenmin, H.; Min, Y.I.; Yizhang, X.I.E. Spatio-Temporal Pattern of Land Use Change in Changsha-Zhuzhou-Xiangtan Core Areas and Its Driving Forces. Econ. Geogr. 2021, 41, 173–182. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, A. Identification of Land Use Conflicts and Dynamic Response Analysis of Natural-Social Factors in Rapidly Urbanizing Areas − a Case Study of Urban Agglomeration in the Middle Reaches of Yangtze River. Ecol. Indic. 2024, 161, 112009. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, G.; Chen, D.; Zhang, H. Spatiotemporal coupling relationship between supply-demand balance of ecosystem services and welfare of residents in the Middle Reaches of the Yangtze River. Trans. Chin. Soc. Agric. Eng. 2024, 40, 356–368. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z. Analysis of Spatiotemporal Evolution of Land Use and Its Driving Mechanism in the Agro-Pastoral Ecotone of Gansu Province Using Geodetector. Arid. Zone Res. 2024, 41, 590–602. [Google Scholar] [CrossRef]
- Jia, Q.; Jiao, L.; Lian, X.; Wang, W. Linking Supply-Demand Balance of Ecosystem Services to Identify Ecological Security Patterns in Urban Agglomerations. Sustain. Cities Soc. 2023, 92, 104497. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The Spatial Aspect of Ecosystem Services Balance and Its Determinants. Land. Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the Spatial Relationship between Ecosystem Services and Urbanization: A Case Study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef]
- Chen, L.; Gong, J.; Wang, X.; Zheng, X. Spatial Relationship between Ecosystem Services Balance and Urbanization in the Middle Reaches of the Yangtze River. Acta Ecol. Sin. 2022, 41, 5546–5556. [Google Scholar] [CrossRef]
- Qu, S.; Ma, J.; Li, Q.; Hu, S. Pattern Evolution and Driving Mechanism of Urbanization Quality at County Level in the Middle Reaches of Yangtze River. Econ. Geogr. 2023, 43, 93–102. [Google Scholar] [CrossRef]
- Hou, M.; Deng, Y.; Yao, S. Coordinated Relationship between Urbanization and Grain Production in China: Degree Measurement, Spatial Differentiation and Its Factors Detection. J. Clean. Prod. 2022, 331, 129957. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Nascimento, B.S.D.; de Oliveira Silva, J.; de Jesus Araújo Pinto, U.; Bispo, D.C.; Silva Rodrigues, P.M.; de Freitas Lins-Neto, E.M. Inferring Population Trends of Syagrus Coronata (Arecaceae) in Areas under Different Management in Brazilian Caatinga Using a Transition Matrix Model. J. Nat. Conserv. 2024, 81, 126674. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land Use Structure Optimization Based on Carbon Storage in Several Regional Terrestrial Ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Hu, Q. Biomass and Carbon Density of Main Forest Ecosystems in Hubei Province. Chin. J. Ecol. 2012, 31, 1626. [Google Scholar]
- Yu, H.; Zha, T.; Zhang, X.; Ma, L. Vertical Distribution and Influencing Factors of Soil Organic Carbon in the Loess Plateau, China. Sci. Total Environ. 2019, 693, 133632. [Google Scholar] [CrossRef] [PubMed]
