Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,777)

Search Parameters:
Journal = Energies
Section = J: Thermal Management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2341 KiB  
Article
Numerical Optimization of the Coil Geometry in a Large-Scale Levitation Melting Device—With Titanium as a Case Study
by Sławomir Golak and Radosław Zybała
Energies 2025, 18(15), 4162; https://doi.org/10.3390/en18154162 - 5 Aug 2025
Abstract
Electromagnetic levitation melting offers the opportunity for the energy-efficient processing of reactive and high-purity metals. This paper concerns a new levitator design that significantly expands the achievable mass of molten metal by processing a toroidal load within a device featuring an annular trough-shaped [...] Read more.
Electromagnetic levitation melting offers the opportunity for the energy-efficient processing of reactive and high-purity metals. This paper concerns a new levitator design that significantly expands the achievable mass of molten metal by processing a toroidal load within a device featuring an annular trough-shaped coil. However, this unconventional arrangement necessitates the optimization of the coil’s geometry and supply current to ensure the stable levitation of the charge. This paper discusses the methodology for such optimization, considering two variants of coil geometry modification. This developed methodology was initially validated using numerical simulation, based on a two-physics, coupled 2D process model, with a 2.6 kg titanium toroidal charge as an example. Full article
(This article belongs to the Special Issue Progress in Electromagnetic Analysis and Modeling of Heating Systems)
Show Figures

Figure 1

21 pages, 4392 KiB  
Article
Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
by Yi-Nan Zhang, Guo-Qing Huang, Lu-Ming Zhao and Hong-Xia Chen
Energies 2025, 18(15), 4152; https://doi.org/10.3390/en18154152 - 5 Aug 2025
Abstract
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation [...] Read more.
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation density, bubble stable diameter, and droplet asymmetry, were recorded using two high-speed video cameras, and the corresponding evaporation performance was analyzed. Experimental results showed that the inclination angle had a significant influence on the evaporation of micro-pillar surfaces than smooth surfaces as well as a positive correlation between the enhancement performance of the micro-pillars and increasing inclination angles. This angular dependence arises from surface inclination-induced tail elongation and the corresponding asymmetry of droplets. With definition of the one-dimensional asymmetry factor (ε) and volume asymmetry factor (γ), it was proven that although the asymmetric thickness of the droplets reduces the nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of micro-pillar surfaces and about a 15% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces. Full article
(This article belongs to the Special Issue Advancements in Heat Transfer and Fluid Flow for Energy Applications)
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 323
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

22 pages, 6442 KiB  
Article
Study on Heat Transfer of Fluid in a Porous Media by VOF Method with Fractal Reconstruction
by Shuai Liu, Qingyong Zhu and Wenjun Xu
Energies 2025, 18(15), 3935; https://doi.org/10.3390/en18153935 - 23 Jul 2025
Viewed by 219
Abstract
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a [...] Read more.
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a lack of effective methods to accurately track fractal evaporation surfaces, which are ubiquitous in natural and engineering porous media (e.g., geological formations, industrial heat exchangers). This research is significant because understanding heat transfer in these complex porous media is essential for optimizing energy systems, enhancing thermal management in industrial processes, and improving the efficiency of phase-change-based technologies. For this scientific issue, a general model is designed. There is a significant temperature difference on the left and right sides of the model, which drives the internal fluid movement through the temperature difference. The upper end of the model is designed as a complex evaporation surface, and there is flowing steam above it, thus forming a coupled flow field. The VOF fractal reconstruction method is adopted to approximate the shape of the complex evaporation surface, which is a major highlight of this study. Different from previous research, this method can more accurately reflect the flow and phase change on the upper surface of the porous medium. Through numerical simulation, the influence of the evaporation coefficient on the flow and heat transfer rate can be determined. Key findings from numerical simulations reveal the following: (1) Heat transfer rates decrease with increasing fractal dimension (surface complexity) and evaporation coefficient; (2) As the thermal Rayleigh number increases, the influence of the Marangoni number on heat transfer diminishes; (3) The coupling of buoyancy and Marangoni effects in porous media with complex evaporation surfaces significantly alters flow and heat transfer patterns compared to smooth-surfaced porous media. This study provides a robust numerical framework for analyzing non-Newtonian fluid convection in complex porous media, offering insights into optimizing thermal systems involving phase changes and irregular surfaces. The findings contribute to advancing heat transfer theory and have practical implications for industries such as energy storage, chemical engineering, and environmental remediation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

