Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,585)

Search Parameters:
Journal = Catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
4 pages, 163 KiB  
Editorial
Sustainable Catalysis for Green Chemistry and Energy Transition
by Muhammad Saeed Akhtar and Wajid Zaman
Catalysts 2025, 15(8), 773; https://doi.org/10.3390/catal15080773 (registering DOI) - 14 Aug 2025
Abstract
Catalysis sits at the heart of sustainable development, and plays an instrumental role in addressing modern environmental challenges [...] Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
19 pages, 4405 KiB  
Article
Photodegradation of Pyridine in a Fluidized Bed Photocatalytic Reactor Using Pt-ZnO Supported on Al2O3 as a Catalyst
by Ruby Gines, Carlos Montalvo, Guadalupe Luna, Daniel Montalvo, Rosa M. Cerón, Julia G. Cerón, Sinuhe Ginés, Aracely García and Claudia A. Aguilar
Catalysts 2025, 15(8), 772; https://doi.org/10.3390/catal15080772 (registering DOI) - 13 Aug 2025
Abstract
Pyridine is a recalcitrant organic compound present in industrial wastewater that causes severe effects on the environment and the health of living beings, as it is considered a toxic, mutagenic, teratogenic, and carcinogenic agent. Therefore, this research explored the efficacy of a zinc [...] Read more.
Pyridine is a recalcitrant organic compound present in industrial wastewater that causes severe effects on the environment and the health of living beings, as it is considered a toxic, mutagenic, teratogenic, and carcinogenic agent. Therefore, this research explored the efficacy of a zinc oxide catalyst, doped with platinum nanoparticles and supported alumina through the precipitation method, for the photocatalytic degradation of pyridine using a fluidized bed reactor. A Box–Behnken experimental design was used to analyze the effect of the pH (4–10), the pyridine concentration (20–300 ppm), and the amount of catalyst (20–100 g). The X-ray diffraction (XRD) characterization results confirmed the hexagonal structure of the zinc oxide and the successful incorporation of platinum. Scanning electron microscopy (SEM) revealed a nano-bar morphology upon catalyst doping, favoring the photocatalytic activity. Pyridine removal of 57.7% was achieved under the following conditions: a pH of 4, 160 ppm of pyridine, and 100 g of catalyst. The process followed a pseudo-first-order model, obtaining the reaction constant k1 = 1.943 × 10−3 min−1 and the adsorption constant k2 = 1.527 × 10−3 L/mg. The results showed high efficiency and stability of the catalyst in the fluidized bed reactor for pyridine degradation, especially under acidic conditions, representing a promising technological alternative for treating industrial wastewater contaminated with N-heterocycles such as pyridine. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Figure 1

13 pages, 6309 KiB  
Article
Reusable Three-Dimensional TiO2@MoS2 Core–Shell Photoreduction Material: Designed for High-Performance Seawater Uranium Extraction
by Chen Xie, Tianyi Zhao, Feng Zhou and Bohao Zhao
Catalysts 2025, 15(8), 769; https://doi.org/10.3390/catal15080769 - 13 Aug 2025
Abstract
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell [...] Read more.
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell architecture. This structure comprises a TiO2 seed layer, vertically aligned TiO2 nanorod arrays as the core, and a MoS2 nanoparticle shell, fabricated via sequential deposition. Under simulated solar irradiation, the TiO2@MoS2 heterojunction exhibited significantly enhanced uranium adsorption capacity, achieving a remarkable 97.3% photocatalytic removal efficiency within 2 h. At an initial uranium concentration of 200 ppm, the material demonstrated an exceptional extraction capacity of 976.7 mg g−1, outperforming most reported photocatalysts. These findings highlight the potential of this 3D core–shell design for efficient uranium recovery and environmental purification applications. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