- Xiaohuan, X. Research on Soil Organic Carbon Distribution and Change Trend in Middle-East Plain and Its Vicinity in China. Earth Sci. Front. 2013, 20, 154. [Google Scholar]
- Piao, S.; Fang, J.; Zhou, L.; Tan, K.; Tao, S. Changes in Biomass Carbon Stocks in China’s Grasslands between 1982 and 1999. Glob. Biogeochem. Cycles 2007, 21, 1–10. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G. Ecosystem Services Trade-Offs and Synergies in China, 2000–2015. Int. J. Environ. Sci. Technol. 2023, 20, 3221–3236. [Google Scholar] [CrossRef]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National Multi-Purpose Regional Geochemical Survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Ke, X.; Tang, L. Impact of Cascading Processes of Urban Expansion and Cropland Reclamation on the Ecosystem of a Carbon Storage Service in Hubei Province, China. Acta Ecol. Sin. 2018, 39, 672–683. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Kuang, Y.; Wang, Q.; Huang, R.; Nie, W.; Sun, J.; Zhao, Y. Spatiotemporal Dynamics and Driving Forces of Trade-Offs and Synergies among Ecosystem Services in Jiangxi Province. Chin. J. Ecol. 2025, 44, 216. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A Dataset of Carbon Density in Chinese Terrestrial Ecosystems (2010s). China Sci. Data 2018, 4, 90–91. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, C.; Liu, Y.; Cao, J.; Liao, G.; Lin, Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land 2023, 12, 1531. [Google Scholar] [CrossRef]
- Yang, X.-M.; Qian, B.-W.; Ji, G.-X.; Chen, W.-Q.; Huang, J.-C.; Guo, Y.-L.; Chen, Y.-N. Characteristics of Spatial and Temporal Changes in Carbon Stocks in the Middle and Upper Reaches of the Huaihe River Basin and Future Multi-scenario Simulation Prediction. Huan Jing Ke Xue 2024, 45, 5970–5982. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhu, L.; Wang, R.; Hu, Z. Spatiotemporal variation and climate responsiveness of NDVI in Liaohe River Basin. Chin. J. Ecol. 2025, 44, 1321. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, S. Spatial Relationship and Influencing Factors of Traditional Villages and Intangible Cultural Heritage along the Grand Canal. Geogr. Sci. 2025, 45, 603–612. [Google Scholar] [CrossRef]
- Xu, J.; Song, Z. Spatial-Temporal Coupling between the Global Digital Economy and Sustainable Development. Geogr. Sci. 2025, 45, 164–175. [Google Scholar]
- Wang, Y.; Jiang, X.; Gao, S.; Jiang, Q.; Du, H.; Han, N. Multi-Scenario Carbon Storage Analysis Based on PLUS Model and InVEST Model: A Case Study of Zhejiang Province, China. Earth Sci. Inform. 2025, 18, 192. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon Pools in China’s Terrestrial Ecosystems: New Estimates Based on an Intensive Field Survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- He, Y.; Liang, Y.; Shen, C.; Bu, X.; Wang, J. Spatial and Temporal Trade-Offs between Carbon Storage and Crop Production in Chinese Terrestrial Ecosystems, 1995–2100. J. Nat. Conserv. 2025, 87, 126989. [Google Scholar] [CrossRef]
- Wang, W.-W.; Fu, T.; Chen, H. Spatio-temporal Evolution and Prediction of Carbon Storage in the Yangtze River Delta Urban Agglomeration Based on PLUS-InVEST Model. Huan Jing Ke Xue 2025, 46, 1937–1950. [Google Scholar] [CrossRef]