23 pages, 9064 KiB  
Article
A Computational Thermo-Fluid Dynamics Simulation of Slot Jet Impingement Using a Generalized Two-Equation Turbulence Model
by Antonio Mezzacapo, Rossella D’Addio and Giuliano De Stefano
Energies 2025, 18(14), 3862; https://doi.org/10.3390/en18143862 - 20 Jul 2025
Viewed by 1021
Abstract
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional [...] Read more.
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional mean turbulent flow field is numerically predicted by solving Reynolds-averaged Navier–Stokes (RANS) equations, where the two-equation eddy viscosity k-ω model is utilized for turbulence closure. As the commonly used shear stress transport variant overpredicts heat transfer at the plate due to excessive turbulent diffusion, the recently developed generalized k-ω (GEKO) model is considered for the present analysis, where the primary model coefficients are suitably tuned. Through a comparative analysis of the various solutions against one another, in addition to reference experimental and numerical data, the effectiveness of the generalized procedure in predicting both the jet flow characteristics and the heat transfer at the plate is thoroughly evaluated, while determining the optimal set of model parameters. By improving accuracy within the RANS framework, the importance of model adaptability and parameter tuning for this specific fluid engineering application is demonstrated. This study offers valuable insights for improving predictive capability in turbulent jet simulations with broad engineering implications, particularly for industrial heating or cooling systems relying on wide-slot jet impingement. Full article
(This article belongs to the Special Issue Computational Fluids Dynamics in Energy Conversion and Heat Transfer)
Show Figures

Figure 1

20 pages, 2768 KiB  
Article
Flexible Operation of High-Temperature Heat Pumps Through Sizing and Control of Energy Stored in Integrated Steam Accumulators
by Andrea Vecchi, Jose Hector Bastida Hernandez and Adriano Sciacovelli
Energies 2025, 18(14), 3806; https://doi.org/10.3390/en18143806 - 17 Jul 2025
Viewed by 254
Abstract
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply [...] Read more.
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply via HTHPs and aims to assess how variations in power input that result from flexible HTHP operation may affect steam flow and temperature, both with and without a downstream steam accumulator (SA). First, steady-state modelling is used for system design. Then, dynamic component models are developed and used to simulate the system response to HTHP power input variations. The performance of different SA integration layouts and sizes is evaluated. Results demonstrate that steam supply fluctuations closely follow changes in HTHP operation. A downstream SA is shown to mitigate these variations to an extent that depends on its capacity. Practical SA sizing recommendations are derived, which allow for the containment of steam supply fluctuations within acceptability. By providing a basis for evaluating the financial viability of flexible HTHP operation for steam provision, the results support clean technology’s development and uptake in industrial steam and district heating networks. Full article
(This article belongs to the Special Issue Trends and Developments in District Heating and Cooling Technologies)
Show Figures

Figure 1

16 pages, 5452 KiB  
Article
Study on the Solidification and Heat Release Characteristics of Flexible Heat Storage Filled with PCM Composite
by Tielei Yan, Gang Wang, Dong Zhang, Changxin Qi, Shuangshuang Zhang, Peiqing Li and Gaosheng Wei
Energies 2025, 18(14), 3760; https://doi.org/10.3390/en18143760 - 16 Jul 2025
Viewed by 312
Abstract
Phase change materials (PCMs) have significant potential for utilization due to their high energy storage density and excellent safety in energy storage. In this research, a flexible heat storage device using the stable supercooling of sodium acetate trihydrate composite is developed, enabling on-demand [...] Read more.
Phase change materials (PCMs) have significant potential for utilization due to their high energy storage density and excellent safety in energy storage. In this research, a flexible heat storage device using the stable supercooling of sodium acetate trihydrate composite is developed, enabling on-demand heat release through controlled solidification initiation. The solidification and heat release characteristics are investigated in experiments. The results indicate that the heat release characteristics of this heat storage device are closely linked to the crystallization process of the PCM. During the experiment, based on whether external intervention was needed for the solidification process, the PCM manifested two separate solidification modes—specifically, spontaneous self-solidification and triggered-solidification. Meanwhile, the heat release rates, temperature changes, and crystal morphologies were observed in the two solidification modes. Compared with spontaneous self-solidification, triggered-solidification achieved a higher peak surface temperature (53.6 °C vs. 46.2 °C) and reached 45 °C significantly faster (5 min vs. 15 min). Spontaneous self-solidification exhibited slower, uncontrollable heat release with dendritic crystals, while triggered-solidification provided rapid, controllable heat release with dense filamentous crystals. This controllable switching between modes offers key practical advantages, allowing the device to provide either rapid, high-power heat discharge or slower, sustained release as required by the application. According to the crystal solidification theory, the different supercooling degrees are the main reasons for the two solidification modes exhibiting different solidification characteristics. During solidification, the growth rate of SAT crystals exhibits substantial disparities across diverse experiments. In this research, the maximum axial growth rate is 2564 μm/s, and the maximum radial growth rate is 167 μm/s. Full article
(This article belongs to the Special Issue Heat Transfer Principles and Applications)
Show Figures

