sustainability-logo

Journal Browser

Journal Browser

Application of Remote Sensing Technology for Land Use and Land Cover Change Analysis Volume II

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainability in Geographic Science".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 4321

Special Issue Editors

College of Urban Economics and Public Administration, Capital University of Economics and Business, Beijing 100070, China
Interests: spatial planning; land use/cover change and simulation
Special Issues, Collections and Topics in MDPI journals
School of Management, Guangdong University of Technology, 169 Yinglong Road, Guangzhou 510520, China
Interests: remote sensing image classification; pattern optimization; sustainable development of land-use
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Earth has entered into a new geological epoch, the Anthropocene, which indicates that humans have changed the planet profoundly, a process that may even alter the direction of its evolution. Land use/cover change (LUCC) is closely related to the sustainable development of humans and is undoubtedly one of the most dominant pieces of evidence for the Anthropocene. Additionally, LUCC exerts a direct or indirect influence on the quantity of resources, such as land, water, food, fiber, etc. Moreover, it has a bearing on regional/global ecological security, food security, and the stability of regional societies and economies. Here, we sincerely invite you to participate in this Special Issue on the topic of land use/cover change based on remote sensing and GIS. The topics of interest may include, but are not limited to:

  • Land use/cover change based on remote sensing and GIS;
  • Research on the progress of land use/cover change;
  • Land use/cover change and ecological security;
  • Land use/cover change and food security;
  • Global land use/cover change;
  • Land use/cover change and driving forces;
  • Land use/cover change and simulation;
  • Land use/cover change and the value of ecosystem services;
  • Land use/cover change and socioeconomic system coupling;
  • Land use/cover change and urbanization;

Thoughts on the study of land use/cover change should be positioned within the context of the Anthropocene.

Dr. Yang Zhang
Dr. Yiyun Chen
Dr. Zeying Lan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • land use/cover change
  • ecological security
  • food security
  • ecosystem service value
  • urbanization
  • Anthropocene

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 13059 KiB  
Article
Transformation of Arable Lands in Russia over Last Half Century—Analysis Based on Detailed Mapping and Retrospective Monitoring of Soil–Land Cover and Decipherment of Big Remote Sensing Data
by Dmitry I. Rukhovich, Polina V. Koroleva, Dmitry A. Shapovalov, Mikhail A. Komissarov and Tung Gia Pham
Sustainability 2025, 17(13), 6203; https://doi.org/10.3390/su17136203 - 7 Jul 2025
Viewed by 382
Abstract
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in [...] Read more.
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in sown areas by 38% (from 119.7 to 74.7 million ha) and a synchronous drop in gross harvests of grain and leguminous crops by 48% (from 117 to 61 million tons). The situation stabilized in 2020, with a sowing area of 80.2 million ha and gross harvests of grain and leguminous crops of 120–150 million tons. This process was not formalized legally, and the official (legal) area of arable land decreased by only 8% from 132.8 to 122.3 million ha. Legal conflict arose for 35 million ha for unused arable land, for which there was no classification of its condition categories and no monitoring of the withdrawal time of the arable land from actual agricultural use. The aim of this study was to resolve the challenges in the method of retrospective monitoring of soil–land cover, which allowed for the achievement of the aims of the investigation—to elucidate the history of land use on arable lands from 1985 to 2025 with a time step of 5 years and to obtain a detailed classification of the arable lands’ abandonment degrees. It was also established that on most of the abandoned arable land, carbon sequestration occurs in the form of secondary forests. In the course of this work, it was shown that the reasons for the formation of an array of abandoned arable land and the stabilization of agricultural production turned out to be interrelated. The abandonment of arable land occurred proportionally to changes in the soil’s natural fertility and the degree of land degradation. Economically unprofitable lands spontaneously (without centralized planning) left the sowing zone. The efficiency of land use on the remaining lands has increased and has allowed for the mass application of modern farming systems (smart, precise, landscape-adaptive, differentiated, no-till, strip-till, etc.), which has further increased the profitability of crop production. The prospect of using abandoned lands as a carbon sequestration zone in areas of forest overgrowth has arisen. Full article
Show Figures