- Xue, Z.; Meng, X.; Liu, B. Spatiotemporal Evolution and Driving Factors of Ecosystem Services in the Upper Fenhe Watershed, China. Ecol. Indic. 2024, 160, 111803. [Google Scholar] [CrossRef]
- Wang, C.; Luo, J.; Qing, F.; Tang, Y.; Wang, Y. Analysis of the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in Taihang Mountains Based on InVEST Model. Appl. Sci. 2022, 12, 10662. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, M.; Wu, Z.; Gong, J. Responses of Ecosystem Carbon Stocks to Land Use Change on the West Side of the Pearl River. Ecol. Sci. 2018, 37, 175–183. [Google Scholar]
- Jiao, L.I.; Jie, W.; Lang, L.I.; Cui-Yan, Z.; Qian, N.I.U.; Can-Ming, Z. Impact of Land Use Change on Carbon Storage in the Dongting Lake Eco-Economic Zone. Chin. J. Ecol. 2022, 41, 1156. [Google Scholar] [CrossRef]
Data | Abbreviation | Time | Resolution | Source |
---|---|---|---|---|
Administrative divisions | / | / | / | National Geographic Information Public Service Platform (https://www.tianditu.gov.cn) |
Land use | CLCD | 2000~2020 | 30 m | China Land Cover Dataset Products |
Average annual precipitation | PRE | 2010, 2020 | 1000 m | National Tibetan Plateau and Data Center (https://data.tpdc.ac.cn) |
Average annual temperature | TEMP | 2010, 2020 | 1000 m | |
Slope | Slope | / | 30 m | Geospatial Data Cloud (http://www.gscloud.cn) |
Aspect | Aspect | / | 30 m | |
Elevation | DEM | / | 30 m | |
Normalized vegetation index | NDVI | 2010, 2020 | 30 m | National Ecological Science Data Center (https://www.nesdc.org.cn) |
Soil types | Soil | 1995 | 1000 m | Resource and Environment Data Center, Chinese Academy of Sciences (http://www.resdc.cn) |
Gross domestic product | GDP | 2010, 2020 | 1000 m | |
Population density | POP | 2010, 2020 | 1000 m | |
Nighttime light | NIL | 2010, 2020 | 1000 m | |
Railway | / | 2010, 2020 | / | National Geographic Information Resources Directory Service System (https://www.webmap.cn) |
Rivers | / | 2010, 2020 | / | |
First-class roads | / | 2010, 2020 | / | |
Secondary roads | / | 2010, 2020 | / | |
Tertiary roads | / | 2010, 2020 | / | |
Carbon density | / | 2015~2020 | / | Refer to the measured data of each province |
Type of Land Use | Aboveground Part Carbon Density | Underground Part Carbon Density | Soil Organic Matter Carbon Density | Death and Decay Organic Carbon Density |
---|---|---|---|---|
Cropland | 5.24 | 2.24 | 88.28 | 1.93 |
Forest | 26.14 | 13.64 | 111.38 | 2.47 |
Grassland | 5.74 | 10.51 | 83.37 | 4.92 |
Water | 1.82 | 0.97 | 34.74 | 2.26 |
Impervious | 1.89 | 0.31 | 37.35 | 0 |
Barren | 1.97 | 0.61 | 27.74 | 0.56 |
Type of Land Use | Cropland | Forest | Grassland | Water | Impervious | Barren |
---|---|---|---|---|---|---|
Natural development scenarios | 0.40 | 0.35 | 0.15 | 0.01 | 0.80 | 0.35 |
Ecological protection scenarios | 0.12 | 0.50 | 0.35 | 0.01 | 0.50 | 0.20 |
Cultivated land protection scenario | 0.60 | 0.35 | 0.31 | 0.01 | 0.65 | 0.45 |
Urban development scenario | 0.24 | 0.28 | 0.33 | 0.01 | 0.95 | 0.15 |
Type of Land Use | Natural Development Scenario | Ecological Protection Scenario | ||||||||||