Figure 1

22 pages, 3678 KiB  
Article
Technical and Economic Analysis of a Newly Designed PV System Powering a University Building
by Miroslaw Zukowski and Robert Adam Sobolewski
Energies 2025, 18(14), 3742; https://doi.org/10.3390/en18143742 - 15 Jul 2025
Viewed by 293
Abstract
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus [...] Read more.
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus of the Bialystok University of Technology. The first part of the article presents the results of 9 years of research on an experimental photovoltaic system that is part of a hybrid wind and PV small system. The article proposes five variants of the arrangement of photovoltaic panels on the pergola. A new method was used to determine the energy efficiency of individual options selected for analysis. This method combines energy simulations using DesignBuilder software and regression analysis. The basic economic indicators NPV and IRR were applied to select the most appropriate arrangement of PV panels. In the recommended solution, the panels are arranged in three rows, oriented vertically, and tilted at 37°. The photovoltaic system, consisting of 438 modules, has a peak power of 210 kWp and is able to produce 166,392 kWh of electricity annually. The NPV is 679,506 EUR, and the IRR is over 38% within 30 years of operation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 3482 KiB  
Article
Development and Performance Evaluation of Central Pipe for Middle-Deep Geothermal Heat Pump Systems
by Xiong Zhang, Ziyan Zhao, Zhengrong Guan, Jiaojiao Lv and Lu Cui
Energies 2025, 18(14), 3713; https://doi.org/10.3390/en18143713 - 14 Jul 2025
Viewed by 282
Abstract
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer [...] Read more.
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer and conversion mechanisms of the MD-GHP system, incorporating unsteady heat transfer in the central pipe, is established and validated using field test data. Secondly, taking the inner diameter, wall thickness, and effective thermal conductivity of the central pipe as design variables, the effects of these parameters on the COP of a 2700 m deep MD-GHP system are analyzed and optimized via the response surface method. The resulting optimal parameters are as follows: an inner diameter of 88 mm, a wall thickness of 14 mm, and an effective thermal conductivity of 0.2 W/(m·K). Based on these results, a composite central pipe composed of high-density polyethylene (HDPE), silica aerogels, and glass fiber tape is designed and fabricated. The developed pipe achieves an effective thermal conductivity of 0.13 W/(m·K) and an axial tensile force of 29,000 N at 105 °C. Compared with conventional PE and vacuum-insulated pipes, the composite central pipe improves the COP by 11% and 7%, respectively. This study proposes an optimization-based design approach for central pipe configuration in MD-GHP systems and presents a new composite pipe with enhanced thermal insulation and mechanical performance. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

24 pages, 4002 KiB  
Article
CFD Simulation-Based Development of a Multi-Platform SCR Aftertreatment System for Heavy-Duty Compression Ignition Engines
by Łukasz Jan Kapusta, Bartosz Kaźmierski, Rohit Thokala, Łukasz Boruc, Jakub Bachanek, Rafał Rogóż, Łukasz Szabłowski, Krzysztof Badyda, Andrzej Teodorczyk and Sebastian Jarosiński
Energies 2025, 18(14), 3697; https://doi.org/10.3390/en18143697 - 13 Jul 2025
Viewed by 367
Abstract
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe [...] Read more.
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe emissions. Among them, the SCR (selective catalytic reduction) aftertreatment-related processes, such as urea–water solution injection, urea decomposition, mixing, NOx catalytic reduction, and deposits’ formation, are the most challenging, and require as much attention as the processes taking place inside the cylinder. Over the last decade, the urea-SCR aftertreatment systems have evolved from underfloor designs to close-coupled (to the engine) architecture, characterised by the short mixing length. Therefore, they need to be tailor-made for each application. This study presents the CFD-based development of a multi-platform SCR system with a short mixing length for mobile non-road applications, compliant with Stage V NRE-v/c-5 emission standard. It combines multiphase dispersed flow, including wall wetting and urea decomposition kinetic reaction modelling to account for the critical aspects of the SCR system operation. The baseline system’s design was characterised by the severe deposit formation near the mixer’s outlet, which was attributed to the intensive cooling in the mounting area. Moreover, as the simulations suggested, the spray was not appropriately mixed with the surrounding gas in its primary zone. The proposed measures to reduce the wall film formation needed to account for the multi-platform application (ranging from 56 to 130 kW) and large-scale production capability. The performed simulations led to the system design, providing excellent UWS–exhaust gas mixing without a solid deposit formation. The developed system was designed to be manufactured and implemented in large-scale series production. Full article
Show Figures