14 pages, 3138 KiB  
Article
Construction of BiOBr/BNQDs Heterostructure Photocatalyst and Performance Studies of Photocatalytic Degradation of RhB
by Yufeng Qin, Xinyu Peng, Tong Wu, Yi Zhong, Hong Xu, Zhiping Mao and Linping Zhang
Catalysts 2025, 15(8), 771; https://doi.org/10.3390/catal15080771 - 13 Aug 2025
Abstract
As a common semiconductor material, BiOBr has a unique layered structure and a suitable bandgap. However, the slow electron–hole separation efficiency leads to poor photocatalytic performance. To solve this problem, BiOBr/BNQDs heterojunctions were constructed. BiOBr/BNQDs composite photocatalysts were prepared by the solvothermal method, [...] Read more.
As a common semiconductor material, BiOBr has a unique layered structure and a suitable bandgap. However, the slow electron–hole separation efficiency leads to poor photocatalytic performance. To solve this problem, BiOBr/BNQDs heterojunctions were constructed. BiOBr/BNQDs composite photocatalysts were prepared by the solvothermal method, and the cocatalyst BNQDs were loaded onto BiOBr via electrostatic adsorption to enhance the photocatalytic degradation activity towards Rhodamine B (RhB). The photocatalysts were characterized by FT-IR, XRD, XPS, SEM-EDS, UV-Vis, PL, EIS, etc. Compared with pure BiOBr, the construction of heterojunctions BiOBr/BNQDs realized the rapid elimination of weak carriers and the effective separation and enrichment of high-energy carriers, which improved the efficiency of photocatalytic degradation of RhB. Among them, BiOBr/BNQDs-8.3% demonstrated the highest photocatalytic activity. The degradation rate of RhB under visible light irradiation for 60 min was up to 98.56%, and the reaction rate constant was 0.0696 min−1, which was 2.80 times that of pure BiOBr. Moreover, after five photocatalytic cycles, the degradation rate was still 87.58%, demonstrating good cycling stability. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Pollutants in Wastewater)
Show Figures

Graphical abstract

13 pages, 5037 KiB  
Article
First-Principles Study of Sn-Doped RuO2 as Efficient Electrocatalysts for Enhanced Oxygen Evolution
by Caiyan Zheng, Qian Gao and Zhenpeng Hu
Catalysts 2025, 15(8), 770; https://doi.org/10.3390/catal15080770 - 13 Aug 2025
Abstract
Improving the catalytic performance of the oxygen evolution reaction (OER) for water splitting in acidic media is crucial for the production of clean and renewable hydrogen energy. Herein, we study the OER electrocatalytic properties of various active sites on four exposed (110) and [...] Read more.
Improving the catalytic performance of the oxygen evolution reaction (OER) for water splitting in acidic media is crucial for the production of clean and renewable hydrogen energy. Herein, we study the OER electrocatalytic properties of various active sites on four exposed (110) and (1¯10) surfaces of Sn-doped RuO2 (Sn/RuO2) with antiferromagnetic arrangements in acidic environments. The Sn/RuO2 bulk structure with the Cm space group exhibits favorable thermodynamic stability. The coordinatively unsaturated metal (Mcus) sites distributed on the right branch of the volcano plot are generally more active than the bridge-bonded lattice oxygen (Obr) sites located on the left. Different from the conventional knowledge that the most active site is located in the nearest neighbor of the doped atom, it has a lower OER overpotential when the active site is 3.6 Å away from the doped Sn atom. Among the sites studied, the 46-Rucus site exhibits the optimal OER catalytic performance. The inherent factors affecting the OER activity of each site on the Sn/RuO2 surface are further analyzed, including the center of the d/p band at the active sites, the average electrostatic potential of the ions, and the number of transferred electrons. This work provides a reminder for the selection of active sites used to evaluate catalytic performance, which will benefit the development of efficient OER electrocatalysts. Full article
Show Figures

Graphical abstract

24 pages, 5693 KiB  
Article
Relationship Between Number and Strength of Acid–Base Catalytic Sites and Their Performances in Isopropanol Dehydration Reaction
by Georgeta Postole, Sandra Segondy, Tristan Cabanis, Tien-Hoang Nguyen, Aline Auroux and Jean-Luc Dubois
Catalysts 2025, 15(8), 768; https://doi.org/10.3390/catal15080768 - 12 Aug 2025
Abstract
Commercial alumina and silica–alumina catalysts were investigated for propylene (PEN) production via an isopropanol (IPA) dehydration reaction between 200 and 300 °C at an atmospheric pressure and IPA partial pressure of 5136 Pa. The reaction conditions were chosen to fit with the further [...] Read more.
Commercial alumina and silica–alumina catalysts were investigated for propylene (PEN) production via an isopropanol (IPA) dehydration reaction between 200 and 300 °C at an atmospheric pressure and IPA partial pressure of 5136 Pa. The reaction conditions were chosen to fit with the further conversion of PEN into value-added compounds with minimal capital cost, and the conceptual process design was discussed. The textural properties, structure and chemical composition of as-received and hydrothermally treated catalysts were characterised by the adsorption–desorption of N2, X-ray fluorescence, X-ray diffraction and Nuclear Magnetic Resonance spectroscopy. The adsorption microcalorimetry of NH3 and SO2 was used to determine the amount, strength and strength distribution of acid–base sites, while the nature of the acid sites was investigated by Fourier Transform Infraed spectroscopy. Surface area, pore-size distribution and pore volume were not determining factors for the catalytic performances of studied solids in the conditions used here. The best-performing catalyst combined stable textural properties and a high number of high-strength acid sites (Qdiff > 150 kJ/mol NH3) under hydrothermal conditions. The importance of determining the number and strength of acid sites of water-aged catalysts, when considering reactions where water is present as reactive or product, is underlined. Full article
Show Figures

