Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,029)

Search Parameters:
Journal = Minerals
Section = Crystallography and Physical Chemistry of Minerals & Nanominerals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 918 KiB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 - 5 Aug 2025
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 261
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

16 pages, 5933 KiB  
Article
Chemical Peculiarities of Quartz from Peralkaline Granitoids
by Karel Breiter, Jindřich Kynický, Michaela Vašinová Galiová and Michaela Hložková
Minerals 2025, 15(8), 790; https://doi.org/10.3390/min15080790 - 28 Jul 2025
Viewed by 260
Abstract
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends [...] Read more.
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends in their evolution and to compare this content with published data from granitoids of other geochemical types. The evaluation of about 1100 analyses found the studied trace elements mostly in ranges <0.01–18 ppm Li (median 2.41 ppm), 1.2–77 ppm Ti (median 8.2 ppm), 8.3–163 ppm Al (median 42 ppm) and 0.05–5.7 ppm Ge (median 0.98 ppm) (in all cases 5% of the lowest and 5% of the highest values were omitted). Quartz from geochemically less evolved riebeckite-bearing granite plutons shows no Ti/Ge fractionation and displays either a positive Ti–Al correlation or no Ti–Al correlation. More fractionated and potentially mineralized peralkaline magmatic systems were formed within two distinct magmatic episodes: quartz from the older phases is relatively Ti-rich and evolved via Ti decrease with no possible Ge enrichment, while quartz from younger phases is Ti-poor from the beginning and has the ability of enrichment in Al and Ge. Relative enrichment in Al and increase in Ge/Ti value of quartz can serve as a supporting method for the identification of potentially ore-bearing magmatic systems. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

13 pages, 3716 KiB  
Article
Mineralogy and Preparation of High-Purity Quartz: A Case Study from Pegmatite in the Eastern Sector of the North Qinling Orogenic Belt
by Deshui Yu, Yameng Ma, Shoujing Wang, Chi Ma and Fushuai Wei
Minerals 2025, 15(8), 788; https://doi.org/10.3390/min15080788 - 27 Jul 2025
Viewed by 272
Abstract
High-purity quartz (HPQ), an indispensable industrial mineral, serves as a critical raw material for advanced technology sectors. Derived from natural quartz precursors through processing, HPQ preparation efficiency fundamentally depends on raw material selection. Two pegmatite samples (muscovite pegmatite and two-mica pegmatite) sampled from [...] Read more.
High-purity quartz (HPQ), an indispensable industrial mineral, serves as a critical raw material for advanced technology sectors. Derived from natural quartz precursors through processing, HPQ preparation efficiency fundamentally depends on raw material selection. Two pegmatite samples (muscovite pegmatite and two-mica pegmatite) sampled from the eastern sector of the North Qinling Orogenic Belt were investigated through a suite of analytical techniques, as well as processing and purification, to evaluate their potential as raw materials for high-purity quartz. Muscovite pegmatite is predominantly composed of quartz, plagioclase, K-feldspar, muscovite, and garnet, with accessory phases including limonite and kaolinite. However, in addition to quartz, plagioclase, K-feldspar, muscovite, garnet, and limonite, two-mica pegmatite contains minerals such as biotite and calcite. The fluid inclusions in both muscovite and two-mica pegmatite quartz are small, but the former has fewer fluid inclusions. Compared with muscovite pegmatite, surface discontinuity (i.e., cracks, pits, cavities) development is more pronounced in two-mica pegmatite purified quartz, which may be related to its high content of fluid inclusions. Following purification, the total concentration of trace elements decreased significantly. However, the concentrations of Al and Ti appeared to remain the same. Titanium enrichment in purified two-mica pegmatite quartz likely derives from biotite, while Na and Ca concentrations may be related to fluid inclusions or microscopic mineral inclusions. The trace element content (27.69 ppm) in muscovite pegmatite is lower than that (45.28 ppm) of two-mica pegmatite, we thus suggest that muscovite pegmatite quartz is more likely to have the potential to produce high-purity quartz. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