Cropland | Forest | Grassland | Water | Impervious | Barren | Cropland | Forest | Grassland | Water | Impervious | Barren | |
Cropland | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Forest | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
Water | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Impervious | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Barren | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Type of Land Use | Cropland Protection Scenario | Urban Development Scenario | ||||||||||
Cropland | Forest | Grassland | Water | Impervious | Barren | Cropland | Forest | Grassland | Water | Impervious | Barren | |
Cropland | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
Forest | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Grassland | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Water | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Impervious | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
Barren | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Year | 2010 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Water | Impervious | Barren | Total | Roll Out | ||
2000 | Cropland | 184,143.33 | 12,065.22 | 161.64 | 2226.15 | 2999.52 | 1.44 | 201,597.3 | 17,453.97 |
Forest | 14,938.83 | 318,626.28 | 52.38 | 18.00 | 364.68 | 0 | 334,000.17 | 15,373.89 | |
Grassland | 357.66 | 305.55 | 488.43 | 15.39 | 27.27 | 7.20 | 1201.50 | 713.07 | |
Water | 2450.34 | 99.63 | 19.17 | 15,555.24 | 346.23 | 6.12 | 18,476.73 | 2921.49 | |
Impervious | 11.88 | 0.27 | 0.09 | 280.26 | 9076.14 | 0 | 9368.64 | 292.50 | |
Barren | 1.80 | 0 | 14.13 | 7.38 | 10.98 | 20.16 | 54.45 | 34.29 | |
Total | 201,903.84 | 331,096.95 | 735.84 | 18,102.42 | 12,824.82 | 34.92 | 564,698.79 | 36,789.21 | |
Shift to | 17,760.51 | 12,470.67 | 247.41 | 2547.18 | 3748.68 | 14.76 | 36,789.21 |
Year | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Water | Impervious | Barren | Total | Roll Out | ||
2010 | Cropland | 180,976.95 | 14,520.69 | 77.67 | 1855.53 | 4470.66 | 2.34 | 201,903.84 | 20,926.89 |
Forest | 18,303.39 | 312,246.00 | 37.98 | 38.25 | 471.33 | 0.01 | 331,096.95 | 18,850.95 | |
Grassland | 291.69 | 199.62 | 166.32 | 26.82 | 47.07 | 4.32 | 735.84 | 569.52 | |
Water | 2385.72 | 22.59 | 3.51 | 15,429.69 | 258.93 | 1.98 | 18,102.42 | 2672.73 | |
Impervious | 24.21 | 0.09 | 0.54 | 300.33 | 12,499.20 | 0.45 | 12,824.82 | 325.62 | |
Barren | 4.41 | 0.01 | 2.88 | 10.53 | 5.49 | 11.61 | 34.92 | 23.31 | |
Total | 201,986.37 | 326,988.99 | 288.9 | 17,661.15 | 17,752.68 | 20.70 | 564,698.79 | 43,369.02 | |
Shift to | 21,009.42 | 14,742.99 | 122.58 | 2231.46 | 5253.48 | 9.09 | 43,369.02 |
Year | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Water | Impervious | Barren | Total | Roll Out | ||
2000 | Cropland | 173,879.64 | 18,058.05 | 63.81 | 2413.98 | 7178.94 | 2.88 | 201,597.30 | 27,717.66 |
Forest | 24,422.94 | 308,320.02 | 78.57 | 58.86 | 1118.7 | 1.08 | 334,000.17 | 25,680.15 | |
Grassland | 460.98 | 526.59 | 136.08 | 36.45 | 37.53 | 3.87 | 1201.5 | 1065.42 | |
Water | 3149.91 | 83.07 | 6.57 | 14,751.63 | 482.04 | 3.51 | 18,476.73 | 3725.10 | |