Figure 1

18 pages, 6481 KiB  
Article
Integrating Carbon-Coated Cu/Cu2O Nanoparticles with Biochars Enabled Efficient Capture and Electrocatalytic Reduction of CO2
by Yutong Hong, Xiaokai Zhou and Fangang Zeng
Catalysts 2025, 15(8), 767; https://doi.org/10.3390/catal15080767 - 11 Aug 2025
Viewed by 193
Abstract
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core [...] Read more.
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core diameters (28.2–24.2 nm) and shell thicknesses (7.8–3.0 layers) were fabricated via lased ablation in liquid. A thin Cu2O layer was confirmed between the interface of the Cu core and the graphene shell, providing an interfacial Cu0/Cu+. Cu@G cross-linked biochars (Cu@G/Bs) with developed porosity (31.8–155.9 m2/g) were synthesized. Morphology, crystalline structure, porosity, and elemental chemical states of Cu@G and Cu@G/Bs were characterized. Cu@G/Bs captured CO2 with a maximum sorption capacity of 107.03 mg/g at 0 °C. Furthermore, 95.3–97.1% capture capacity remained after 10 cycles. Cu@G/Bs exhibited the most superior performance with 40.7% of FEC2H4 and 21.7 mA/cm2 of current density at −1.08 V vs. RHE, which was 1.7 and 2.7 times higher than Cu@G. Synergistic integration of developed porosity for efficient CO2 capture and the fast charge transfer rate of interfacial Cu2O/Cu enabled this improvement. Favorable long-term stability of the phase/structure and CO2 electroreduction activity were present. This work provides new insight for integrating Cu@G and a biochar platform to efficiently capture and electro-reduce CO2. Full article
Show Figures

Figure 1

12 pages, 3743 KiB  
Article
Preparation of Bilirubin Through the Biotransformation of Biliverdin Using Whole Cells of Recombinant Yeast
by Hong Chen, Shihang Zhuang, Yanchao Han, Wei Ke and Jianfeng Mei
Catalysts 2025, 15(8), 766; https://doi.org/10.3390/catal15080766 - 11 Aug 2025
Viewed by 144
Abstract
Bilirubin is a key component in the preparation of two traditional Chinese medicines: Calculus bovis sativus and Calculus bovis artifactus. Currently, industrial-scale production of bilirubin is limited to extraction from pig bile in a very low yield and its market price is [...] Read more.
Bilirubin is a key component in the preparation of two traditional Chinese medicines: Calculus bovis sativus and Calculus bovis artifactus. Currently, industrial-scale production of bilirubin is limited to extraction from pig bile in a very low yield and its market price is very high, so it is important to develop an alternative method for producing bilirubin. This study developed a potential process for bilirubin production through biotransformation of biliverdin. The codon-optimized gene for biliverdin reductase (BVR) from Synechocystis PCC6803 was recombinantly expressed in Komagataella phaffii GS115, resulting in the genetically modified strain GS115-bvdR, which successfully expressed BVR with intracellular activity. Whole cells of GS115-bvdR were capable of transforming biliverdin to bilirubin in vitro. The overexpression conditions were optimized to enhance BVR production by GS115-bvdR, and the optimal conditions for the biotransformation of biliverdin into bilirubin using resting GS115-bvdR cells were established (pH 5.0 buffer, at 30 °C for 24 h, with 200 mg/L biliverdin). Under these conditions, a bilirubin concentration of 153 mg/L was achieved, with a conversion of 76.2% from biliverdin. These findings provide valuable insights for future studies on the biosynthesis of bilirubin through metabolic engineering. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Figure 1