15 pages, 588 KiB  
Review
Archaeometry of Ancient Mortar-Based Materials in Roman Regio X and Neighboring Territories: A First Review
by Simone Dilaria
Minerals 2025, 15(7), 746; https://doi.org/10.3390/min15070746 - 16 Jul 2025
Viewed by 346
Abstract
This review synthesizes the corpus of archaeometric and analytical investigations focused on mortar-based materials, including wall paintings, plasters, and concrete, in the Roman Regio X and neighboring territories of northeastern Italy from the mid-1970s to the present. Organized into three principal categories—wall paintings [...] Read more.
This review synthesizes the corpus of archaeometric and analytical investigations focused on mortar-based materials, including wall paintings, plasters, and concrete, in the Roman Regio X and neighboring territories of northeastern Italy from the mid-1970s to the present. Organized into three principal categories—wall paintings and pigments, structural and foundational mortars, and flooring preparations—the analysis highlights the main methodological advances and progress in petrographic microscopy, mineralogical analysis, and mechanical testing of ancient mortars. Despite extensive case studies, the review identifies a critical need for systematic, statistically robust, and chronologically anchored datasets to fully reconstruct socio-economic and technological landscapes of this provincial region. This work offers a programmatic research agenda aimed at bridging current gaps and fostering integrated understandings of ancient construction technologies in northern Italy. The full forms of the abbreviations used throughout the text to describe the analytical equipment are provided at the end of the document in the “Abbreviations” section. Full article
Show Figures

Figure 1

13 pages, 880 KiB  
Review
Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review
by Xiao-Xia Wang, Yang-Yang Wang, Xiaodong Yao, Tianyin Chang, Xiang Li, Xiaomin Wang and Zihao Zhao
Minerals 2025, 15(7), 728; https://doi.org/10.3390/min15070728 - 12 Jul 2025
Viewed by 200
Abstract
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, [...] Read more.
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, impact diamonds, etc. While carbon constitutes the primary component of diamonds, nitrogen represents one of the most significant impurity elements. The study of the occurrence mode of nitrogen and the C-N isotope composition is essential for exploring the formation mechanism of diamond. Nitrogen primarily exists in diamonds as either isolated atoms (N) or aggregated forms (N2 or N4), with the dominant mode being controlled by temperature and residence time in the mantle. As temperature and residence time increase, isolated nitrogen progressively transforms into aggregated forms. As a result, mantle-derived diamonds typically contain nitrogen predominantly as N2 or N4, whereas metamorphic diamonds and impact diamonds mainly retain isolated N. Global C-N isotopic composition of over 4400 diamonds reveals a wide compositional range, with δ13C ranging from −38.5‰ to +5.0‰, and δ15N from −39.4‰ to +15.0‰. These values significantly exceed the typical mantle δ13C and δ15N values of −5‰ ± 3‰, indicating that the diamond formation may be influenced by subducted crustal materials. During crystallization, diamonds can encapsulate surrounding materials as inclusions, which are divided into three types based on their formation sequence relative to the host diamond: preformed, syngenetic, and epigenetic. Syngenetic inclusions are particularly valuable for constraining crystallization conditions and the genesis of diamonds. Furthermore, geochronology studies of radioactive isotope-bearing syngenetic inclusions are helpful to clarify the age of diamond formation. Usually, mantle-derived diamonds exhibit Archean age, whereas metamorphic diamonds are associated with subduction, showing younger ages that could be associated with metamorphic events. Therefore, the formation conditions and genesis of diamonds can be clearly constrained through integrating investigations of inclusions, nitrogen occurrence modes, and C-N isotopic compositions. The characteristics of occurrence modes, inclusions, and C-N isotope compositions of different types of diamonds are systematically reviewed in this paper, providing critical insights into their genesis and contributing to a deeper understanding of diamond formation processes in Earth’s interior. Full article
Show Figures

Figure 1

21 pages, 6537 KiB  
Article
The Peak Metamorphic PT Conditions of the Sanbagawa Schists in the Shibukawa Area, Central Japan: Application of Raman Geothermobarometry
by Yuki Tomioka, Yui Kouketsu and Katsuyoshi Michibayashi
Minerals 2025, 15(7), 724; https://doi.org/10.3390/min15070724 - 11 Jul 2025
Viewed by 352
Abstract
The quantitative pressure (P)–temperature (T) conditions of low-grade metamorphic rocks, such as pumpellyite–actinolite and greenschist facies, are largely unknown mainly owing to the difficulty in applying thermodynamic methods despite their importance in understanding the protolith and metamorphism within subducting [...] Read more.
The quantitative pressure (P)–temperature (T) conditions of low-grade metamorphic rocks, such as pumpellyite–actinolite and greenschist facies, are largely unknown mainly owing to the difficulty in applying thermodynamic methods despite their importance in understanding the protolith and metamorphism within subducting oceanic crusts. In this study, Raman spectroscopy was applied to constrain the peak metamorphic conditions independent of thermodynamic methods for the lowest grade part (chlorite zone) of the Sanbagawa schists in the Shibukawa area, central Japan, where research on metamorphic conditions is limited. The metamorphic peak temperature of the pelitic schists estimated by Raman carbonaceous material geothermometry was 307 ± 27 °C to 395 ± 16 °C, which increased towards the northern fault (Median Tectonic Line). Raman geobarometry using the quartz-inclusions-in-spessartine system on a siliceous schist sample estimated a peak metamorphic pressure of 0.78–0.94 GPa at 360–390 °C. These results suggest that the rocks in the Shibukawa area were subducted to a depth equivalent to that of the garnet zone in central Shikoku and were then exhumed without experiencing further heating. The combination of Raman carbonaceous material geothermometry and Raman geobarometry (Raman geothermobarometry) can be effectively applied to estimate the metamorphic conditions of low-grade metamorphic rocks independent of thermodynamic methods. Full article
Show Figures