Figure 1

30 pages, 18280 KiB  
Article
The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model
by Hu Chen, Yi Sun, Diwei Tang, Jian Song, Yi Tu and Qi Zhang
Sustainability 2025, 17(13), 6067; https://doi.org/10.3390/su17136067 - 2 Jul 2025
Viewed by 342
Abstract
The middle reaches of the Yangtze River are important bases for high-tech, advanced manufacturing, and modern service industries in China, as well as a demonstration area for the coordination of economic and ecological construction, which plays an important role in the ecosystem carbon [...] Read more.
The middle reaches of the Yangtze River are important bases for high-tech, advanced manufacturing, and modern service industries in China, as well as a demonstration area for the coordination of economic and ecological construction, which plays an important role in the ecosystem carbon cycle. With the steady progress of social and economic development and urbanization, the supply capacity of ecosystem services has sharply decreased, and the carbon cycle mechanism has changed, further reducing the sustainability of regional ecosystem services. In this study, carbon storage in the middle reaches of the Yangtze River was estimated from 2000 to 2020 based on the InVEST model, and the temporal and spatial evolution characteristics of carbon storage in the middle reaches of the Yangtze River were summarized using the coefficient of variation and spatial autocorrelation. The coupled InVEST-PLUS model was used to simulate the carbon storage characteristics of the middle reaches of the Yangtze River under natural development, ecological protection, cultivated land protection, and urban development scenarios in 2035. The results show the following: (1) The main land-use types in the middle reaches of the Yangtze River are cultivated and forest land, and the land-use types in the study area show the characteristics of “two increases and four decreases” in the past 20 years. (2) The carbon storage level in the middle reaches of the Yangtze River has decreased by 83.65 × 106 t in the past 20 years (approximately 1.16%). The coefficient of variation showed that the carbon storage level in the middle reaches of the Yangtze River was high, with the fluctuating area accounting for 8.79% of the total area. The results of local spatial autocorrelation show that the high-value areas of carbon storage are mainly distributed in the west and southeast of the study area, and the low-value areas are mainly distributed in the middle of the study area, exhibiting characteristics of “high values surrounding low values” in space. (3) The simulation results of carbon storage in the middle reaches of the Yangtze River in 2035 showed that the ecological protection scenario was better than the other scenarios in terms of the mean level, functional performance, and patch presentation. Full article
Show Figures

Figure 1

26 pages, 9188 KiB  
Article
Construction and Zoning of Ecological Security Patterns in Yichang City
by Qi Zhang, Yi Sun, Diwei Tang, Hu Cheng and Yi Tu
Sustainability 2025, 17(6), 2354; https://doi.org/10.3390/su17062354 - 7 Mar 2025
Viewed by 745
Abstract
The study of ecological security patterns is of great significance to the balance between regional economic development and environmental protection. By optimizing the regional ecological security pattern through reasonable land-use planning and resource management strategies, the purpose of maintaining ecosystem stability and improving [...] Read more.
The study of ecological security patterns is of great significance to the balance between regional economic development and environmental protection. By optimizing the regional ecological security pattern through reasonable land-use planning and resource management strategies, the purpose of maintaining ecosystem stability and improving ecosystem service capacity can be achieved, and ultimately regional ecological security can be achieved. As a typical ecological civilization city in the middle reaches of the Yangtze River, Yichang City is also facing the dual challenges of urban expansion and environmental pressure. The construction and optimization of its ecological security pattern is the key to achieving the harmonious coexistence of economic development and environmental protection and ensuring regional sustainable development. Based on the ecological environment characteristics and land-use data of Yichang City, this paper uses morphological spatial pattern analysis and landscape connectivity analysis to identify core ecological sources, constructs a comprehensive ecological resistance surface based on the sensitivity–pressure–resilience (SPR) model, and combines circuit theory and Linkage Mapper tools to extract ecological corridors, ecological pinch points, and ecological barrier points and construct the ecological security pattern of Yichang City with ecological elements of points, lines, and surfaces. Finally, the community mining method was introduced and combined with habitat quality to analyze the spatial topological structure of the ecological network in Yichang City and conduct ecological security zoning management. The following conclusions were drawn: Yichang City has a good ecological background value. A total of 64 core ecological sources were screened out with a total area of 3239.5 km². In total, 157 ecological corridors in Yichang City were identified. These corridors were divided into 104 general corridors, 42 important corridors, and 11 key corridors according to the flow centrality score. In addition, 49 key ecological pinch points and 36 ecological barrier points were identified. The combination of these points, lines, and surfaces formed the ecological security pattern of Yichang City. Based on the community mining algorithm in complex networks and the principle of Thiessen polygons, Yichang City was divided into five ecological functional zones. Among them, Community No. 2 has the highest ecological security level, high vegetation coverage, close distribution of ecological sources, a large number of corridors, and high connectivity. Community No. 5 has the largest area, but it contains most of the human activity space and construction and development zones, with low habitat quality and severely squeezed ecological space. In this regard, large-scale ecological restoration projects should be implemented, such as artificial wetland construction and ecological island establishment, to supplement ecological activity space and mobility and enhance ecosystem service functions. This study aims to construct a multi-scale ecological security pattern in Yichang City, propose a dynamic zoning management strategy based on complex network analysis, and provide a scientific basis for ecological protection and restoration in rapidly urbanizing areas. Full article
Show Figures