Figure 1

34 pages, 2504 KiB  
Review
Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems
by Stanislav Boldyryev, Oleksandr S. Ivashchuk, Goran Krajačić and Volodymyr M. Atamanyuk
Energies 2025, 18(14), 3685; https://doi.org/10.3390/en18143685 - 12 Jul 2025
Viewed by 368
Abstract
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process [...] Read more.
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process industries, where electricity-driven technologies, including electric heaters, steam boilers, heat pumps, mechanical vapour recompression, and organic Rankine cycles, are increasingly supplanting traditional fossil-fuel-based utilities. The analysis identifies key challenges associated with multi-utility integration, multi-pinch configurations, and low-grade heat utilisation that influence HEN design, retrofitting, and optimisation efforts. A comparative evaluation of various methodological frameworks, including mathematical programming, insights-based methods, and hybrid approaches, is presented, highlighting their relevance to the specific constraints and opportunities of electrified systems. Case studies from the chemicals, food processing, and cement sectors demonstrate the practicality and advantages of employing electrified heat exchanger networks (HENs), particularly in terms of energy efficiency, emissions reduction, and enhanced operational flexibility. The review concludes that effective strategies for the design of HENs are crucial in industrial electrification, facilitating increases in efficiency, reductions in emissions, and improvements in economic feasibility, especially when they are integrated with renewable energy sources and advanced control systems. Future initiatives must focus on harmonising technical advances with system-level resilience and economic sustainability considerations. Full article
Show Figures

Figure 1

14 pages, 2432 KiB  
Article
Charge Reduction and Performance Analysis of a Heat Pump Water Heater Using R290 as a Refrigerant—A Field Study
by Ahmed Elatar, Joseph Rendall, Jian Sun, Jamieson Brechtl and Kashif Nawaz
Energies 2025, 18(14), 3661; https://doi.org/10.3390/en18143661 - 10 Jul 2025
Viewed by 446
Abstract
Heat pump water heaters (HPWHs) are a proven technology for water heating that has been commercialized. The adoption of HPWHs for domestic and commercial water heating is growing rapidly because of their superior performance compared with alternative water heating methods. Whereas most existing [...] Read more.
Heat pump water heaters (HPWHs) are a proven technology for water heating that has been commercialized. The adoption of HPWHs for domestic and commercial water heating is growing rapidly because of their superior performance compared with alternative water heating methods. Whereas most existing systems use R-134a as a working refrigerant, R290 has gained major attention owing to its superior thermodynamic properties. The goal of the current study is to assess the performance of residential HPWH with R290 as a direct refrigerant replacement for R134a. Two units of a 50 gal HPWH were used in this experimental study. A baseline unit contained R134a refrigerant, and a prototype unit contained R290 refrigerant. The prototype unit was developed through the modification of a commercially available HPWH unit to achieve a low charge of R290 refrigerant. Another major modification was the replacement of the baseline compressor with a compressor designed for R290. Tests were conducted in a field environment (a research and demonstration house) using programmed drawn profiles daily. The prototype that reduced the charge by 43–47% provided displayed performance comparable to the baseline unit regarding first-hour rating (FHR) and the uniform energy factor (UEF). Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