Figure 1

18 pages, 4181 KiB  
Article
Crystal Structure Features, Spectroscopic Characteristics and Thermal Conversions of Sulfur-Bearing Groups: New Natural Commensurately Modulated Haüyne Analogue, Na6Ca2−x(Si6Al6O24)(SO42−,HS,S2●−,S4,S3●−,S52−)2−y
by Nikita V. Chukanov, Natalia V. Zubkova, Roman Yu. Shendrik, Anatoly N. Sapozhnikov, Igor V. Pekov, Marina F. Vigasina, Nadezhda A. Chervonnaya, Dmitry A. Varlamov, Nadezhda B. Bolotina, Dmitry A. Ksenofontov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 709; https://doi.org/10.3390/min15070709 - 3 Jul 2025
Viewed by 345
Abstract
A multimethodic approach based on infrared, Raman, electron spin resonance and photoluminescence spectroscopy, absorption spectroscopy in near infrared, visible and ultraviolet regions, single-crystal X-ray diffraction as well as electron microprobe analyses was applied to the characterization of a new commensurately modulated cubic haüyne [...] Read more.
A multimethodic approach based on infrared, Raman, electron spin resonance and photoluminescence spectroscopy, absorption spectroscopy in near infrared, visible and ultraviolet regions, single-crystal X-ray diffraction as well as electron microprobe analyses was applied to the characterization of a new commensurately modulated cubic haüyne analogue with the modulation parameter of 0.2 and unit-cell parameter of 45.3629(3) Å (designated as haüyne-45Å) from the Malobystrinskoe lazurite deposit, in the Baikal Lake area, Siberia, Russia, as well as associated SO32−-bearing afghanite. Haüyne-45Å is the second member, after vladimirivanovite, of the sodalite group with a commensurately modulated structure. The average structure is based on the tetrahedral aluminosilicate sodalite-type framework with sodalite cages of different sizes. The simplified formula of haüyne-45Å is Na6Ca2−x(Si6Al6O24)(SO42−,HS,S2●−,S4,S3●−,S52−)2−y. The structural modulations of the haüyne-45Å framework are presumably related to the regular alternation of SO42− anions with polysulfide S2●−, S3●−, S4, and S52− groups detected by the spectroscopic methods. Mechanisms of thermal conversions of S-bearing groups in haüyne-45Å under oxidizing and reducing conditions at temperatures up to 800 °C are studied, and their geochemical importance is discussed. Full article
(This article belongs to the Special Issue Crystal Chemistry of Sulfate Minerals and Synthetic Compounds)
Show Figures

Figure 1

4 pages, 151 KiB  
Editorial
Editorial for Special Issue “Isomorphism, Chemical Variability and Solid Solutions of Minerals and Related Compounds, 2nd Edition”
by Nikita V. Chukanov
Minerals 2025, 15(7), 708; https://doi.org/10.3390/min15070708 - 3 Jul 2025
Viewed by 219
Abstract
The concepts of isomorphism and solid solutions are closely related to each other [...] Full article
17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 297
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