10 pages, 1835 KiB  
Article
Evaluation of a Pilot-Scale Water Treatment System with Passive Aerated, Membraneless Microbial Fuel Cell
by Zabdiel A. Juarez, Víctor Ramírez, Carlos Hernández-Benítez, Luis A. Godínez, Irma Robles Gutierrez and Francisco J. Rodríguez-Valadez
Catalysts 2025, 15(8), 765; https://doi.org/10.3390/catal15080765 - 9 Aug 2025
Viewed by 225
Abstract
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive [...] Read more.
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive aerated membraneless microbial fuel cell (PAML-MFC) system consisting of 10 individual units, designed to treat 1000 L/day of real wastewater, using granular activated carbon anodes and cathodes. The pilot-scale water treatment system under study combines design and materials to result in low-cost operation. After 300 days of treating real wastewater originally characterized by a chemical oxygen demand (COD) value of 500 mg/L on average, it was found that the PAML-MFC under study removed 60 to 80% of the COD contained in real wastewater. Under these conditions, the individual MFCs reached an average power density below 1 mW/m3. Full article
Show Figures

Figure 1

13 pages, 3882 KiB  
Article
Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots
by Chujun Luan, Huiyi Mao, Fawei Lin and Hongyun Yao
Catalysts 2025, 15(8), 764; https://doi.org/10.3390/catal15080764 - 9 Aug 2025
Viewed by 189
Abstract
Pyrolysis of oily sludge (OS) faces two significant challenges, dehydration in emulsion and coke formation, which cause extra energy consumption. Targeting energy saving, this paper first reported on solar photothermal dehydration and confined catalytic pyrolysis of OS using a single material. A wood [...] Read more.
Pyrolysis of oily sludge (OS) faces two significant challenges, dehydration in emulsion and coke formation, which cause extra energy consumption. Targeting energy saving, this paper first reported on solar photothermal dehydration and confined catalytic pyrolysis of OS using a single material. A wood sponge loaded with carbon dots (CM-CDs) can generate heat by absorbing solar energy and promote rapid phase separation and water transport via capillary action of oil–water emulsion in OS under sunlight. Almost all free water in OS with varied content can be removed after 3 h. Hydrocarbons entered the internal space of CM-CDs instead of contacting with soil minerals, contributed to the subsequent confined catalytic pyrolysis, led to a reduction in Ea (35.61 kJ/mol), inhibited coking and caking, and yielded higher oil recovery efficiency. In addition, CDs can form hotspots to enhance pyrolytic behaviors in local regions. When the ratio of OS to CM-CDs reached 10:0.6, the recovery rate of the oil fraction through combined pyrolysis was as high as 89%, which was 17% higher than that of OS pyrolysis alone. This discovery provides a new way to solve the bottleneck problems of OS pyrolysis in the industry. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

12 pages, 2983 KiB  
Article
Rare-Earth-Element-Doped NiCo Layered Double Hydroxides for High-Efficiency Oxygen Evolution
by Zhihan Li, Wenjing Yi, Qingqing Pang, Meng Zhang and Zhongyi Liu
Catalysts 2025, 15(8), 763; https://doi.org/10.3390/catal15080763 - 9 Aug 2025
Viewed by 262
Abstract
The development of low-cost and high-efficiency oxygen evolution reaction (OER) catalysts is essential to enhance the practicality of electrochemical water splitting for green hydrogen production. Layered double hydroxides (LDHs), especially those based on nickel and cobalt, have attracted attention due to their tunable [...] Read more.
The development of low-cost and high-efficiency oxygen evolution reaction (OER) catalysts is essential to enhance the practicality of electrochemical water splitting for green hydrogen production. Layered double hydroxides (LDHs), especially those based on nickel and cobalt, have attracted attention due to their tunable composition, abundant redox-active sites, and earth-abundant constituents. However, their application is hindered by their limited conductivity and sluggish reaction kinetics. In this study, rare-earth-element-doped NiCo LDHs were synthesized directly on nickel foam through a one-step hydrothermal approach to improve the OER activity by modulating the electronic structure and optimizing the surface morphology. Among the representative catalysts, the incorporation of Sm significantly influenced the microstructure and electronic configuration of the catalyst, as confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical tests showed that the optimized Sm-NiCo LDH achieved a low overpotential of 172 mV at 10 mA cm−2 and a small Tafel slope of 84 mV dec−1 in 1 M KOH, indicating an expanded electrochemically active surface and improved charge transport. Long-term stability tests further showed its durability. These findings suggest that Sm doping enhances the OER performance by increasing active site exposure and promoting efficient charge transfer, offering a promising strategy for designing rare-earth-modified, non-precious-metal-based OER catalysts. Full article
Show Figures