Figure 1

25 pages, 8515 KiB  
Article
A Muti-Scenario Prediction and Spatiotemporal Analysis of the LUCC and Carbon Storage Response: A Case Study of the Central Shanxi Urban Agglomeration
by Yasi Zhu and Bin Quan
Sustainability 2025, 17(4), 1532; https://doi.org/10.3390/su17041532 - 12 Feb 2025
Cited by 1 | Viewed by 723
Abstract
Land use and cover change (LUCC) profoundly impacts the carbon cycle and carbon storage. Under the goal of “carbon neutrality”, studying the mechanisms linking LUCC with terrestrial ecosystem carbon storage is of significant importance for ecological protection and regional development. Using the central [...] Read more.
Land use and cover change (LUCC) profoundly impacts the carbon cycle and carbon storage. Under the goal of “carbon neutrality”, studying the mechanisms linking LUCC with terrestrial ecosystem carbon storage is of significant importance for ecological protection and regional development. Using the central Shanxi urban agglomeration as a case study, this research employs various quantitative models based on land cover data to analyze changes in LUCC and carbon storage from 2000 to 2035. The study scientifically explores the impact of the spatial and temporal distribution characteristics of LUCC on carbon storage. The study indicates the following: (1) Over the past 20 years, the land types in the central Shanxi urban agglomeration are primarily grassland, cropland, and forest land. The two primary land transformations are the conversion of cropland to grassland and the conversion of grassland to cropland and forest land; (2) The carbon storage in the study area has shown a declining trend over the past two decades. Spatially, this decline exhibits a “two mountains and one valley” distribution pattern influenced by land use types. The reduction of grassland and cropland is the primary reason for the decline in carbon storage; (3) By 2035, under three different scenarios, carbon storage is projected to decrease compared to 2020. Among these, the scenario focused on cropland protection (CP) shows the least decline, while the naturally developing scenario (ND) shows the most significant decline. The research demonstrates that under scenarios of cropland protection and ecological conservation, strategies such as environmental restoration, development of unused land, and reclamation of built-up land for greening significantly enhance regional carbon storage and improve carbon sequestration capacity. Full article
Show Figures

Figure 1

18 pages, 2985 KiB  
Article
Dynamics of Zinder’s Urban Landscape: Implications for Sustainable Land Use Management and Environmental Conservation
by Kadiza Doulay Seydou, Wole Morenikeji, Abdoulaye Diouf, Kagou Dicko, Elbek Erdanaev, Ralf Loewner and Appollonia Aimiosino Okhimamhe
Sustainability 2024, 16(23), 10263; https://doi.org/10.3390/su162310263 - 23 Nov 2024
Cited by 1 | Viewed by 1546
Abstract
Unplanned urban expansion poses significant challenges to environmental sustainability and urban planning. This study analyzes the spatiotemporal dynamics of Zinder’s urban landscape using Landsat satellite imagery from 1988, 2000, 2011, and 2022. The study applied remote sensing (RS), geographic information system (GIS) techniques, [...] Read more.
Unplanned urban expansion poses significant challenges to environmental sustainability and urban planning. This study analyzes the spatiotemporal dynamics of Zinder’s urban landscape using Landsat satellite imagery from 1988, 2000, 2011, and 2022. The study applied remote sensing (RS), geographic information system (GIS) techniques, and urban growth models. The random forest classifier, a machine learning algorithm, was used to classify three land use/land cover categories: “vegetation”, “built-up”, and “others”. Zinder’s arid environment is characterized by sparse vegetation, which constitutes a limited but vital component of its landscape. Despite the already sparse vegetation in the area, the findings reveal a 3.5% reduction in vegetation cover between 1988 and 2022, alongside an 11.5% increase in “built-up” areas and an 8% decrease in the “others” category. This loss of already minimal vegetation raises significant concerns about environmental degradation and the exacerbation of desertification risks. Interestingly, urban expansion showed no significant correlation with population growth (r = 0.29, p > 0.5), suggesting that other factors, such as economic activities, infrastructure development, and land use policies, drive land conversion. Edge expansion emerged as the dominant growth type, with a significant directional preference (Chi-Square = 2334.41, p < 0.001) toward major roads and areas with higher accessibility to public services. These findings emphasize the need for strategic urban planning and land management policies to address the drivers of unplanned expansion. Prioritizing sustainable infrastructure development, enforcing land use regulations, and conserving natural landscapes are critical to balancing urban growth with environmental preservation, ensuring resilience and sustainability in Zinder. Full article
Show Figures

Figure 1

Back to TopTop