Impervious | 64.62 | 1.26 | 0.45 | 382.77 | 8919.27 | 0.27 | 9368.64 | 449.37 | |
Barren | 8.28 | 0.01 | 3.42 | 17.46 | 16.20 | 9.09 | 54.45 | 45.36 | |
Total | 201,986.37 | 326,988.99 | 288.90 | 17,661.15 | 17,752.68 | 20.7 | 564,698.79 | 58,683.06 | |
Shift to | 28,106.73 | 18,668.97 | 152.82 | 2909.52 | 8833.41 | 11.61 | 58,683.06 |
Year | Carbon Stocks/106 t | ||||||
---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Water | Impervious | Barren | Total | |
2000 | 1969.40 | 5131.24 | 12.56 | 73.52 | 37.05 | 0.17 | 7223.94 |
2005 | 1953.74 | 5151.57 | 8.73 | 71.37 | 41.82 | 0.11 | 7227.34 |
2010 | 1972.40 | 5086.64 | 7.69 | 72.03 | 50.72 | 0.11 | 7189.59 |
2015 | 1964.63 | 5056.39 | 5.14 | 74.18 | 60.53 | 0.07 | 7160.94 |
2020 | 1973.20 | 5023.43 | 3.02 | 70.27 | 70.21 | 0.06 | 7140.19 |
City | 2000 | 2005 | 2010 | 2015 | 2020 | City | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Ezhou | 8649.84 | 8714.38 | 8617.15 | 8578.83 | 8567.06 | Xinyu | 12,585.25 | 12,450.44 | 12,124.94 | 11,928.24 | 11,855.64 |
Wuhan | 8865.30 | 8829.54 | 8660.64 | 8620.99 | 8577.67 | Shangrao | 12,762.67 | 12,801.31 | 12,782.55 | 12,645.30 | 12,577.62 |
Jingzhou | 9135.26 | 9097.39 | 9007.31 | 9036.45 | 9081.98 | Yichun | 12,822.63 | 12,792.16 | 12,672.07 | 12,525.72 | 12,441.45 |
Nanchang | 9193.40 | 9181.75 | 9175.59 | 9089.60 | 9029.50 | Changsha | 12,947.42 | 12,697.70 | 12,418.54 | 12,231.88 | 12,203.24 |
Xiantao | 9220.29 | 9158.52 | 9031.92 | 9123.90 | 9204.49 | Loudi | 13,046.67 | 12,745.58 | 12,755.79 | 12,731.73 | 12,506.80 |
Qianjiang | 9365.86 | 9398.26 | 9389.04 | 9339.60 | 9335.72 | Yongzhou | 13,335.24 | 13,247.67 | 13,115.42 | 13,172.25 | 13,177.28 |
Tianmen | 9502.95 | 9481.95 | 9467.31 | 9407.45 | 9383.53 | Shaoyang | 13,452.52 | 13,341.17 | 13,288.88 | 13,321.33 | 13,258.33 |
Xiaogan | 10,118.94 | 10,111.06 | 10,044.34 | 10,119.03 | 10,028.18 | Fuzhou | 13,501.94 | 13,498.94 | 13,518.18 | 13,403.08 | 13,405.10 |
Jingmen | 10,880.23 | 10,919.34 | 10,816.58 | 10,830.25 | 10,765.21 | Zhuzhou | 13,513.81 | 13,608.02 | 13,385.14 | 13,201.72 | 13,148.05 |
Huangshi | 11,085.84 | 11,197.26 | 11,092.40 | 10,913.24 | 10,780.47 | Jian | 13,584.41 | 13,564.02 | 13,560.55 | 13,379.21 | 13,275.14 |
Yueyang | 11,382.44 | 11,419.35 | 11,361.80 | 11,330.57 | 11,422.19 | Yichang | 13,629.07 | 13,711.91 | 13,591.31 | 13,518.68 | 13,546.60 |
Huanggang | 11,535.56 | 11,620.69 | 11,628.73 | 11,665.96 | 11,602.40 | Jingdezhen | 13,696.91 | 13,676.10 | 13,619.90 | 13,383.23 | 13,297.37 |
Xiangyang | 11,731.83 | 11,841.57 | 11,745.49 | 11,786.98 | 11,761.93 | Pingxiang | 13,904.33 | 13,829.48 | 13,591.06 | 13,347.93 | 13,213.22 |
Changde | 11,845.74 | 11,820.76 | 11,813.86 | 11,763.84 | 11,722.31 | Chenzhou | 13,936.28 | 13,815.55 | 13,704.45 | 13,748.18 | 13,701.44 |
Suizhou | 11,951.86 | 12,059.47 | 11,928.93 | 12,164.88 | 12,003.22 | Shiyan | 13,956.86 | 14,069.31 | 14,054.90 | 14,124.04 | 14,125.95 |
Hengyang | 12,048.82 | 12,083.35 | 11,818.68 | 11,828.68 | 11,801.49 | Xiangxi | 13,994.23 | 14,085.06 | 14,146.85 | 14,169.69 | 14,193.12 |