32 pages, 22279 KiB  
Article
Crafting Urban Landscapes and Monumental Infrastructure: Archaeometric Investigations of White Marble Architectural Elements from Roman Philippopolis (Bulgaria)
by Vasiliki Anevlavi, Walter Prochaska, Plamena Dakasheva, Zdravko Dimitrov and Petya Andreeva
Minerals 2025, 15(7), 704; https://doi.org/10.3390/min15070704 - 1 Jul 2025
Viewed by 354
Abstract
This study explores the provenance of white marble architectural elements from Roman Philippopolis, with a particular focus on the Eastern Gate complex. By determining the origin of the marble, we aim to elucidate economic, social, and urban dynamics related to material selection and [...] Read more.
This study explores the provenance of white marble architectural elements from Roman Philippopolis, with a particular focus on the Eastern Gate complex. By determining the origin of the marble, we aim to elucidate economic, social, and urban dynamics related to material selection and trade networks. The investigation examines the symbolic significance of prestigious marble in elite representation and highlights the role of quarry exploitation in the region’s economic and technological development. The Eastern Gate, a monumental ensemble integrated into the city’s urban fabric, was primarily constructed with local Rhodope marble, alongside imported materials such as Prokonnesian marble. Analytical methods included petrographic examination, chemical analysis of trace elements (Mn, Mg, Fe, Sr, Y, V, Cd, La, Ce, Yb, and U), and stable isotope analysis (δ18O, δ13C). Statistical evaluations were performed for each sample (37 in total) and compared with a comprehensive database of ancient quarry sources. The results underscore the dominance of local materials while also indicating selective use of imports, potentially linked to symbolic or functional criteria. The findings support the hypothesis of local workshop activity in the Asenovgrad/Philippopolis area and shed light on regional and long-distance marble trade during the Roman Imperial period, reflecting broader economic and cultural interconnections. Full article
(This article belongs to the Special Issue Mineralogical and Mechanical Properties of Natural Building Stone)
Show Figures

Figure 1

15 pages, 2585 KiB  
Article
The Influence of Grinding Media on the Grinding Effect of Granite Pegmatite-Type Quartz
by Qi Tan, Lei Liu, Lixiang Guo and Guangxue Liu
Minerals 2025, 15(7), 682; https://doi.org/10.3390/min15070682 - 26 Jun 2025
Viewed by 290
Abstract
The selection of grinding media significantly impacts the resulting mineral’s liberation degree and grinding quality; this is particularly impactful for granite pegmatite-type quartz. Accordingly, in this study, we investigate the effects of different grinding media on the breakage characteristics of muscovite granite pegmatite-type [...] Read more.
The selection of grinding media significantly impacts the resulting mineral’s liberation degree and grinding quality; this is particularly impactful for granite pegmatite-type quartz. Accordingly, in this study, we investigate the effects of different grinding media on the breakage characteristics of muscovite granite pegmatite-type quartz, focusing also on quartz mineral flotation. An analysis of scanning electron microscope images reveals distinct fracture characteristics among different minerals. Notably, the fractal dimension of mineral fracture roughness in ball-milled products is larger compared to that of rod-milled products, which exhibit a smaller fractal dimension. This fractal dimension serves as a quantitative measure of the microscopic morphology of mineral fractures in the grinding products, establishing a relationship between the roughness of the fractures and the type of grinding medium used. Further analysis of particle size distribution and mineral dissociation indicates that the rod mill produces a higher yield of coarse fractions compared to both ceramic and steel balls, while the fine fraction yield is significantly lower than that of the rod mill and steel balls. Importantly, the rod mill enhances the dissociation degree of quartz, suggesting that it can improve the liberation of mineral monomers and increase the yield of qualified fractions during the grinding process while effectively reducing the phenomenon of overgrinding. Our flotation experiments demonstrate that the recovery rate of quartz using the rod mill is 2.59% and 5.07% higher than that achieved with the ball mill and ceramic mill, respectively. These findings provide theoretical support for the optimization of grinding media and enhancement of mineral flotation recovery. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Graphical abstract

19 pages, 3754 KiB  
Article
Combining Laser-Induced Breakdown Spectroscopy with the Standard Addition Method for Analyzing Impurity Elements in the Lithium Ore Mineral Spodumene
by Zeshan Adeel Umar, Sandeep Kumar, Song-Hee Han, Su-Bin Ki, Sunhye Kim, Sehoon Jung, Sang-Ho Nam and Yonghoon Lee
Minerals 2025, 15(6), 659; https://doi.org/10.3390/min15060659 - 19 Jun 2025
Viewed by 385
Abstract
Spodumene (LiAlSi2O6) is a key lithium source mineral for energy storage devices, making the accurate and rapid analysis of its elemental composition crucial for the battery industry. This study explores the use of laser-induced breakdown spectroscopy (LIBS) combined with [...] Read more.
Spodumene (LiAlSi2O6) is a key lithium source mineral for energy storage devices, making the accurate and rapid analysis of its elemental composition crucial for the battery industry. This study explores the use of laser-induced breakdown spectroscopy (LIBS) combined with the standard addition method to analyze Be, Na, and K in spodumene. The method achieved relative errors of 5%–15% compared to inductively coupled plasma optical emission spectroscopy (ICP-OES), without requiring certified standards. To ensure accuracy, non-resonance emissions were used for Be and Na to minimize self-absorption effects. Although K analysis faced challenges due to strong self-absorption in resonance emissions, focusing on weak edge intensity reduced the relative error significantly. Our results suggest that LIBS combined with the standard addition method is a promising approach for lithium ore analysis, eliminating the need for certified standard materials and complex sample preparation steps such as acid digestion and high-factor dilution. Full article
Show Figures