Figure 1

17 pages, 7637 KiB  
Article
Metal Oxide-Doped Pd-Based Catalysts for Enhanced Formaldehyde Oxidation
by Bohao Chang, Xingyu Li, Zeren Rong, Xingshu Wang and Zhihui Liu
Catalysts 2025, 15(8), 762; https://doi.org/10.3390/catal15080762 - 9 Aug 2025
Viewed by 243
Abstract
In this study, a novel strategy to enhance the performance of palladium (Pd)-based catalysts by doping with metal oxides (Mn3O4, MoO3, and SnO) has been developed in order to overcome the limitations of its low activity and [...] Read more.
In this study, a novel strategy to enhance the performance of palladium (Pd)-based catalysts by doping with metal oxides (Mn3O4, MoO3, and SnO) has been developed in order to overcome the limitations of its low activity and high cost in the catalytic oxidation of formaldehyde (HCHO). The novelty of this strategy lies in the fact that by precisely controlling the types and doping ratios of the metal oxides, a significant enhancement of the electrochemical performance and catalytic activity of the Pd-based catalysts was achieved, while the dependence on precious metals was reduced and the cost-effectiveness of the catalysts was improved. The effects of different metal oxide doping on the catalytic performance were systematically investigated by electrochemical characterization and catalytic activity tests. Among the prepared catalysts, Pd-Mn3O4 showed the most excellent performance, with an electrochemically active surface area of 20.6 m2/g and a formaldehyde oxidation reaction (FOR) current density of 3.5 mA/cm2, which were 31.6% and 169.2% higher than pure Pd, respectively. In a 1000 s timed current method stability test, the limiting current density of Pd-Mn3O4 reached 0.48 mA/cm2, which is 4.4 times higher than that of pure Pd. The excellent catalytic performance is attributed to the abundant surface hydroxyl (-OH) groups provided by Mn3O4, which contribute to the oxidation of formaldehyde intermediates, as well as the electronic synergistic effect between Pd and Mn3O4, which is manifested as a 0.4 eV downshift of the Pd 3d binding energy. In addition, the sensor evaluation showed that the Pd-Mn3O4-based formaldehyde sensor exhibited a high sensitivity (1.5 μA/ppm), excellent linearity (R2 = 0.995), minimal long-term degradation (<7% in 30 days), and ~20-fold selectivity for formaldehyde over interfering gases (e.g., ethanol). This study provides a theoretical basis and practical material reference for the development of efficient and low-cost catalysts for formaldehyde oxidation. Full article
Show Figures

Figure 1

45 pages, 2221 KiB  
Review
Recent Progress in Catalytically Driven Advanced Oxidation Processes for Wastewater Treatment
by Tian-Hua Zheng, Zhen-Zhong Zhang, Yue Liu and Liang-Hua Zou
Catalysts 2025, 15(8), 761; https://doi.org/10.3390/catal15080761 - 8 Aug 2025
Viewed by 259
Abstract
With the increasing severity of global water pollution, traditional wastewater treatment methods have gradually revealed limitations in dealing with complex and refractory pollutants. Advanced oxidation processes (AOPs) have emerged as a promising alternative due to their ability to generate highly reactive radicals (such [...] Read more.
With the increasing severity of global water pollution, traditional wastewater treatment methods have gradually revealed limitations in dealing with complex and refractory pollutants. Advanced oxidation processes (AOPs) have emerged as a promising alternative due to their ability to generate highly reactive radicals (such as hydroxyl and sulfate radicals) that can effectively degrade a wide range of pollutants. This review provides a detailed overview of various AOP technologies, including Fenton processes, ozone-based AOPs, persulfate-based AOPs, photocatalytic AOPs, electrochemical AOPs, and sonochemical AOPs, focusing on their fundamental principles, reaction mechanisms, catalyst design, and application performance in treating different types of wastewater. The research results show that the improved Fenton process can achieve a chemical oxygen demand (COD) removal rate of up to 85% when treating pharmaceutical wastewater. Photocatalytic AOP technology demonstrates higher degradation efficiency when treating industrial wastewater containing refractory pollutants. In addition to effectively degrading refractory pollutants and reducing dependence on traditional biological treatment methods, these advanced oxidation processes can also significantly reduce secondary pollution generated during the treatment process. Moreover, by optimizing AOP technologies, the deep mineralization of harmful substances in wastewater can be achieved, reducing the potential pollution risks to groundwater and soil while also lowering energy consumption during the treatment process. Additionally, this review discusses the challenges faced by AOPs in practical applications, such as high energy consumption, insufficient catalyst stability, and secondary pollution. This review summarizes the research progress and application trends of catalytically driven AOPs in the field of wastewater treatment over the past five years. It aims to provide a comprehensive reference for researchers and engineering professionals on the application of AOPs in wastewater treatment, promoting the further development and practical implementation of these technologies. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