Yingtan | 12,077.59 | 12,098.91 | 12,066.09 | 11,942.00 | 11,937.12 | Ganzhou | 14,168.30 | 14,165.56 | 14,191.34 | 14,085.60 | 13,974.37 |
Xiangtan | 12,142.18 | 12,058.25 | 11,868.72 | 11,749.44 | 11,731.76 | Zhangjiajie | 14,237.65 | 14,326.79 | 14,172.91 | 14,131.09 | 14,297.71 |
Jiujiang | 12,222.83 | 12,261.91 | 12,288.47 | 12,168.81 | 12,095.92 | Huaihua | 14,330.28 | 14,290.33 | 14,184.35 | 14,168.51 | 14,232.12 |
Yiyang | 12,290.78 | 12,283.69 | 12,247.32 | 12,127.44 | 12,110.46 | Enshi | 14,390.53 | 14,555.47 | 14,547.91 | 14,356.81 | 14,291.06 |
Xianning | 12,580.91 | 12,611.16 | 12,500.73 | 12,555.89 | 12,528.32 | Shennongjia | 15,175.43 | 15,210.93 | 15,217.79 | 15,202.55 | 15,191.83 |
2000 | 2005 | 2010 | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
q Value | p Value | q Value | p Value | q Value | p Value | q Value | p Value | q Value | p Value | |
Precipitation | 0.033 | 0.000 | 0.032 | 0.000 | 0.032 | 0.000 | 0.311 | 0.000 | 0.032 | 0.000 |
Temperature | 0.121 | 0.000 | 0.128 | 0.000 | 0.131 | 0.000 | 0.130 | 0.000 | 0.133 | 0.000 |
Slope | 0.412 | 0.000 | 0.417 | 0.000 | 0.419 | 0.000 | 0.411 | 0.000 | 0.405 | 0.000 |
DEM | 0.409 | 0.000 | 0.409 | 0.000 | 0.410 | 0.000 | 0.407 | 0.000 | 0.400 | 0.000 |
Soil | 0.272 | 0.000 | 0.264 | 0.000 | 0.258 | 0.000 | 0.253 | 0.000 | 0.252 | 0.000 |
NDVI | 0.233 | 0.000 | 0.241 | 0.000 | 0.250 | 0.000 | 0.264 | 0.000 | 0.274 | 0.000 |
GDP | 0.198 | 0.000 | 0.205 | 0.000 | 0.210 | 0.000 | 0.207 | 0.000 | 0.208 | 0.000 |
population | 0.221 | 0.000 | 0.228 | 0.000 | 0.230 | 0.000 | 0.226 | 0.000 | 0.227 | 0.000 |
Night light | 0.249 | 0.000 | 0.261 | 0.000 | 0.270 | 0.000 | 0.278 | 0.000 | 0.284 | 0.000 |
Type of Land Use | 2020 | 2035 | |||
---|---|---|---|---|---|
Natural Development Scenario | Ecological Protection Scenario | Cultivated Land Protection Scenario | Urban Development Scenario | ||
Cropland | 1973.20 | 1969.48 | 1928.34 | 2041.99 | 1961.34 |
Forest | 5023.53 | 4962.24 | 5067.29 | 4861.99 | 4959.85 |
Grassland | 3.02 | 1.95 | 2.68 | 2.18 | 1.93 |
Water | 70.27 | 70.27 | 71.42 | 70.27 | 70.27 |
Impervious | 70.21 | 87.93 | 70.46 | 84.29 | 91.85 |
Barren | 0.06 | 0.04 | 0.06 | 0.05 | 0.04 |
Total carbon stocks | 7140.19 | 7091.91 | 7140.25 | 7060.77 | 7085.30 |
Mean carbon stocks (t/km2) | 12,644.25 | 12,558.76 | 12,644.34 | 12,503.61 | 12,547.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Sun, Y.; Tang, D.; Song, J.; Tu, Y.; Zhang, Q. The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model. Sustainability 2025, 17, 6067. https://doi.org/10.3390/su17136067
Chen H, Sun Y, Tang D, Song J, Tu Y, Zhang Q. The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model. Sustainability. 2025; 17(13):6067. https://doi.org/10.3390/su17136067
Chicago/Turabian StyleChen, Hu, Yi Sun, Diwei Tang, Jian Song, Yi Tu, and Qi Zhang. 2025. "The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model" Sustainability 17, no. 13: 6067. https://doi.org/10.3390/su17136067
APA StyleChen, H., Sun, Y., Tang, D., Song, J., Tu, Y., & Zhang, Q. (2025). The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model. Sustainability, 17(13), 6067. https://doi.org/10.3390/su17136067