Graphical abstract

16 pages, 3301 KiB  
Article
Crystal Chemistry and Thermodynamic Properties of Mineralogically Probable Phosphate Ca2.62Cu1.94Co1.44(PO4)4—Structurally Related to Natural Arsenate Zubkovaite
by Olga Yakubovich, Galina Kiriukhina, Larisa Shvanskaya and Alexander Vasiliev
Minerals 2025, 15(6), 645; https://doi.org/10.3390/min15060645 - 13 Jun 2025
Viewed by 336
Abstract
In this paper, we report the details of the synthesis, single crystal X-ray diffraction study, comparative crystal chemical analysis, and magnetic behavior of a new phosphate variation of the arsenate mineral zubkovaite. The title compound was obtained as a high-temperature flux product in [...] Read more.
In this paper, we report the details of the synthesis, single crystal X-ray diffraction study, comparative crystal chemical analysis, and magnetic behavior of a new phosphate variation of the arsenate mineral zubkovaite. The title compound was obtained as a high-temperature flux product in the form of a partly ordered solid solution and was studied using scanning electron microscopy and microprobe analysis. It possesses a monoclinic symmetry with a P21/n space group; the unit cell parameters are a = 8.8040 (2), b = 4.8970 (1), c = 14.5772 (3), and β = 93.993(2)°. The Ca2.62Cu1.94Co1.44(PO4)4 crystal structure exhibits some statistical disorder. Our refinement showed that two positions are mixed, being occupied by Cu/Co (M1) and Ca/Co (M2) atoms. Two types of layers that are nearly parallel to the (101) plane can be distinguished in the structure. One of them is built by sharing corners of CuO4 squares, M1O5 square pyramids, and PO4 tetrahedra. The second type of layer formed from Ca2+- and M2+-centered polyhedra alternates in the [1¯01] direction to construct a tri-periodic framework. Ca2.62Cu1.94Co1.44(PO4)4 experiences long-range antiferromagnetic ordering at low temperatures, as evidenced by both dc— and ac—magnetic susceptibilities, as well as by the specific heat measurements. Full article
Show Figures

Figure 1

13 pages, 2746 KiB  
Article
A Cl-Dominant Analogue of Annite Occurs at the Eastern Edge of the Oktyabrsky Cu-Ni-PGE Deposit, Norilsk, Russia
by Andrei Y. Barkov, Giovanni Orazio Lepore, Luca Bindi, Robert F. Martin, Taras Panikorovskii, Ivan I. Nikulin and Sergey A. Silyanov
Minerals 2025, 15(6), 640; https://doi.org/10.3390/min15060640 - 12 Jun 2025
Viewed by 368
Abstract
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), [...] Read more.
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), and chlorapatite (>6 wt.%). New wavelength-dispersive electron probe analyses reveal compositions with up to 7.75 wt.% Cl, corresponding to the formula K0.742Na0.047Ca0.007)Σ0.796 (Fe2+2.901Mg0.078Mn0.047Ti0.007Cr0.003)Σ3.036 (Si3.190Al0.782)Σ3.972O10 (Cl1.105OH0.854F0.041)Σ2.000 based on 22 negative charges per formula unit, in which OH(calc.) = 2 − (Cl + F). Unfortunately, the grain size of the Cl-dominant mica precluded a single-crystal X-ray diffraction study even though its EBSD pattern confirms its identity as a member of the Mica group. We present results of a refinement of a crystal from the same mineralized sample containing 0.90(6) apfu Cl [R1 = 7.89% for 3720 unique reflections]. The mica is monoclinic, space group C2/m, a 5.3991(4), b 9.3586(6), c 10.2421(10) Å, β 100.873(9)°, V = 508.22(7) Å3, Z = 2. We also describe physical properties and provide a Raman spectrum. Among the mica compositions acquired from the same sample, a high Cl content is correlated with relative enrichment in Si, Mn, and Na and with a depletion in Al, Mg (low Mg#), K, Cr, and Ti. The buildup in Cl in the ore-forming environment is ultimately due to efficient fractional crystallization of the basic magma, with possible contributions from the Devonian metasedimentary sequences that it intruded. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

Back to TopTop