15 pages, 2015 KiB  
Article
Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation
by Nailma Martins and Oscar W. Perez-Lopez
Catalysts 2025, 15(8), 760; https://doi.org/10.3390/catal15080760 - 8 Aug 2025
Viewed by 282
Abstract
CO2 methanation offers a sustainable route to reduce greenhouse gas emissions by converting carbon dioxide into methane, a valuable renewable fuel. This exothermic reaction not only mitigates its environmental impact but also provides energy-efficient benefits, as the heat generated can be reused [...] Read more.
CO2 methanation offers a sustainable route to reduce greenhouse gas emissions by converting carbon dioxide into methane, a valuable renewable fuel. This exothermic reaction not only mitigates its environmental impact but also provides energy-efficient benefits, as the heat generated can be reused in industrial applications. In this study, CO2 methanation was carried out in a continuous flow reactor with a CO2:H2 molar ratio of 1:4 and a gas hourly space velocity (GHSV) of 12,000 h−1, using a Ni-Al-LDH catalyst with a molar ratio of 2.3. The research focused on how calcination and reduction conditions affect catalyst structure and activity. Characterization techniques such as BET, XRD, TPR, H2-TPD, and CO2-TPD revealed that these conditions significantly influence surface area, crystallinity, phase composition, and metal dispersion. A higher reduction temperature decreased the surface area and increased both the crystallite size and basicity. The findings highlight that thermal treatment play a crucial role in optimizing the catalytic properties of NiAl catalyst. The sample calcined at 600 °C showed greater activity at lower reaction temperatures, while the catalyst calcined at 400 °C performed better above 300 °C. Additionally, the evaluation of the effect of the reduction atmosphere during catalyst activation showed that H2 is a more effective reducing gas at lower reaction temperatures, whereas biogas showed a better performance at higher temperatures. Importantly, XRD results showed the catalysts maintained their structural integrity post-reaction, with no significant carbon deposition in the H2 atmosphere, confirming their potential for long-term application in CO2 methanation. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
Show Figures

Graphical abstract

16 pages, 6767 KiB  
Article
Macroporous Resin-Based La-N Co-Doped TiO2 Composites for Efficient Removal of Environmental Pollutants in Water via Integrating Adsorption and Photocatalysis
by Wenbin Qu, Bountheva Louangsouphom, Xiaoling Ye, Huimei Liu and Xin Wang
Catalysts 2025, 15(8), 759; https://doi.org/10.3390/catal15080759 - 8 Aug 2025
Viewed by 264
Abstract
Integrating photocatalysis with adsorption represents an efficient approach to improving the removal performance of organic contaminants from aqueous environments. To address the issues of severe charge recombination and poor adsorption activity in TiO2 photocatalysts during the photocatalytic degradation of organic pollutants. In [...] Read more.
Integrating photocatalysis with adsorption represents an efficient approach to improving the removal performance of organic contaminants from aqueous environments. To address the issues of severe charge recombination and poor adsorption activity in TiO2 photocatalysts during the photocatalytic degradation of organic pollutants. In this study, we used macroporous resin as a carrier and prepared La/N-doped TiO2/macroporous resin composite materials (La/N/TiO2-MAR) via a hydrothermal-assisted sol–gel method. The results show that the composite material has a spherical morphology. N can be doped into the TiO2 crystal, while La3+ remains on the surface of TiO2 without entering the crystal lattice. La/N/TiO2-MAR demonstrates a higher specific surface area and enhanced light absorption capacity, which facilitates both adsorption and photocatalytic degradation. At the La3+ doping concentration of 0.05 M, La0.05/N/TiO2-MAR demonstrates optimal photocatalytic degradation performance, achieving an 85.36% removal rate of Rhodamine B after 240 min of visible-light exposure. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

Back to TopTop