27 pages, 2952 KiB  
Article
Designing a Thermoacoustic Cooler for Energy Applications: Experimental Insights
by Leszek Remiorz, Krzysztof Grzywnowicz, Eryk Remiorz and Wojciech Uchman
Energies 2025, 18(13), 3561; https://doi.org/10.3390/en18133561 - 6 Jul 2025
Viewed by 494
Abstract
Thermoacoustic devices, such as refrigerators and heat pumps, present unique measurement challenges due to the simultaneous presence of rapidly fluctuating acoustic parameters and more stable thermal variables. Accurate and informative measurements during operation are crucial for developing effective control algorithms and optimizing performance [...] Read more.
Thermoacoustic devices, such as refrigerators and heat pumps, present unique measurement challenges due to the simultaneous presence of rapidly fluctuating acoustic parameters and more stable thermal variables. Accurate and informative measurements during operation are crucial for developing effective control algorithms and optimizing performance under specific conditions. However, issues like inappropriate sampling frequencies and excessive data storage can lead to unintended averaging, compromising measurement quality. This study introduces a comprehensive experimental procedure aimed at enhancing the reliability of measurements in thermoacoustic systems. The approach encompasses meticulous experimental design, identification of measurement uncertainties and influencing factors during standard operation, and a statistical uncertainty analysis. Experimental findings reveal a significant reduction in temperature measurement uncertainty with increased thermoacoustic channel length and highlight the substantial impact of device structural features on performance. These insights are instrumental for refining measurement protocols and advancing the development of efficient thermoacoustic technologies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

15 pages, 2528 KiB  
Article
Testing of JTD Engine Fueled with Hemp and Rapeseed Oil Esters
by Adam Koniuszy, Małgorzata Hawrot-Paw, Wojciech Golimowski, Tomasz Osipowicz, Konrad Prajwowski, Filip Szwajca, Damian Marcinkowski and Wojciech Andrew Berger
Energies 2025, 18(13), 3526; https://doi.org/10.3390/en18133526 - 3 Jul 2025
Viewed by 345
Abstract
Alternative fuels to fossil fuels have been a focus of research since the 1980s, due to the oil crisis. Biofuels for diesel engines are obtained from various types of fats, primarily vegetable oils. Soybean and rapeseed oil are mainly used to produce biofuels. [...] Read more.
Alternative fuels to fossil fuels have been a focus of research since the 1980s, due to the oil crisis. Biofuels for diesel engines are obtained from various types of fats, primarily vegetable oils. Soybean and rapeseed oil are mainly used to produce biofuels. The aim of the research undertaken was to compare the performance characteristics of a 1.3 JTD engine fueled with methyl esters from hemp compared to biofuels made from rapeseed and fossil fuels. Energy parameters and exhaust emissions were measured. The fuels used were 100% biofuels obtained from vegetable oils by transesterification using methanol and KOH. It was shown to be possible to use HME (hemp methyl esters) biofuels as an alternative fuel to RME (rapeseed methyl esters) or DF (diesel fuel) without significant changes in engine performance. The density and heat of combustion of such fuels results in a 6% reduction in power and 17% in NOx emissions, as well as a decrease in HC (hydrocarbons), CO2, and smoke emissions. Full article
Show Figures

Figure 1

16 pages, 2472 KiB  
Article
Analysis of Ignition Spark Parameters Generated by Modern Ignition System in SI Engine Fueled by Ammonia
by Mariusz Chwist, Michał Gruca, Michał Pyrc and Borys Borowik
Energies 2025, 18(13), 3521; https://doi.org/10.3390/en18133521 - 3 Jul 2025
Viewed by 341
Abstract
This paper analyzes the influence of the number of ignition coils and spark discharge energy on the Coefficient of Variation of Indicated Mean Effective Pressure (COVIMEP) of an SI internal combustion piston engine. A modern electronically controlled induction ignition system is [...] Read more.
This paper analyzes the influence of the number of ignition coils and spark discharge energy on the Coefficient of Variation of Indicated Mean Effective Pressure (COVIMEP) of an SI internal combustion piston engine. A modern electronically controlled induction ignition system is used during the test. Two fuels are used in the experiment. The reference fuel is gasoline and the tested fuel is ammonia. For the traditional fuel, using an additional ignition coil does not improve COVIMEP. This parameter for gasoline has an almost constant value for different ignition system charging times. The situation is different for ammonia. This fuel requires high ignition energy. The use of one ignition coil demands a long charging time. For short charging times, unrepeatability of the engine cycles is unacceptable. The use of an additional ignition coil allowed to the charging coil timing to be shortened and the unrepeatable engine cycles to be reduced. This paper determined the maximum charging time of the used ignition coil, above which the spark parameters are worse. In addition, the influence of charging time and number of ignition coils on total spark energy, spark discharge duration, maximum spark power, and voltage during spark discharge for ammonia is presented. The data presented in this paper are developed based on measurements of current and voltage in the secondary winding of the ignition coil. A self-developed electronic device enabling the change in spark energy is used to control the ignition system. This paper also presents the construction of modern ignition systems, describes the functions of selected components, and briefly discusses their diagnostics. Full article
Show Figures

Figure 1

Back to TopTop